Download Matter-wave solitons beyond 1D contact-interaction mean

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

ATLAS experiment wikipedia , lookup

Introduction to quantum mechanics wikipedia , lookup

Compact Muon Solenoid wikipedia , lookup

Grand Unified Theory wikipedia , lookup

Mathematical formulation of the Standard Model wikipedia , lookup

Quantum chaos wikipedia , lookup

Photon polarization wikipedia , lookup

Electron scattering wikipedia , lookup

Renormalization group wikipedia , lookup

Standard Model wikipedia , lookup

Old quantum theory wikipedia , lookup

History of quantum field theory wikipedia , lookup

Quantum vacuum thruster wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Elementary particle wikipedia , lookup

Antiproton Decelerator wikipedia , lookup

Renormalization wikipedia , lookup

T-symmetry wikipedia , lookup

Nuclear structure wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Eigenstate thermalization hypothesis wikipedia , lookup

Transcript
2D Solitons in Dipolar BECs
1I.
Tikhonenkov, 2B. Malomed, and 1A. Vardi
1Department
of Chemistry, Ben-Gurion University
2Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
1
Dilute Bose gas at low T
Contact pseudopotential
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
2
Gross-Pitaevskii description
• Lowest order mean-field theory:
Condensate order-parameter
Gross-Pitaevskii energy functional:
• minimize EGP under the constraint:
Gross-Pitaevskii (nonlinear Schrödinger) equation:
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
3
Variational Calculation
•
•
•
•
Evaluation of the EGP in an harmonic trap, using a gaussian solution with varying
width b.
Kinetic energy per-particle varies as 1/b2 - dispersion.
Nonlinear interaction per-particle varies as gn - g/b3 in 3D, g/b in 1D.
In 1D with g<0, kinetic dispersion can balance attraction and arrest collapse.
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
4
Solitons
• Localized solutions of
nonlinear differential
equations.
• Result in from the interplay
of dispersive terms and
nonlinear terms.
• Propagate long distances
without dispersion.
• Collide without radiating.
• Not affected by their
excitations.
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
5
Zero-temperature BEC solitons
• NLSE in 1D with attractive interactions (g<0), no confinement
Posesses self-localized sech soliton solutions:
Bright soliton:
Healing length at x=0
Ultrafast-Ultracold
Chemical potential of a bright soliton
Ein Gedi, Feb. 24-29, 2008
6
Zero-temperature BEC solitons
Attractive interactions,
g0
No interactions,
matter wave dispersion
time
time
(self-focusing nonlinearity)
g 0
Ultrafast-Ultracold
x
Ein Gedi, Feb. 24-29, 2008
x
7
Observation of BEC bright solitons
(1) Prepare BEC (static)
in the trap
(3) Turn off both the
trap and interactions
(Feshbach mechanism)
(2) Turn off the trap
and let evolve
0.2
0.2
0.2
0.15
0.15
0.15
0.1
0.1
0.1
0.05
0.05
0.05
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
0
-10
-8
-6
-4
-2
0
2
4
6
L. Khaykovich et al.
Science 296, 1290 (2002).
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
8
8
10
Observation of BEC solitons
Dark solitons by phase imprinting:
J. Denschlag et al., Science 287, 5450 (2000).
Bright solitons
L. Khaykovich et al. Science 296, 1290 (2002).
Bright soliton train:
K. E. Strecker et al., Nature 417, 150 (2002).
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
9
Instability of 2D solitons
without dipolar-interaction
- characteristic width of a 2D BEC wavefunction
is monotonic in
expansion
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
collapse
10
Dipole-dipole interaction

