Download Buchwald-Hartwig Chemistry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Spin crossover wikipedia , lookup

Metalloprotein wikipedia , lookup

Coordination complex wikipedia , lookup

Stability constants of complexes wikipedia , lookup

Hydroformylation wikipedia , lookup

Ring-closing metathesis wikipedia , lookup

Ligand wikipedia , lookup

Baylis–Hillman reaction wikipedia , lookup

Petasis reaction wikipedia , lookup

Stille reaction wikipedia , lookup

Transcript
Buchwald-Hartwig
Chemistry
Ian Mangion
MacMillan Group Meeting
July 30, 2002
! Historical context
! Development of initial catalytic systems
! Mechanistic studies and rational design
! Reaction Scope
Definition of Buchwald-Hartwig Chemistry
X
+
HNR2
R
X
+
HOR
R
ML n
Base
NR2
R
ML n
Base
OR
R
EWG
X
+
R
EWG
ML n
EWG
Base
R
EWG
X = I, OTf, Br, Cl
M = Pd, Ni, Cu
! Over 70 publications from Buchwald
! Over 50 publications from Hartwig
! Several comprehensive reviews
Buchwald, S.; Muci, A. Top. Curr. Chem. 2002 ; 219 , 133-209
Hartwig, J. Pure Appl. Chem. 1999 , 71 , 1417
Buchwald, S; Yang, B. J. Orgmet. Chem. 1999 , 576, 125
Hartwig, J.; ACIEE . 1998 , 37 , 2046
Hartwig, J . Acc. Chem. Res . 1998, 31, 852
Buchwald et al. Acc. Chem. Res. 1998, 31, 805
Aryl Aminations Before Buchwald-Hartwig
! Ullman discovers ipso -substitution of aryl halides mediated by copper in 1901
X
+
HNR2
CuX
HNR2
Lindley, J. Tetrahedron, 1984 , 40 , 1433
! Scope has been expanded to include a tremendous variety of nucleophiles
! Limited by harsh reaction conditions, stoichiometric metal
! Multiple mechanisms thought to be operating, catalytic species poorly defined
! Aryne chemistry allows for amination of an expanded scope of aryl halides
R
R
X
NaNH2
R
HNR2
NR2
Biehl, E. J. Org. Chem., 1987 , 52, 2619
! Functional group compatibility low
! Regiocontrol is a problem
The Move Towards a General Reaction
! Bunnett introduces the S RN1 mechanism to the picture
Me
Me
Me
Br
NH3, hv
+
N
CH2-
N
Me
Me
Me
87% yield
Bunnett, J . Acc. Chem. Res. , 1978, 11, 413
! Demanding couplings can be accomplished
! Reaction conditions are mildest yet
! All drawbacks associated with radical mechanisms are present
! Migita makes the major breakthrough
Br
+
Bu 3SnNEt 2
PdCl2(o -tolyl3P)2
NEt2
PhCH 3, reflux
81% yield
Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett., 1983, 927
Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T.
Nippon Kagaku Kaishi , 1985, 3, 547
!
!
!
!
!
First example of a palladium-catalyzed aryl-amine coupling
Aryl bromides are only viable aromatic substrates
Reaction scope is very limited, but reactions are clean and mild
Tin amides are toxic, sensitive compounds
This work goes unreferenced for a decade
Hartwig Takes a Closer Look
! The mechanism of Migita's reaction is studied for the first time
Me
Br
+
PdCl2(o -tolyl3P)2
Bu 3SnNR2
PhCH 3, 90-110˚C
Me
NR2
75-85% yield
! Oxidative addition, reductive elimination suspected
! Hartwig probes for Pd(0) complexes and isolable intermediates
(o-tolyl) 2Pd
Bu 3SnNR2
NR
L
(o-tolyl) 2Pd
L
Pd
Br
Br
Pd
Ar
L
isolated, X-ray strucure given
Ar
Pd
Br
ArBr
Ar
Br
Pd
Ar
L
Bu 3SnNR2
ArNR2
>90% yield
! Palladium dimer implicated in catalytic cycle
! Dimer does not exchange Ar in crossover experiments
! In presence of tin amines, dimer is suspected to irreversibly dissociate to monomeric form
Paul, F.; Patt, J.; Hartwig, J.
