Download The Shale Gas Revolution: A Methane-to

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Chemical potential wikipedia , lookup

Bioorthogonal chemistry wikipedia , lookup

Transition state theory wikipedia , lookup

Chemical weapon proliferation wikipedia , lookup

Stoichiometry wikipedia , lookup

Al-Shifa pharmaceutical factory wikipedia , lookup

Chemical weapon wikipedia , lookup

Catalytic reforming wikipedia , lookup

Chemical Corps wikipedia , lookup

California Green Chemistry Initiative wikipedia , lookup

Gaseous signaling molecules wikipedia , lookup

Chemical plant wikipedia , lookup

Gasification wikipedia , lookup

Ethylene wikipedia , lookup

Continuous distillation wikipedia , lookup

Aliso Canyon gas leak wikipedia , lookup

Chemical industry wikipedia , lookup

Cracking (chemistry) wikipedia , lookup

Hydroformylation wikipedia , lookup

Fischer–Tropsch process wikipedia , lookup

Chemical thermodynamics wikipedia , lookup

Transcript
The Shale Gas Revolution: A
Methane-to-Organic Chemicals
Renaissance?
Or
Methane: Fuel or Feedstock?
Eric E. Stangland
2014 Frontiers of Engineering
I i
Irvine,
California
C lif i
Dow.com
Shale Gas for Chemical Production
Typical Bakken Wellhead Gas Composition
Ethane, 22%
Propane, 13%
C4+, 7%
Inerts, 3%
Methane, 55%
Source: Wocken et al, EERC presentation at 21st Williston Basin Petroleum Confernece, 2013
EES — 2
Steam Cracking of Alkanes
Natural Resources
Feedstock
Cracker Complex
Olefins
Products
Separation
EES — 3
Light Hydrocarbon Cracker-8, TX
Modern plant can make 1500 kta ethylene, or 171,000 kg/hr (376,000 lb/hr).
EES — 4
US Production of Light Hydrocarbons
2000
200
1800
150
Methane
1600
100
1400
Ethane
1200
P
Propane
Methane Production
n (109 MMB
Btu)
2200
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
1994
50
1992
Ethan
ne, Propan
ne Productiion (103 MM
MBtu)
250
Source: ICIS pricing, EIA
Date
EES — 5
Chemical Investment Due to Shale Gas
2023 Projections
US Gulf Cost Feedstock Pricing
30
148 capital investment
projects worth $100 B
Methane (Henry Hub)
25
Propane (Mt. Belvieu)
Naptha (Mt. Belvieu)
20
15
637,000 direct/indirect
new chemical jobs
10
Date
1/1//2013
1/1//2011
1/1//2009
1/1//2007
1/1//2005
0
1/1//2003
5
1/1//2001
Fee
edstock Value ($
$/MMBtu)
Ethane (Mt. Belvieu)
$244 B in new economic
output
Source: ICIS pricing, EIA
Source: American Chemistry Council
EES — 6
2012 US Methane Utilization
in kta
NH3
Fuel
516,782 (98.5%)
5,683 (74%)
Other
1,295 (17%)
CH4
CO + H2
Methanol
667 (9%)
Chemicals
7,645 (1.5%)
H2O
CO2
GTL fuels
CH3OH
NH3
By comparison, 2012 Ethylene Capacity = 24,000 kta
Plenty of methane available for chemical use
EES — 7
Dilemma: Fuel or Feedstock?
C
Current
t
Future?
Risk vs. Reward
EES — 8
Customer Valuation
Consumer Va
alue ($/MMBtu))
60
Methane (Henry Hub)
US Retail Electricity
US LPDE (Liner Grade) Contract
50
40
30
20
10
Source: ICIS pricing, EIA
7//1/2013
1//1/2013
7//1/2012
1//1/2012
7//1/2011
1//1/2011
0
US consumers are willing to pay more for plastic than electricity.
