* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Section 3.5 Ionic Compounds: Formulas and Names
Biochemistry wikipedia , lookup
Isotopic labeling wikipedia , lookup
Coordination complex wikipedia , lookup
Cross section (physics) wikipedia , lookup
Host–guest chemistry wikipedia , lookup
Stoichiometry wikipedia , lookup
Biological aspects of fluorine wikipedia , lookup
Physical organic chemistry wikipedia , lookup
Chemistry: A Volatile History wikipedia , lookup
Alkaline earth metal wikipedia , lookup
Triclocarban wikipedia , lookup
History of molecular theory wikipedia , lookup
Aromaticity wikipedia , lookup
Molecular dynamics wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
History of chemistry wikipedia , lookup
Debye–Hückel equation wikipedia , lookup
Chemical bond wikipedia , lookup
List of phenyltropanes wikipedia , lookup
Safety data sheet wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Atomic theory wikipedia , lookup
Hypervalent molecule wikipedia , lookup
Gas chromatography–mass spectrometry wikipedia , lookup
Drug discovery wikipedia , lookup
Organic chemistry wikipedia , lookup
Homoaromaticity wikipedia , lookup
Inorganic chemistry wikipedia , lookup
IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup
Chapter 3 Molecules, Compounds and Chemical Equations Chapter 3 Molecules, Compounds and Chemical Equations 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 Hydrogen, Oxygen and Water Chemical Bonds Representing Compounds: Chemical Formulas and Molecular Models An Atomic Level View of Elements and Compounds Ionic Compounds: Formulas and Names Molecular Compounds: Formulas and Names Summary of Inorganic Nomenclature Formula Mass and the Mole Concept for Compounds Composition of Compounds Determining a Chemical Formula from Experimental Data Writing and Balancing Chemical Equations Organic Compounds 2 Section 3.1 Hydrogen, Oxygen and Water Mixtures vs Compounds • When two or more elements combine to form a compound an entirely new substance results. – Balloon contains a mixture of hydrogen (H2) and oxygen gas (O2) – Glass contains a compound composed of hydrogen and oxygen (H2O) 3 Section 3.1 Hydrogen, Oxygen and Water Properties of Hydrogen, Oxygen and Water 4 Section 3.1 Hydrogen, Oxygen and Water Sodium Chloride NaCl When two or more elements combine to form a compound an entirely new substance results. Sodium (Na) = Soft reactive metal Chlorine (Cl) = toxic gas Sodium Chloride (NaCl) = Tasty condiment/preservative 5 Section 3.1 Hydrogen, Oxygen and Water Ionic vs Covalent Bonds • Compounds form through Bond formation • 2H2 + O2 → 2H2O covalent bond • 2Na + Cl2 → 2NaCl ionic bond 6 Section 3.2 Chemical Bonds Ionic Bonds • Ionic bonds form when one atom loses electrons and another atom gains electrons. – Metal atoms tend to lose electrons and become positive cations – Nonmetal atoms tend to gain electrons and become negative anions 7 Section 3.2 Chemical Bonds Ionic Bonds • The oppositely charged ions attract one another by electrostatic forces and form an ionic bond • The result is an ionic compound, which (in the solid phase) is composed of a lattice – a regular three dimensional array of cations and anions 8 Section 3.2 Chemical Bonds Covalent Bonds • Covalent bonds form when two atoms share electrons – Form between non-metals – neither are willing to give up electrons so in order to form a bond – they share. 9 Section 3.2 Chemical Bonds Covalent Bonds • Water (H2O), ammonia (NH3), and Methane (CH4) all have covalent bonds. A covalent bond is a shared pair of electrons (represented here by a line). Notice covalent compounds are individual units (molecules) 10 Section 3.2 Chemical Bonds Why do bonds form? • Bonds form to lower the potential energy of the atoms – In the process each atom ends up with an octet of electrons (8 electrons in outer shell) – This is the result – Not the driving force • A major driving force in nature is to increase stability (lower potential energy). 