J. Am. Chem. Soc. , 1994, 116 , 5969
Proposed Catalytic Cycle
L2Pd
L2PdX2
reduction
L-Pd
ArNR2
ArBr
L
NR2
L
Br
Pd
Pd
Pd
Ar
BrSnBu 3
Ar
L
Br
Br
Pd
Ar
L
Ar
R2NSnBu 3
! Phosphine inhibition implies monophosphine Pd is active species
! Pd(0) sources can catalyze the reaction
! As in Stille couplings, tin transmetalation appears to be the rate-limiting step
Paul, F.; Patt, J.; Hartwig, J.
J. Am. Chem. Soc. , 1994, 116 , 5969
Buchwald Enters the Field
! Three months after Hartwig's paper is submitted, Buchwald submits the following work,
beginning an ongoing trend of indepent, overlapping research
! Buchwald expands the scope of the reaction by generating tin amines in situ
Bu 3SnNEt 2
+
Ar purge
HNRR'
Bu 3Sn-NRR'
– HNEt 2
PdCl2(o -tolyl3P)2
PhCH 3, reflux
NRR'
R
Br
R
!
!
!
!
!
Use of tin reagents is still required, but a large variety of amines are made available through transmetalation
Reaction still restricted to aryl bromides
Only secondary amines and primary anilines can be used
o-substituted aryls not reported
Catalyst loadings of less than 2% are typical, most reactions run 24 h
Ph
EtO 2C
Br
+
Me2N
Br
+
HN
Ph
Me
Br
+
HN
PdCl2L2
PdCl2L2
Ph
EtO 2C
88% yield
N
Ph
Me2N
N
PdCl2L2
HN
Me
N
Guram, A.; Buchwald, S.
81% yield
55% yield
J. Am. Chem. Soc. , 1994, 116 , 7901
Tin-Free Catalysis
! Once again in quick succession, Buchwald and Hartwig publish methods for tin-free aryl-amine couplings
+
Br
PdCl2(o -tolyl3P)2 or
Pd(dba) 2 + 2 ( o-tolyl) 3P
HNRR'
NaOtBu or LiHMDS
PhCH 3, reflux
R
NRR'
R
! A new catalytic cycle is proposed in which the base deprotonates Pd-amine complexes
! Pd(0) shown to be resting state of catalyst, so oxidative addition is now the rate-limiting step
L2PdX2
reduction
L2Pd
L-Pd
ArNR2
"#Hydride Elimination
ArH
L
NR2
L
R
Pd
Br
Br
Pd
Ar
L
HOtBu
+ NaBr
Br
R'
H
Ar
Pd
Ar
N
ArBr
L
Pd
NaOtBu Ar
NR2H
HNR2
Guram, A.; Rennels, R.; Buchwald, S. ACIEE , 1995 , 34 , 1348
Louie, J.; Hartwig, J. Tet. Lett. , 1995 , 3609
Expansion of Scope
! The new conditions allow for greater substrate scope
Me
Me
Ph
Br
+
HN
Me
Br
+
Br
+
88% yield
N
NaOtBu
Me
Me
Me
O
Ph
PdL2
PdL2
NHHex
Ph
NHHex
72% yield
N
94% yield
NaOtBu
PdCl2L2
MeO
HN
LiHMDS
PdL2
n-Bu
Br
+
HNEt2
n-Bu
LiHMDS
NEt2
40% yield
(+ 40% reduced arene)
L = (o-tolyl) 3P
! Primary amines can be coupled with electron-withdrawing aryl halides
! Cyclic secondary amines and alkyl anilines are good substrates
! Most acyclic secondary alkyl amines are problematic with electron-rich or neutral aryl halides
Guram, A.; Rennels, R.; Buchwald, S. ACIEE , 1995 , 34 , 1348
Louie, J.; Hartwig, J. Tet. Lett. , 1995 , 3609
Role of the Phosphines: Early Studies
Ar
ArNPh 2
+ L 4Pd
+L
L 3Pd
+L
NPh2
+L
ArNPh 2
+ L 4Pd
–L
L
Ar
Pd
Ph 2N
–L
L
+L
Ar
+L
LPd
ArNPh2
+L4Pd
NPh2
Ar
Pd
L
+L
Ph2
N
–L
L
Ar
Pd
L
NPh2
ArNPh2
+L4Pd
! Inverse first-order dependence on phosphines from the monomer suggests dissociative, three-coordinate
complex is dominant in the catalytic cycle
! First-order dependence on synthetic monomer or dimer
! Rate of reaction for dimer is phosphine-independent.
! Mixture of dimers do not cross over, implying irreversible cleavage to three-coordinate palladium monomer.
