* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Matter-wave solitons beyond 1D contact-interaction mean
ATLAS experiment wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Grand Unified Theory wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
Quantum chaos wikipedia , lookup
Photon polarization wikipedia , lookup
Electron scattering wikipedia , lookup
Renormalization group wikipedia , lookup
Standard Model wikipedia , lookup
Old quantum theory wikipedia , lookup
History of quantum field theory wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Elementary particle wikipedia , lookup
Antiproton Decelerator wikipedia , lookup
Renormalization wikipedia , lookup
Nuclear structure wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
2D Solitons in Dipolar BECs 1I. Tikhonenkov, 2B. Malomed, and 1A. Vardi 1Department of Chemistry, Ben-Gurion University 2Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 1 Dilute Bose gas at low T Contact pseudopotential Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 2 Gross-Pitaevskii description • Lowest order mean-field theory: Condensate order-parameter Gross-Pitaevskii energy functional: • minimize EGP under the constraint: Gross-Pitaevskii (nonlinear Schrödinger) equation: Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 3 Variational Calculation • • • • Evaluation of the EGP in an harmonic trap, using a gaussian solution with varying width b. Kinetic energy per-particle varies as 1/b2 - dispersion. Nonlinear interaction per-particle varies as gn - g/b3 in 3D, g/b in 1D. In 1D with g<0, kinetic dispersion can balance attraction and arrest collapse. Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 4 Solitons • Localized solutions of nonlinear differential equations. • Result in from the interplay of dispersive terms and nonlinear terms. • Propagate long distances without dispersion. • Collide without radiating. • Not affected by their excitations. Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 5 Zero-temperature BEC solitons • NLSE in 1D with attractive interactions (g<0), no confinement Posesses self-localized sech soliton solutions: Bright soliton: Healing length at x=0 Ultrafast-Ultracold Chemical potential of a bright soliton Ein Gedi, Feb. 24-29, 2008 6 Zero-temperature BEC solitons Attractive interactions, g0 No interactions, matter wave dispersion time time (self-focusing nonlinearity) g 0 Ultrafast-Ultracold x Ein Gedi, Feb. 24-29, 2008 x 7 Observation of BEC bright solitons (1) Prepare BEC (static) in the trap (3) Turn off both the trap and interactions (Feshbach mechanism) (2) Turn off the trap and let evolve 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 0 -10 -8 -6 -4 -2 0 2 4 6 L. Khaykovich et al. Science 296, 1290 (2002). Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 8 8 10 Observation of BEC solitons Dark solitons by phase imprinting: J. Denschlag et al., Science 287, 5450 (2000). Bright solitons L. Khaykovich et al. Science 296, 1290 (2002). Bright soliton train: K. E. Strecker et al., Nature 417, 150 (2002). Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 9 Instability of 2D solitons without dipolar-interaction - characteristic width of a 2D BEC wavefunction is monotonic in expansion Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 collapse 10 Dipole-dipole interaction vacuum permittivity d - magnetic/electric dipole moment Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 11 Units Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 12 2D Bright solitons in dipolar BECs P. Pedri and L. Santos, PRL 95, 200404 (2005) Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 13 Manipulation of dipole-dipole interaction • The total dipolar interaction is attractive at L< Lz and repulsive at L> Lz. There is a maximum in E(L, hence no soliton. • In order to stabilize 2D solitary waves in the PS configuration, it is necessary to reverse dipoledipole behavior, so that side-by-side dipoles attract each other and head-to-tail dipoles repell one another. Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 14 Manipulation of dipole-dipole interaction S. Giovanazzi, A. Goerlitz, and T. Pfau, PRL 89, 130401 (2002) • • The magnetic dipole interaction can be tuned, using rotating fields from +Vd at , to -Vd/2 at The maximum becomes a minimum and 2D bright SWs can be found, provided that the dipole term is sufficiently strong to overcome the kinetic+contact terms, i.e. • Or, for Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 15 E for confinement along the dipolar axis z, gaussian ansatz, g=500 Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 16 Dipolar axis in the 2D plane I. Tikhonenkov, B. A. Malomed, and AV, PRL 100, 090406 (2008) Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 17 Dipolar axis in the 2D plane For gd > 0 stable self trapping along the dipolar axis z: y z x Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 18 For gd > 0, what happens along x ? y y z z x x Self trapping along x is enabled by the interplay of 