11 Section 3.3 Representing Compounds: Chemical Formulas and Molecular Models Types of Chemical Formulas • Empirical formula – Simplest – tells what types of atoms are present in a compound – Empirical formula for hydrogen peroxide is HO • Molecular Formula – Give the actual number of atoms in a compound – Molecular formula for hydrogen peroxide is H2O2 • Structural Formula 12 Section 3.3 Representing Compounds: Chemical Formulas and Molecular Models Types of Chemical Formulas • Structural Formula – Can be simple (L) – Can indicate geometry of the compound (R) 13 Section 3.3 Representing Compounds: Chemical Formulas and Molecular Models Molecular Models • Ball and Stick Models – Atoms are balls and bonds are sticks • Space filling Models – Atoms fill the spaces between each other – Probably the most “accurate” way to imagine a molecule if it was blown up to a size we could see 14 Section 3.4 An Atomic-Level View of Elements and Compounds Elements vs Compounds • Pure substances can be elements or compounds (Ch 1) H2, Ca, Ag H2O, CaCl2 15 Section 3.4 An Atomic-Level View of Elements and Compounds Elements vs Compounds • Elements and Compounds can be further categorized based on the types of units that compose them 16 Section 3.4 An Atomic-Level View of Elements and Compounds Elements vs Compounds • Elements can be atomic (exist as individual atoms) or molecular (oxygen is a diatomic molecule). There are even polyatomic elements (next slide). 17 Section 3.4 An Atomic-Level View of Elements and Compounds Molecular Elements • H2, N2, O2, F2, Cl2, Br2 and I2 • P4 • S8, Se8 • You should learn the 7 diatomic elements 18 Section 3.4 An Atomic-Level View of Elements and Compounds Elements vs Compounds • • • Compounds can be molecular (H2O) or ionic (NaCl) The smallest unit of a molecular compound is the molecule The smallest unit of an ionic compound is a formula unit 19 Section 3.4 An Atomic-Level View of Elements and Compounds Molecules vs Formula Units • A water molecule is a discrete (individual) stable unit that consists of three atoms tightly bound together. – Covalent bonds are very strong • A sodium chloride formula unit is the smallest unit of a sample of NaCl. – Does not exist on its own as a stable discrete unit. – Single ionic bond is very weak 20 Section 3.5 and 3.6 Ionic and Molecular Compounds Types of Compounds • Binary Ionic Compounds – Metal—nonmetal NaCl, CaBr2 • Ionic Compounds with Polyatomic Ions − Ions with more than one atom • Hydrated Ionic Compounds • NaNO3, NH3Cl MgSO47 H2O Binary Covalent Compounds – Nonmetal—nonmetal CO2, H2O, NH3 21 Section 3.5 Ionic Compounds: Formulas and Names Writing Formulas for Ionic Compounds • Binary Ionic Compounds form between a metal and a nonmetal – Metal forms a cation – Non metal forms an anion • All compounds are charge neutral • For these two reasons it is fairly simple to reason out the formula of most ionic compounds just by knowing the identity of the component elements. 