Driver, M.; Hartwig, J.
Paul, F.; Baranano, D.; Richards, S.; Hartwig, J.
J. Am. Chem. Soc. , 1995, 117 , 4708
J. Am. Chem. Soc. , 1996, 118 , 3626
Further Considerations in Reaction design
Reductive Eliminatio n
R2N
Accelerated by:
1. Electron withdrawing aryl groups
2. Larger, more donating R
3. Larger L
Bu 3SnR 2
L nPd
L nPd
Br
NR2
m
"-Hydrogen Elimination
H
Bu 3SnN(CD 3) 2
Me
[(o-tolyl)3P]2Pd
Me
!
!
!
!
!
Me
Br
Me
Me
Me
NR2
Me
+ Me
D
Me
50-70% deuteration depending on ligand
Alternative hydrogen source unknown
Most qualitative steric and electronic effects are consistent with analogous C-C bond formation reactions
Perturbations that drive reductive elimination enhance the rate of amination over aryl hydrodehalogenation
More nucleophlic amines are better substrates
More than one mechanism competes to produce reduced arenes
Pd(II) and Pd(0) sources are both competent, but small amounts of arene reduction attributed to Pd(II) reduction
Paul, F.; Baranano, D.; Richards, S.; Hartwig, J.
J. Am. Chem. Soc. , 1996, 118 , 3626
Bidentate Ligands: A Dramatic Advance
! In back-to-back communications, Buchwald and Hartwig report vast improvements in scope and yield
by use of bidentate phosphine ligands
! Catalyst loadings are typically 0.5-1.0 mol%, and reactions are typically faster
Me
Br
Me
Pd 2(dba)3
+
n-HexNH 2
BINAP, NaOtBu
PhCH 3, 80˚C
6h
MeO
Me
+
HN
NMe
Me
95% yield
Hex
MeO
Me
Pd 2(dba)3
Br
H
N
NMe
N
BINAP, NaOtBu
PhCH 3, 80˚C
4h
98% yield
Me
OMe
OMe
(DPPF)PdCl 2
I
+
H2NPh
PhCH 3, 100˚C
NaOtBu
3h
NHPh
(DPPF)PdCl 2
H
N
96% yield
Me
Br
+
Ph
Me
H2N
Me
O
PhCH 3, 100˚C
NaOtBu
3h
Me
84% yield
Ph
O
Wolfe, J.; Wagaw, S.; Buchwald, S. J. Am. Chem. Soc., 1996 , 118 , 7215
Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1996, 118 , 7217
Bidentate Ligands: Mechanistic Revision
! Reductive elimination from four-coordinate complex now proposed
L
L
31
Pd
! Intermediate demonstrated by P NMR, and synthesis of isolable 4-coordinate arylamino
Ar
NR2
palladium species
! Enforced cis geometry of coupling partners thought to suppress "-hydrogen elimination:
Hartwig argues "-hydrogen elimination possible only with empty coordination site on 14-electron complex
cis to alkyl amine
! Followup mechanistic studies show rates of monodentate phosphine reactions are a competition
between three- and four-coordinate complexes
Ar
k1
LPd
ArNPh2
+L4Pd
NPh2
DPPF intermediates synthesized
+L
–L
+L
k3
k -3
k2
–L
L
k -2
Ar
Pd
L
Ph2
P
NPh2
ArNPh2
+L4Pd
Ar
Ph
Pd
P
Ph2
NR2
R = tolyl, isoBu
L 2Pd
NPh2
Fe
Revised rate expression proposes
all shown intermediates to be involved
for monodentate ligands
These compunds give coupling products
when heated, in up to 90% yield
Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1997, 119 , 8232
Wolfe, J.; Wagaw, S.; Buchwald, S. J. Am. Chem. Soc., 1996 , 118 , 7215
Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1996, 118 , 7217
Aryl Iodides and Triflates: Challenging Substrates
! Buchwald proposes that monodentate phosphine ligands were ineffective with aryl iodides because
they allowed more stable palladium iodide dimers to form.