vacuum permittivity
d - magnetic/electric dipole moment
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
11
Units
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
12
2D Bright solitons in dipolar BECs
P. Pedri and L. Santos, PRL 95, 200404 (2005)
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
13
Manipulation of dipole-dipole interaction
• The total dipolar interaction
is attractive at L< Lz and
repulsive at L> Lz. There is
a maximum in E(L, hence
no soliton.
• In order to stabilize 2D solitary waves in the PS
configuration, it is necessary to reverse dipoledipole behavior, so that side-by-side dipoles
attract each other and head-to-tail dipoles repell
one another.
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
14
Manipulation of dipole-dipole interaction
S. Giovanazzi, A. Goerlitz, and T. Pfau, PRL 89, 130401 (2002)
•
•
The magnetic dipole interaction can be
tuned, using rotating fields from +Vd at
, to -Vd/2 at 
The maximum becomes a minimum and
2D bright SWs can be found, provided
that the dipole term is sufficiently strong to
overcome the kinetic+contact terms, i.e.
•
Or, for
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
15
E for confinement along the dipolar axis
z, gaussian ansatz, g=500
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
16
Dipolar axis in the 2D plane
I. Tikhonenkov, B. A. Malomed, and AV, PRL 100, 090406 (2008)
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
17
Dipolar axis in the 2D plane
For gd > 0 stable self trapping along the dipolar axis z:
y
z
x
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
18
For gd > 0, what happens along x ?
y
y
z
z
x
x
Self trapping along x is enabled by the interplay of 1/Lx2
kinetic dispersion and -1/Lx dipolar attraction
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
19
E for confinement
perpendicular to the dipolar axis
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
20
3D Propagation and stability
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
21
Driven Rotation
Deviation from /2 rotated soliton at t= /2
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
22
Experimental realization
For g,gd > 0 :
•
52Cr
(magnetic dipole moment d=6B)
• Dipolar molecules (electric dipole of ~0.1-1D)
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
23
Conclusions
• 2D bright solitons exist for dipolar alignment
in the free-motion plane.
• For this configuration, no special tayloring of
dipole-dipole interactions is called for.
• The resulting solitary waves are unisotropic in
the 2D plane, hence interesting soliton
collision dynamics.
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
24
Incoherent matter-wave Solitons
1,2H.
Buljan, 1M. Segev, and 3A. Vardi
1Department
of Physics, The Technion
of Physics, Zagreb Univesity
3Department of Chemistry, Ben-Gurion University
2Department
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
25
What about quantum/thermal fluctuations ?
Trap OFF →
nonequilibrium dynamics
Prepared (static) BEC
partially condensed
Condensed particles
0.2
0.15
0.2
?
0.15
Thermal cloud
0.1
0.1
0.05
0.05
0
-10
-8
-6
-4
-2
0
2
4
6
8
0
-10
10
-8
-6
-4
-2
0
2
4
6
8
BEC-soliton dynamics affected by
(1) Thermal cloud (and vice versa)
(2) Condensate depletion during dynamics
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
26
10
T=0 - Bogoliubov theory (ask Nir)
• Want to calculate zero temperature fluctuations.
• Separate:
condensate fluctuations
• retain quadratic fluctuation terms and add N0 constraint:
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
27
T=0 - Bogoliubov theory
• Bogoliubov transformation:
v(x)
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
28
Bogoliubov spectrum of a bright soliton
• linearize about a bright soliton solution:
29
Bogoliubov spectrum of a bright soliton
Scattering without reflection
• Transmittance:
• Bogoliubov quasiparticles scatter without reflection on
the soliton (B. Eiermann et al., PRL 92, 230401 (2004),
S. Sinha et al., PRL 96, 030406 (2006)).
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
30
Limitations on Bogoliubov theory
• The condensate number is fixed - no backreaction
• The GP energy is treated separately from the fluctuations
direct + exchange
pair production
no exchange !
Due to exchange energy in collisions between condensate
particles and excitations, it may be possible to gain energy
By exciting pairs of particles from the condensate !
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
31
TDHFB approximation

Heisenberg eq. of motion for the Bose field operator
ˆ(x,t)
Fluctuations

separate, like before
Condensate
 retain quadratic terms in the fluctuations, to obtain coupled
equations for:
Condensate
order-parameter
Pair correlation functions - single particle normal
and anomalous densities
32
TDHFB approximation
(e.g., Proukakis, Burnett, J. Res. NIST 1996, Holland et al., PRL 86 (2001))
Condensate density
Normal noncondensate density
Anomalous noncondensate density
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
33
Initial Conditions - static HFB solution in a
trap
Bose distribution
Fluctuations do not vanish even at T=0, quantum fluct.
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
34
Dynamics - TDHFB equations
Initial conditions:
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
35
System Parameters

 Quasi 1D geometry
 Parameters close to experiment:
x
 N = 2.2 104 7Li atoms
 ω = 4907 Hz ; a = 1.3 μm
 ωx = 439 Hz ;
ax = 4.5 μm
 Na3D = -0.68 μm
 TDHFB can be used only for limited time-scales:
 Tevolutionω << Tcollisionalω ~ 104
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
36
TDHFB vs. GP
GPE evolution,
mechanical stability
Without interactions
matter wave dispersion
TDHFB: pairing
PRL 80,
180401 (2005)
Dynamical condensate
depletion
37
Incoherent matter-wave solitons
Correlations
Mixture of condensed and
noncondensed atoms
Re μ(x1,x2,t=0)
Re μ(x1,x2,t)
Im μ(x1,x2,t)
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
38
Number and energy conservation
Number conservation
Energy conservation
condensate fraction
condensate kinetic energy
thermal population
thermal cloud kinetic energy
total interaction energy
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
39
Conclusions
• Dynamics of a partially condensed Bose gas calculated via a
nonlinear TDHFB model
• Noncondensed particles (thermal/quantum) affect the dynamics
of BEC solitons
• Pairing instability - dynamical depletion of a BEC with attractive
interactions
• Incoherent matter-wave solitons constituting both condensed
and noncondensed particles
• Analogy with optics:
Coherent light in Kerr media Ξ zero-temperature BEC
Partially (in)coherent light in Kerr media Ξ partially condensed BEC
Ultrafast-Ultracold
Ein Gedi, Feb. 24-29, 2008
40