22 Section 3.5 Ionic Compounds: Formulas and Names Writing Formulas for Ionic Compounds • If you have sodium (Na) and chlorine (Cl) – Na forms a Na+ cation – Cl forms a Cl– anion – They combine 1:1 to form NaCl • If you have calcium (Ca) and chlorine (Cl) – Ca forms a Ca2+ cation – Cl forms a Cl– anion – They combine 1:2 to form CaCl2 23 Section 3.5 Ionic Compounds: Formulas and Names Learning Check • Write formulas for ionic compounds formed from the following elements 1. Sodium and Oxygen 2. Calcium and bromine 3. Aluminum and Sulfur 24 Section 3.5 Ionic Compounds: Formulas and Names Solution • Write formulas for ionic compounds formed from the following element 1. Sodium and Oxygen • Na+ and O2– combine to form Na2O 2. Calcium and bromine • Ca2+ and Br– combine to form CaBr2 3. Aluminum and sulfur • Al3+ and S2– combine to form Al2S3 25 Section 3.5 Ionic Compounds: Formulas and Names Naming Ionic Compounds • Ionic compounds have common names and systematic names • NaCl is sodium chloride or table salt (common name) • NaHCO3 is sodium bicarbonate or baking soda (common name) • We will learn the systematic naming system 26 Section 3.5 Ionic Compounds: Formulas and Names Naming Ionic Compounds • Binary Ionic compounds (metals and non metals) • Metals are of two types – Metals that only make one type of cation • Groups I -3 – Metals that can from more than one type of cation • Transition Group Metals and Main Groups 4 and above (basically everything else) 27 Section 3.5 Ionic Compounds: Formulas and Names Naming Binary Ionic Compounds Containing a Metal that Forms Only One Type of Cation 1. The cation is always named first and the anion second. 2. Cation takes its name from the name of the parent element. 3. Anion is named by taking the root of the element name and adding –ide. 28 Section 3.5 Ionic Compounds: Formulas and Names Naming Binary Ionic Compounds Containing a Metal that Forms Only One Type of Cation KCl Potassium chloride MgBr2 Magnesium bromide CaO Calcium oxide 29 Section 3.5 Ionic Compounds: Formulas and Names Concept Check Write the names of the following compounds. A. MgO B. Al2S3 C. MgF2 30 Section 3.5 Ionic Compounds: Formulas and Names Solution Write the names of the following compounds. A. MgO magnesium oxide B. Al2S3 aluminum sulfide C. MgF2 magnesium fluoride 31 Section 3.5 Ionic Compounds: Formulas and Names Naming Binary Ionic Compounds Containing a Metal that Form More than One Type of Cation • Metals in these compounds form more than one type of positive ion Charge on the metal ion must be specified. Roman numeral indicates the charge of the metal cation. Transition metals and large metals (period IV and higher usually require a Roman numeral • • • • Exceptions: Ag+, Cd2+, Zn2+ (form only a single ion) 32 Section 3.5 Ionic Compounds: Formulas and Names Naming Binary Ionic Compounds Containing a Metal that Form More than One Type of Cation 1. The cation is always named first and the anion second. 2. A monatomic cation takes its name from the name of the parent element. 3. Charge of cation in roman numerals (in parenthesis) 3. A monatomic anion is named by taking the root of the element name and adding –ide. 33 Section 3.5 Ionic Compounds: Formulas and Names Naming Binary Ionic Compounds Containing a Metal that Form More than One Type of Cation CuBr Copper (I) bromide FeS Iron (II) sulfide PbO2 Lead (IV) oxide Figure out the charge on the cation based on the charge of the anion. 34 Section 3.5 Ionic Compounds: Formulas and Names Learning Check Name the following ionic compounds containing metals that form two kinds of positive ions: A. Fe2O3 B. SnCl2 B. PbI4 35 Section 3.5 Ionic Compounds: Formulas and Names Solution Name the following ionic compounds containing metals that form two kinds of positive ions: A. Fe2O3 Iron (III) oxide • Oxygen is –2 x 3 = –6 so we need Fe3+ x 2 = +6 B. SnCl2 Tin (II) chloride • Cl is –1 x 2 = –2 so we need Sn to be +2 B. PbI4 Lead (IV) iodide • I is –1 x 4 = –4 so we need Pb to be +4 36 Section 3.5 Ionic Compounds: Formulas and Names Naming Ionic Compounds Containing Polyatomic Ions • Naming these compounds is the same only now we use the name of the polyatomic ion wherever it occurs 37 Section 3.5 Ionic Compounds: Formulas and Names Naming Ionic Compounds Containing Polyatomic Ions • • Must be memorized (polyatomic ion handout). Examples of compounds containing polyatomic ions: NaOH Sodium hydroxide Pb(NO3)2 lead (II) nitrate (NH4)2SO4 Ammonium sulfate 38 Section 3.5 Ionic Compounds: Formulas and Names Learning Check Write the names of the following compounds. A. NaC2H3O2 B. Ca3(PO4)2 C. CuNO2 D. K2Cr2O7 E. Mg(ClO2)2 F. NH4CN Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. 