! Experiments perturbing steric bulk of amine suggest steric difference between I and Br might be important as well
L
Ar
L
Pd
Ar
Pd
Br
Br more labile than
I
I
Pd
Pd
Ar
L
Ar
L
van der Waals radii:
Cl (1.75 Å) < Br (1.85 Å) < I (1.96 Å)
""G298Kfor DIPA with Pd dimers = 4.6 kcal mol -1
""G298Kfor BnNH 2 with Pd dimers = 2.7 kcal mol -1
(bulkier amines more sensitive to size of I)
! Pd-C and Pd-P rotation barriers found to be greater for larger halides
! Triflates are prone to cleavage to phenols by nucleophilic bases at a rate competitive to reductive elimination
OTf
H2N
+
<5% yield
NaOtBu, PhCH 3, reflux
MeO
MeO
OTf
+
Me
H
N
Pd 2(dba)3/P(o-tolyl) 3
HN
Pd 2(dba)3/P(o-tolyl) 3
N
NaOtBu, PhCH 3, reflux
<5% yield
MeO
Louie, J.; Driver, M.; Hamann, B.; Hartwig, J.
J. Org. Chem., 1997 , 62 , 1268
Widenhoefer, R.; Buchwald, S. Organometallics , 1996 , 15 , 2755
A General Solution
OTf
H2N
H
N
Pd 2(dba)3/DPPF
+
92% yield
NaOtBu, PhCH 3, 85˚C
MeO
MeO
OTf
+
Pd 2(dba)3/DPPF
HN
N
NaOtBu, PhCH 3, 85˚C
Me
75% yield
MeO
I
+
H
N
Pd 2(dba)3/BINAP
H2N
NaOtBu, PhCH 3, RT
Me
88% yield
Me
Me
I
Ph
+
t-Bu
HN
Me
N
Pd 2(dba)3/BINAP
90% yield
NaOtBu, dioxane, RT
t-Bu
! Previously unusable iodides and triflates are now excellent substrates
! Increased catalytic activity allows for milder conditions
Louie, J.; Driver, M.; Hamann, B.; Hartwig, J.
Wolfe, J.; Buchwald, S.
J. Org. Chem., 1997 , 62 , 1268
J. Org. Chem. , 1996 , 61 , 1133
Aryl Chlorides: The Search For a Practical System
! Finding little success with existing palladium systems, Buchwald develops a nickel-based catalyst
for the amination of aryl chlorides.
Me
H2N
+
Me
Cl
OMe
Me
+
Me
HexNH 2
Cl
H
N
Me
Ni(COD) 2/DPPF
96% yield
NaOtBu, PhCH 3, 100˚C
Me
Me
Ni(COD) 2/DPPF
NH
OMe
Hex
NaOtBu, PhCH 3, 100˚C
65% yield
Me
Wolfe, J.; Buchwald, S.
J. Am. Chem. Soc. , 1997, 119 , 6054
! A palladium system follows , using a new system of ligands
PCy2
Cl
NHBu
+
Pd 2(dba)3/1
Bu 2NH
NaOtBu, PhCH 3, 80˚C
Me
Me
+
Me
HexNH 2
Cl
Cl
+
NC
HN
O
Pd 2(dba)3/1
95% yield
Me
Me
NaOtBu, PhCH 3, 80˚C
Pd 2(dba)3/1
NaOtBu, PhCH 3, RT
Me2N
NH
1
Hex
99% yield
Me
NC
N
O
96% yield
Old, D. W.; Wolfe, J.; Buchwald, S.
J. Am. Chem. Soc. , 1998, 120 , 9722
An Unexpected Development
! Further studies on this new class of ligand demonstrates that bidentate binding is unnecessary!
P(t-Bu)2
PCy2
Me2N
Me2N
1
2
P(t-Bu)2
PCy2
3
4
! Ligands 3 and 4 are sometimes better ligands than 1
Wolfe, J.; Buchwald, S.
ACIEE , 1999 , 38 , 2413
! Hartwig discovers the same effect through experimentation with bulky bidentate ligands
! Ligand 5 is found to be more general and effective than DPPF, and even allows coupling of tosylates
! P(t-Bu) 3 is then found to be a remarkably active ligand
OTs
+
HexNH 2
Me
NH
Pd(OAc)2/5
NaOtBu, PhCH 3, 110˚C
P(t-Bu)2
Hex
83% yield
Fe
P(t-Bu)2
Me
5
Cl
Me
+
NC
HN
PH
Pd 2(dba)3/P(t-Bu)3
NaOtBu, PhCH 3, RT
Me
NC
N
90% yield
Ph
! Functional group compatibility is increased with the above ligands by use of K 3PO4 or Cs 2CO3 as bases
Hamann, B.; Hartwig, J.
Kawatsura, M.; Hartwig, J.