1/Lx2 kinetic dispersion and -1/Lx dipolar attraction Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 19 E for confinement perpendicular to the dipolar axis Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 20 3D Propagation and stability Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 21 Driven Rotation Deviation from /2 rotated soliton at t= /2 Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 22 Experimental realization For g,gd > 0 : • 52Cr (magnetic dipole moment d=6B) • Dipolar molecules (electric dipole of ~0.1-1D) Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 23 Conclusions • 2D bright solitons exist for dipolar alignment in the free-motion plane. • For this configuration, no special tayloring of dipole-dipole interactions is called for. • The resulting solitary waves are unisotropic in the 2D plane, hence interesting soliton collision dynamics. Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 24 Incoherent matter-wave Solitons 1,2H. Buljan, 1M. Segev, and 3A. Vardi 1Department of Physics, The Technion of Physics, Zagreb Univesity 3Department of Chemistry, Ben-Gurion University 2Department Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 25 What about quantum/thermal fluctuations ? Trap OFF → nonequilibrium dynamics Prepared (static) BEC partially condensed Condensed particles 0.2 0.15 0.2 ? 0.15 Thermal cloud 0.1 0.1 0.05 0.05 0 -10 -8 -6 -4 -2 0 2 4 6 8 0 -10 10 -8 -6 -4 -2 0 2 4 6 8 BEC-soliton dynamics affected by (1) Thermal cloud (and vice versa) (2) Condensate depletion during dynamics Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 26 10 T=0 - Bogoliubov theory (ask Nir) • Want to calculate zero temperature fluctuations. • Separate: condensate fluctuations • retain quadratic fluctuation terms and add N0 constraint: Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 27 T=0 - Bogoliubov theory • Bogoliubov transformation: v(x) Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 28 Bogoliubov spectrum of a bright soliton • linearize about a bright soliton solution: 29 Bogoliubov spectrum of a bright soliton Scattering without reflection • Transmittance: • Bogoliubov quasiparticles scatter without reflection on the soliton (B. Eiermann et al., PRL 92, 230401 (2004), S. Sinha et al., PRL 96, 030406 (2006)). Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 30 Limitations on Bogoliubov theory • The condensate number is fixed - no backreaction • The GP energy is treated separately from the fluctuations direct + exchange pair production no exchange ! Due to exchange energy in collisions between condensate particles and excitations, it may be possible to gain energy By exciting pairs of particles from the condensate ! Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 31 TDHFB approximation Heisenberg eq. of motion for the Bose field operator ˆ(x,t) Fluctuations separate, like before Condensate retain quadratic terms in the fluctuations, to obtain coupled equations for: Condensate order-parameter Pair correlation functions - single particle normal and anomalous densities 32 TDHFB approximation (e.g., Proukakis, Burnett, J. Res. NIST 1996, Holland et al., PRL 86 (2001)) Condensate density Normal noncondensate density Anomalous noncondensate density Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 33 Initial Conditions - static HFB solution in a trap Bose distribution Fluctuations do not vanish even at T=0, quantum fluct. Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 34 Dynamics - TDHFB equations Initial conditions: Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 35 System Parameters Quasi 1D geometry Parameters close to experiment: x N = 2.2 104 7Li atoms ω = 4907 Hz ; a = 1.3 μm ωx = 439 Hz ; ax = 4.5 μm Na3D = -0.68 μm TDHFB can be used only for limited time-scales: Tevolutionω << Tcollisionalω ~ 104 Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 36 TDHFB vs. GP GPE evolution, mechanical stability Without interactions matter wave dispersion TDHFB: pairing PRL 80, 180401 (2005) Dynamical condensate depletion 37 Incoherent matter-wave solitons Correlations Mixture of condensed and noncondensed atoms Re μ(x1,x2,t=0) Re μ(x1,x2,t) Im μ(x1,x2,t) Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 38 Number and energy conservation Number conservation Energy conservation condensate fraction condensate kinetic energy thermal population thermal cloud kinetic energy total interaction energy Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 39 Conclusions • Dynamics of a partially condensed Bose gas calculated via a nonlinear TDHFB model • Noncondensed particles (thermal/quantum) affect the dynamics of BEC solitons • Pairing instability - dynamical depletion of a BEC with attractive interactions • Incoherent matter-wave solitons constituting both condensed and noncondensed particles • Analogy with optics: Coherent light in Kerr media Ξ zero-temperature BEC Partially (in)coherent light in Kerr media Ξ partially condensed BEC Ultrafast-Ultracold Ein Gedi, Feb. 24-29, 2008 40