39 Section 3.5 Ionic Compounds: Formulas and Names Solution Write the names of the following compounds. A. NaC2H3O2 sodium acetate B. Ca3(PO4)2 calcium phosphate C. CuNO2 copper (I) nitrite D. K2Cr2O7 potassium dichromate E. Mg(ClO2)2 magnesium chlorite F. NH4CN ammonium cyanide Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. 40 Section 3.5 Ionic Compounds: Formulas and Names Hydrated Ionic Compounds • Some ionic compounds are hydrates • This means they have a specific number of water molecules associated with each formula unit in the lattice structure • An example is magnesium sulfate heptahydrate • MgSO47H2O 41 Section 3.5 Ionic Compounds: Formulas and Names Hydrated Ionic Compounds • Cobalt chloride hexahydrate before and after heating to drive off the water 42 Section 3.5 Ionic Compounds: Formulas and Names Common hydrate prefixes • • • • • • • • • Hemi = ½ Mono = 1 Di = 2 Tri = 3 Tetra = 4 Penta = 5 Hexa = 6 Hepta = 7 Octa = 8 These prefixes are also used in naming molecular compounds For example: carbon dioxide 43 Section 3.6 Molecular Compounds: Formulas and Names Molecular compounds vs Ionic Compounds • Ionic compounds form between metal and non metal – The ions in ionic compounds can only combine one way because compounds are charge neutral – Na+ and Cl– can only combine one way • Molecular compounds form between two nonmetals – The atoms in molecular compounds don’t form ions – they share electrons. For this reason the same combination of elements can form a number of different molecular compounds. 44 Section 3.6 Molecular Compounds: Formulas and Names Naming Molecular Compounds 1. The first element in the formula is named first, using the full element name. 2. The second element is named as if it were an anion. 3. Prefixes are used to denote the numbers of atoms present. 4. The prefix mono- is never used for naming the first element. 45 Section 3.6 Molecular Compounds: Formulas and Names Naming Molecular Compounds Prefixes Used to Indicate Number in Chemical Names 46 Section 3.6 Molecular Compounds: Formulas and Names Naming Molecular Compounds CO2 Carbon dioxide SF6 Sulfur hexafluoride N2O4 Dinitrogen tetroxide 47 Section 3.6 Molecular Compounds: Formulas and Names Learning Check Write the name of each covalent compound. A. SeO B. NO2 C. PF3 D. CBr4 E. P2O5 48 Section 3.6 Molecular Compounds: Formulas and Names Solution Write the name of each covalent compound. A. SeO Selenium monoxide B. NO2 Nitrogen dioxide C. PF3 Phosphorus trifluoride D. CBr4 Carbon tetrabromide E. P2O5 Diphosphorus pentoxide 49 Section 3.6 Molecular Compounds: Formulas and Names Conceptual Connection • The compound NCl3 is nitrogen trichloride , but AlCl3 is just aluminum chloride. Why? 50 Section 3.6 Molecular Compounds: Formulas and Names Solution • The compound NCl3 is nitrogen trichloride , but AlCl3 is just aluminum chloride. Why? • NCl3 is a covalent (molecular compound). Since nitrogen and chlorine can combine more than one way it is necessary to indicate the number of chlorines. • AlCl3 is an ionic compound. There is only one combination of these two ions. 51 Section 3.6 Molecular Compounds: Formulas and Names Acids • Acids can be defined as molecular compounds than release hydrogen ions (H+) when dissolved in water. • Acids are composed of hydrogen, usually written first in the formula, followed by one or more non metals. • Two categories of acids for naming – Binary acids – Oxy Acids 52 Section 3.6 Molecular Compounds: Formulas and Names Naming Binary Acids • • Hydrogen plus a non metal, the acid is named with the prefix hydro– followed by the root of the anion and the suffix –ic. Examples: HCl Hydro chlor ic acid HBr Hydro brom ic acid H2S Hydro sulfur ic acid Notice sulfur is kind of a weirdo sulfur instead of sulf 53 Section 3.6 Molecular Compounds: Formulas and Names Naming OxyAcids • Hydrogen plus an oxyanion (anion containing a nonmetal and oxygen) The suffix –ic is added to the root name if anion name ends in –ate.: HNO3 Nitrate Nitric acid H2SO4 Sulfate Sulfuric acid HC2H3O2 Acetate Acetic acid The suffix –ous is added to the root name if anion name ends in –ite. HNO2 Nitrite Nitrous acid H2SO3 Sulfite Sulfurous acid HClO2 Chlorite Chlorous acid Notice sulfate is kind of a weirdo sulfur instead of sulf 54 Section 3.6 Molecular Compounds: Formulas and Names Flow Chart for Naming Acids 55 Section 3.6 Molecular Compounds: Formulas and Names Learning Check Name the following acids a) HF (aq) b) H2CO3 (aq) c) HI (aq) d) HClO2 (aq) e) H2CrO4 (aq) 56 Section 3.6 Molecular Compounds: Formulas and Names Solution Name the following acids a) HF (aq) b) H2CO3 (aq) c) HI (aq) d) HClO2 (aq) binary oxy binary oxy hydrofluoric acid carbonic acid hydroiodic acid chlorous acid e) H2CrO4 (aq) oxy chromic acid 57 Section 3.6 Molecular Compounds: Formulas and Names 58 Section 3.6 Molecular Compounds: Formulas and Names Learning Check Name the following compounds a) KNO3 b) TiO2 c) Sn(OH)4 d) PBr5 e) H2SO3 (aq) 59 Section 3.6 Molecular Compounds: Formulas and Names Solution a) KNO3 b) TiO2 c) Sn(OH)4 d) PBr5 e) H2SO3 (aq) potassium nitrate titanium (IV) oxide tin(IV) hydroxide phosphorus pentabromide sulfurous acid 60 Section 3.8 Formula Mass and the Mole Concept for Compounds Formula Mass • In Chapter 2 we defined the average mass of an atom as its atomic mass – Measured in atomic mass units (amu) • The atomic mass of carbon is 12.01 amu • Now that we have been introduced to ionic and molecular compounds we can build on this definition to something called a Formula Mass 61 Section 3.8 Formula Mass and the Mole Concept for Compounds Formula Mass • Formula mass is the average mass of a molecule (or formula unit) – Molecular mass and molecular weight are also common (and interchangeable terms) • What does it mean though? • Formula mass is the sum of all the atomic masses in the chemical formula 62 Section 3.8 Formula Mass and the Mole Concept for Compounds Formula Mass Formula Mass of H2O (2 × 1.008 amu) + 16.00 amu = 18.02 amu Formula Mass of Ba(NO3)2 137.33 g + (2 × 14.01 g) + (6 × 16.00 g) = 261.35 63 Section 3.8 Formula Mass and the Mole Concept for Compounds Molar Mass of a Compound • Also in chapter 2 we saw that the atomic mass in amu/atom was equal to the molar mass in g/mole. – This is because the definition for amu and mole are related to each other. • The same is true for a compound. • The formula mass in amu/formula unit = molar mass in g/mole 64 Section 3.8 Formula Mass and the Mole Concept for Compounds Molar Mass of a Compound • So if we know a formula mass for water = 18.02 amu/molecule – 18.02 amu in one molecule • We also know that the molar mass for water = 18.02 g/mole. – 18.02 grams in one mole 65 Section 3.8 Formula Mass and the Mole Concept for Compounds Using Molar Mass to Count by Weighing • The fact that amu/molecule is related to g/mole allows us to count molecules by weighing them. • This is the same thing we did when we counted atoms by weighing them. • Molar mass – g/mole – is a conversion factor between mass and numbers of molecules. 