J. Am. Chem. Soc. , 1998, 120 , 7369
J. Am. Chem. Soc. , 1999, 121 , 1473
More Studies On Ligand Effect
! Hartwig performed a systematic study of steric, electronic, and geometric ligand perturbations
Br
+
H2NBu
Bu
NH
Pd(dba) 2/ligand
NaOtBu, PhCH 3, 90˚C
Bu
PAr2
P(o-tolyl)2
PPh 2
Fe
Bu
PAr2
O
Fe
(Xantphos)
P(o-tolyl)2
PPh 2
Me
Me
! Using a small set of model reactions and ligand sets like the ones shown, Hartwig finds the following:
• Enlarging ligand size increases the rate of dehydrohalogenation of arenes as well as "-hydrogen elimination
This effect is postulated to be due to partial dissociation to a three-coordinate complex
• Adding electron withdrawing groups to ligand aryl groups does not help partition the reactions towards reductive
elimination
• Increasing bite angle speeds dehydrohalogenation through increased "-hydrogen elimination, again by threecoordinate complexes
• Three-coordinate partially dissociated ligands seen in 31P NMR for largest bidentate systems
Br
+
H2NCD2Bn
Bu
Ligand
DPPF
DTPF
DPPDPE
DPPX
% Arene
4.4
34
40
24
NH
Pd(dba) 2/ligand
NaOtBu, PhCH 3, 90˚C
% Arene from "-Elim
1.6
4.8
11
15
H
Bu
+
Bu
D
+
Bu
Hamann, B.; Hartwig, J.
Kawatsura, M.; Hartwig, J.
Bu
J. Am. Chem. Soc. , 1998, 120 , 7369
J. Am. Chem. Soc. , 1999, 121 , 1473
Continuing Expansion of Scope
P(t-Bu)2
! The aforementioned studies prove that a number of monodentate and bidentate ligands
can be used for aryl-amine couplings, and that generality may not be a simple goal
! Larger varieties of ligand families allow for wider screening of new reactions
1
i Pr
Me
+
Cl
Pd(dba) 2/1
H2N
N
H
NaOtBu, PhCH 3, 80˚C
i Pr
Me
i Pr
Me
Me
73% yield
i Pr
Buchwald et al. J. Org. Chem. , 2000, 65, 1158
NC
Br
+
Pd(OAc) 2/DPPF
HN
Cs 2CO 3, PhCH 3, 100˚C
Me
+
SO2p-Tol
HN
Hartwig et al. J. Am. Chem. Soc. , 1998 , 120, 827
SO2p-Tol
Pd(dba) 2/Xantphos
N
Cs 2CO 3, PhCH 3, 100˚C
Me
Me
92% yield
N
Me
Br
Cl
NC
82% yield
Me
Me
Br
+
HN
O
O
Pd(dba) 2/Xantphos
K3PO4, PhCH 3, 100˚C
Cl
N
O
87% yield
O
Yin, J. Buchwald , S . J. Am. Chem. Soc. , 2002, 124 , 6043
More Aryl-Amine Coupling Strategies
NHR
Pd(PPh 3) 4
NaOtBu, PhCH 3, 100˚C
Br
P(t-Bu)2
R = Bn
94% yield
R = COMe 99% yield
N
R
i-Pr
1
NHBn
2
Br
Pd(OAc) 2/MOP
88% yield
K 2CO 3, PhCH 3, 100˚C
O
N
Bn
O
Wolfe, J.; Rennels, R.; Buchwald, S . Tetrahedron , 1996 , 52 , 7525
Yang, B.; Buchwald, S. Org. Lett. , 1999 , 1, 35
N
Cl
Pd(OAc) 2/1
+
Br
N
H
NNH2
Br +
Ph
Ph
N
Pd(OAc) 2/BINAP
81% yield
N
NaOtBu, PhCH 3, 60˚C
Cl
NaOtBu, PhCH 3, 80˚C
NH
N
Ph TsOH•H 2O
Cl
Ph
N
H
O
NNH2
Br
+
Ph
MeO
Ph
Pd(OAc) 2/BINAP
NH
N
NaOtBu, PhCH 3, 80˚C
MeO
Ph
TsOH•H 2O
O
Ph
Et
Me
Cl
80% yield
Me
Et
N
H 74% yield
Wagaw, S,; Yang, B.; Buchwald , S. J. Am. Chem. Soc. , 1999, 121 , 10251
Ammonia Equivalents for Pd Couplings
! Ammonia fails in aryl-amine couplings, so alternatives have been developed to introduce free amines