Wh not turn
Why
t rn methane into plastic?
EES — 9
Known Methane-to Chemical-Routes (not-inclusive)
Methanol-to-Olefins (MTO)
Syngas
Methanol
Olefins
Separation
O2 (ASU)
Oxidative
O
dat e Methane
et a e Coup
Coupling
g (OC
(OCM))
Olefins
Separation
O2 (ASU)
Methane Pyrolysis
Acetylene/
Syngas
Hydrogenation
Separation
CO
methanation
O2 ((ASU))
EES — 10
Total Retained
d Carbon
n Efficien
ncy (%)
Methane-to-Chemicals Efficiency vs. Cost
80
70
OCM
SCE
60
MTO
20% 31%
49%
58%
44%
42%
56%
50
IIncreasing
i
Sustainability?
MP
35%
40
30
65%
20
Total fixed capital by section
POX
CxHy reaction
10
Electricity
Generation
Reactant/product separation
0
0
10
20
30
40
50
Process Thermodynamic Efficiency (%)
EES — 11
Routes to Ethylene
Methanol-to-Olefins (MTO)
Syngas/
Methanol
Olefins
Separation
Ethylene
Separation
Ethylene
Separation
Ethylene
O2 (ASU)
Oxidative
O
dat e Methane
et a e Coup
Coupling
g (OC
(OCM))
Olefins
O2 (ASU)
Olefins
EES — 12
Distillation…
Established
E
t bli h d ttechnology
h l
Easily scaled
Low capital, low risk
L
Low
energy efficiency
ffi i
…accounts for 90-95% of all separations in the petrochemical
industry and up to 30% of overall industry energy usage.
EES — 13
Light Hydrocarbon Cracker-8, TX
C
Cryogenic
i Di
Distillation
till ti T
Train
i
C ki ffurnaces
Cracking
EES — 14
Next Generation Chemical Plant
What technology
technolog is needed to utilize
tili e all components
of shale gas for organic chemical production?
EES — 15
New Chemistry
Metal-loaded zeolite
New catalysts that utilize oxygen to
convert methane (alkanes),
exclusively to olefins
Butadiene
Isoprene
Isobutylene
Cyclopentadiene
New chemistries from lighter
hydrocarbons to supplement C4
and C5 shortages
EES — 16
New Mass-transfer Agents
Support
Short-term: hybrid schemes
Selective
Layer
Membrane
Distillation
Column
High-temperature stable
porous metals and ceramic
p
membranes with high flux & selectivity
MOFs
L
Long-term:
t
Distillation
Di till ti
replacement
l
t
S
Silver-salt
Ionic Liquid
BF4H3C
Carbons
Ag+
X-
N
N
CH2
H2C
CH2
CH3
Membrane Cascade
Absorption/Adsorption
Sorbents
S
b t with
ith significantly
i ifi
tl hi
higher
h
selective capacity
EES — 17
Improved Computation and Logic
TS3
20
CH2O + SO2+ H•
TS2
10
•CH3 + SO3
CH3SO3• (2E)
CH3O• + SO2
-10
CH3SO3• (2A2)
-20
TS1: CH3SO3
r(C-S)=2.06 Å
CH3OSO2•
CH2O + HOSO•
-30
prediction profiler - desirability
100
50
-70
0
Hybrid and advanced plants will
q
advanced process
p
control
require
2
reaction
4i coordinate
di
6
8 .
-1.16
X1
0.77
X2
2
0
0
2
-2
CO2 + H2O + •SH
0
-60
2
-2
TS2: CH3OSO2
r(C-O)=2.30 Å
-50
TS3: CH3OSO2
r(C-O)=2.00 Å
r(C-S)=2.26 Å
0
-40
-2
enthalpyy (H, kcal/mol)
0
1.49
X3
Advanced ab initio modeling with
p
y informatics and highg
complementary
throughput experimentation
EES — 18
New US Chemical Industry is Dawning
EES — 19
Methane-to-Chemical Energy Usage
Re
elative Exc
cess Entha
alpy Neede
ed
4
3
Percentage
g of Enthalpy
py Utilization
Separations and Heat Transfer
Ideal Reaction
2
92%
1
81%
0
71%
71%
8%
19%
29%
29%
MTO
OCM
-1
1
SCE
MP
EES — 20