X
+
Ph
R
Pd(OA c) 2/BINAP
NH
R
Ph
N
Cs 2CO 3 or NaOtBu
THF or Toluene
R
acid workup
NH2
Ph
Ph
X = Cl, Br, OTf, I
77-94% yield
Wolfe, J.; Åhman, J.; Sadighi, J.; Singer, R..; Buchwald, S
. Tet. Lett. , 1997 , 38 , 6367
! Hartwig's P( t-Bu)3 system couples LiHMDS, but does not tolerate ortho substituents
R
X
Pd(dba)2/P(t-Bu)3
TMS
R
LiHMDS, PhCH 3, RT
H+ or F -
N
R
NH2
TMS
X = Br, Cl
75-99% yield
Lee, S.; Jorgensen, M.; Hartwig, J . Org. Lett. , 2001, 3 , 2729
! Buchwald's system gets around this limitation
i Pr
1. Pd(dba)2/1
Br
Cl
NH2
LiHMDS, Ph 3SiNH2
2. H3O+
1. Pd(dba)2/1
Br
i Pr
LiHMDS, Ph 3SiNH2
2. H3O+
90% yield
PCy2
1
Cl
92% yield
NH2
Huang, X.; Buchwald , S. Org. Lett ., 2001, 3 , 3417
Synthetic Challenge: Chiral Substrates
! Intramolecular chiral amine couplings are possible with the original Pd system
! "-hydrogen elimination shown to be difficult from 6- or 7-membered metallacycles
CO2CH3
Br
NHAc
CO2CH3
CO2CH3
Pd(dba)2/P(o-tol)3
Cs 2CO 3, PhCH 3, 100˚C
99% ee
N
N
Ac
93% yield
99% ee
CO2Et
O
Me
Me
ACE Inhibitor
! Intermolecular cases prove to be difficult
Me
Br
NH2
+
Ph
+
Ph
N
H
60% yield
70% ee
Br
N
H
Pd(dba)2/P(o-tol)3
NaOtBu, PhCH 3, 100˚C
Ph
Ph
Me
Pd(dba)2/P(o-tol)3
NaOtBu, PhCH 3, 100˚C
Ph
N
Ar
40% yield
0% ee
! The following observations are made:
• Control experiments show that amine racemization requires a palladium complex and an aryl bromide
• Racemization does not occur after product formation
• Recovered starting material amines show racemization
• Deuterated imines added to the reaction are not incorporated into the product
Wagaw, S.; Rennels, R.; Buchwald , S . J. Am. Chem. Soc. , 1997, 119 , 8451
BINAP Saves the Day
! Use of a bidentate ligand suppresses racemization
Me
Br
NH2
Pd(dba)2/BINAP
+
86% yield
>99%ee
Ph
Br
Ph
N
H
N
H
NaOtBu, PhCH 3, 100˚C
Ph
Ph
Me
+
Pd(dba)2/BINAP
NaOtBu, PhCH 3, 100˚C
Ph
N
Me
82% yield
>99%ee
Ar
P
Pd
Me
Ph
N
P H
Pd
P
ArHN
Me
P H
H
Ph
HN
P
Ph
P
NH
P
P
Ph
Me
P
Ar
Ph
Br
Me
Pd
Pd + ArH +
Pd N H
Br
Pd
Me
Ar Me
HOtBu
+ NaBr
Me
P H
P
Ph
Pd
P
ArBr
P
H
N
P
Pd N H
P
Ar
Ar
Ph
NaOtBu
P
Ar
H2N
Ph
Ar
! Purported racemization pathway shut down with bidentate ligand
! No experiments reported with chiral BINAP
Wagaw, S.; Rennels, R.; Buchwald , S . J. Am. Chem. Soc. , 1997, 119 , 8451
Aryl Ether Technology
! Development of Ar-O bond forming reactions develops along similar lines as did aryl-amine couplings
Substrate scope is initially limited, but gradually expands with ligand improvement
! The first examples are intramolecular, applicable only to tertiary or certain secondary alcohols
HO
Me
Pd(OA c) 2/BINAP
73% yield
K2CO 3, PhCH 3, 100˚C
O
Br
Me
Palucki, M.; Wolfe, J.; Buchwald , S. J. Am. Chem. Soc. , 1996, 118 , 10333
! First intermolecular examples involve electron poor aryl halides
Br
+
Ph
OH
NC
Br
+
NaOMe
NC
Br
+
NC
OBn
Pd(OA c) 2/BINAP
NaOTBS
NaH, PhCH 3, 100˚C
71% yield
NC
OMe
Ni(COD) 2/BINAP
PhCH 3, 95˚C
84% yield
NC
OTBS
Ni(COD) 2/DPPF
PhCH3, 95˚C
96% yield
NC
Mann, G.; Hartwig, J. J. Am. Chem. Soc. , 1996, 118 , 13109
Mann G.; Hartwig, J. J. Am. Chem. Soc. , 1997 , 62 , 5413
Palucki, M.; Wolfe, J.; Buchwald, S . J. Am. Chem. Soc. , 1997, 119 , 3395
New Ligand Development
! Using a class of ligands similar to his best for aryl-amine couplings, Buchwald finds that difficult cases
of aryl ether formations have been rendered facile
OH
Pd(OAc) 2/1
Cs 2CO 3, PhCH 3, 70˚C
Cl
P(t-Bu)2
74% yield
O
1
Torraca, K.; Kuwabe, S.; Buchwald, S . J. Am. Chem. Soc. , 2000, 122 , 12907
Me
Me
Cl
nBuOH
+
OH
+
. J. Am. Chem. Soc. , 2001, 123 , 10770
i Pr
Pd(OAc) 2/1
O
84% yield
K3PO4, PhCH 3, 100˚C
t-Bu
t Bu
Buchwald et al . J. Am. Chem. Soc. , 1999, 121 , 4369
! Synthesis of MKC-242
OH
Br
Me
Torraca, K.; Huang, X.; Parrish, C.; Buchwald, S
i Pr
O
90% yield
Cs 2CO 3, PhCH 3, 70˚C
Me
OTf
OnBu
Pd(OAc) 2/1
O
Ac
N
O
O
O
97.5% ee
Pd(OAc) 2/1
O
K3PO4, PhCH 3, RT
Ac
N
O
O
O
97.5% ee
Kuwabe, S.; Torraca, K.; Buchwald, S . J. Am. Chem. Soc. , 2001, 123 , 12202
Carbon-Aryl Bond Forming Reactions
! Buchwald and Hartwig concurrently disclose methods for "-arylation of ketones, leading to
a number of publications on arylation of acidic carbons
O
Br
+
Pd(dba)2/BINAP
NaOtBu, THF, 70˚C
t-Bu
O
t-Bu
Br
Me
t-Bu
+
Pd(dba)2/BINAP
NaOtBu, THF, 70˚C
O
Cl
83% yield
33:1 mono:diarylation
t-Bu
O
Cl
88% yield
16:1 mono:diarylation
Palucki,M.; Buchwald, S . J. Am. Chem. Soc. , 1997, 119, 11108
Hamann, B.; Hartwig, J. J. Am. Chem. Soc. , 1997, 119 , 12382
! Principally through Buchwald's biphenyl monophosphine ligands, reaction scope is expanded
R'
X
EWG
+
R
R
R
EWG
R'
R
R = EWG, EDG
X = Cl, Br, OTf, I
EWG = Ketone, Ester, Nitroalkane, Nitrile, Amide
Shaugnessy, K.; Hamann, B.; Hartwig, J.
J. Og. Chem. 1998 , 63 , 6546
Moradi, W.; Buchwald, S. J. Am. Chem. Soc. 2001 , 123 , 7996
Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S.
J. Am. Chem. Soc. 2002, 124 , 1261
Vogl, E.; Buchwald, S. J. Org. Chem. 2002, 67, 106
Lloyd-Jones, G . ACIEE. , 2002, 41, 953
Example Reactions
! Asymmetric arylation discovered by Buchwald (very substrate specific)
Br
O
Me
+
N
Me
Ph
t-Bu
O
Me
Pd(dba)2/CyBINAP
N
NaOtBu, PhCH 3, RT
Ph
Ar
Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S.
Me
84% yield
93% ee
* Me
J. Am. Chem. Soc. 2002, 124 , 1261
Me
O
Br
Me
Me
Pd(db a)2/iMes
+
OtBu
OtBu
LiHMDS, PhCH 3, RT
Me
Me
Me
98% yield
O
Lee, S.; Beare, N.; Hartwig, J.
J. Am. Chem. Soc. 2001, 123 , 8410
! Hartwig uses fluorescence technology to develop an optimized ligand system for arlation of cyanoacetates
Me
O2S
O
N
O
Ligand
CN
O
O
CN
Pd/P(t-Bu) 3/Na3PO4
identified as best system
of 96 possibilities
+
Me
NMe 2
Me
N
Br
Boc
N
Weak Fluorescence
N
Strong Fluorescence
Stauffer, S.; Beae, N.; Stambuli, J.; Hartwig, J.
In summary, we have
demonstrated a rare
example of the discovery
and optimization of a new
method for bond
construction using highthroughput screening.
J. Am. Chem. Soc. 2001, 123 , 4641
Where Are They Now?
! Buchwald has diverged from Hartwig by developing copper catalysts for a variety of Buchwald-Hartwig-type reactions
! These catalysts have the considerable advantage of stability, ease of use, and low cost
I
HO
Me
+
Cl
Me
O
10 mol% Cu(OTf) 2•PhH
Cs 2CO 3, PhCH 3, 110˚C
Me
89% yield
Cl
Me
J. Am. Chem. Soc.
Marcoux, J.-F.; Doye, S.; Buchwald, S.
1997, 119 , 10539
! Addition of ligands expands the scope of the reaction dramatically
1 mol% C uI
Me
Br
Cs 2CO 3, PhCH 3, 90˚C
O
+
H2N
Ph
H
N
Me
Ph
90% yield
O
10 mol%
Me
Me
MeHN
NHMe
J. Am. Chem. Soc. 2001, 123 , 7727
Klapars, A.; Antilla, J.; Huang, X.; Buchwald, S.
5 mol% C uI
I
+
BnNH2
NHBn
91% yield
Cs 2CO 3, i-PrOH, 80˚C
2 equiv HO(CH 2) 2OH
Kwong, F.; Klapars, A.; Buchwald, S.
Me
OMe
I
Me
+
Ph
OH
10 mol% CuI
89% yield
98% ee
Ph
Cs 2CO 3, PhCH3, 110˚C
20 mol% phenanthroline
Org. Lett. 2002, 4, 581
O
OMe
! Mechanistic work is in progress
Wolter, M.; Nordmann, G.; Job, G.; Buchwald, S.
Org. Lett. 2002, 4, 973
Dr. Hartwig, I Presume
! Hartwig has pioneered a new variety of amine-sp 2 coupling by catalytic hydroaminations
H2N
10% [(R)-BINAP]Pd(OTf)2
+
NHPh
25˚C, 72 h
F3C
80% yield
81% ee
F3C
Kawatsura, M.; Hartwig, J.
J. Am. Chem. Soc. 2000 , 122 , 9546
! Colorimetric high-throughput screens identify a highly active catalyst system
H2N
NHAr
Pd(PPh 3) 4
+
CF3
PhCH 3, RT, 20 h
73% yield
95% ee
10 mol%
O
O
NH
HN
PPh2 Ph2P
10 mol% TFA
! Mechanism is presumed to go through Pd-alkene activation followed by nucleophilic attack of the aniline
! Further studies of this system have currently focused on racemization problems and elucidating the mechanism
and kinetics
Lober, O.; Kawatsura, M.; Hartwig, J.
Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J.
J. Am. Chem. Soc. 2001 , 123 , 4366
J. Am. Chem. Soc. 2002, 124 , 3669
Buchwald and Hartwig Around You
! Aryl aminations are used in synthesis, though most often to make pharmaceuticals
O
Cl
Br
Me
N
N
N
Cl
+
N
N
O
OTBS
Pd 2(dba)3
Cl
BINAP
NaOtBu
PhCH 3, 85˚C
O
N
Cl
Me
O
N
O
N
N
NH
O
N
O
N
N
81% yield
Kung et al . J. Med. Chem. 1999 , 42 , 4705
! The Grubbs group has used a particularly difficult pair of substrates to make precursors to chiral IMes ligands for
asmmetric cross-metathesis
Me
Me
MeO
Me
Me
Br
Me
Me
Ph
Ph
+
H2N
NH2
Pd 2(dba)3/BINAP
NaOtBu, PhCH 3, 100˚C
Me
Ph
MeO
Ph
NH
HN
Me
Me
Me
Me
OMe
Me
70% yield
Grubbs, R. H. unpublished results
Ar
Summary
! Buchwald-Hartwig chemistry provides a reliable, general means for the coupling of aryl halides and
sulfonates to a variety of N, O, and C nucleophilic sources.
! Ligand development has led to greater mechanistic understanding and use of milder conditions
! This methodology awaits use in a complex total synthesis
! The continuingly qualitative understanding of many aspects of these reactions means that any serious
attempt to use it should involve optimization of the wide range of conditions now available