66 Section 3.8 Formula Mass and the Mole Concept for Compounds Example • Glucose is one of the end products of photosynthesis, the process that converts CO2 and H2O to complex carbohydrates. The formula for glucose is C6H12O6. Determine the molar mass of glucose. Determine the number of moles in 50.0 g of glucose. Determine the number of molecules in 50.0 g of glucose. 67 Section 3.8 Formula Mass and the Mole Concept for Compounds Example • Glucose is one of the end products of photosynthesis, the process that converts CO2 and H2O to complex carbohydrates. The formula for glucose is C6H12O6. Determine the molar mass of glucose. (6 x 12.01) + (12 x 1.008) + (6 x 16.00) = 180.16 g/mol Determine the number of moles in 50.0 g of glucose. 50.0 g x 1mol 180.16 g 0.278 moles of glucose Determine the number of molecules in 50.0 g of glucose. 6.022 x 1023 molecules 23 50.0 g x x 1.67x 10 molecules of glucose mol 180.16 g 1mol 68 Section 3.8 Formula Mass and the Mole Concept for Compounds Learning Check Ethanol is produced from sugars by yeast in the process called fermentation. The formula for ethanol is C2H5OH. Determine the molar mass of ethanol. Determine the number of moles in 525 g of ethanol. Determine the number of molecules in 525 g of ethanol. 69 Section 3.8 Formula Mass and the Mole Concept for Compounds Solution Ethanol is produced from sugars by yeast in the process called fermentation. The formula for ethanol is C2H5OH. Determine the molar mass of ethanol. (2 x 12.01) + (6 x 1.008) + (1 x 16.00) = 46.07 g/mol Determine the number of moles in 525 g of ethanol. 525 g x 1mol 46.07 g 11.4 moles of ethanol Determine the number of molecules in 525 g of ethanol. 6.022 x 1023 molecules 24 525 g x x 6.86x 10 molecules of ethanol mol 46.07 g 1mol 70 Section 3.9 Composition of Compounds Mass Percent • We use something called Mass Percent to determine the relative amounts of elements in a compound. • Mass percent takes the different masses of the different elements into consideration in calculating relative amounts. 71 Section 3.9 Composition of Compounds Mass Percent • Mass Percent of hydrogen in H2O Mass of H in 1 mole of H 2O Mass Percent of H = x 100% Mass of 1 mole H 2O Mass Percent of H = 2.016 g/mol x 100% 11.19% 18.02 g/mol 72 Section 3.9 Composition of Compounds Mass Percent (Mass Percent Composition) • General Equation Mass of Element X in 1 mole of Compound Mass Percent of element X = x100% Mass of 1 mole of Compound 73 Section 3.9 Composition of Compounds How is Mass Percent Composition Useful • A lot of times we need to know how much of one specific element is present in a compound • A toxin • An active ingredient • Mass Percent (mass percent composition) allows us to calculate this. 74 Section 3.9 Composition of Compounds Learning Check • Determine the mass percent of each element in calcium carbonate (CaCO3) 75 Section 3.9 Composition of Compounds Solution • Determine the mass percent of each element in calcium carbonate (CaCO3) 40.08 g/mol Mass Percent of Ca = x100% 40.04% 100.09 g/mol 12.01 g/mol Mass Percent of C = x100% 12.00% 100.09 g/mol 48.00 g/mol Mass Percent of O = x100% 47.96% 100.09 g/mol 76 Section 3.9 Composition of Compounds Mass Percent Composition as a Conversion Factor • Mass percent can also be used as a conversion factor • From the last problem • Mass Percent of Oxygen = 47.96% 47.96 g Oxygen 100 g CaCO 3 or 100 g CaCO 3 47.96 g Oxygen 77 Section 3.9 Composition of Compounds Mass Percent Composition as a Conversion Factor • How do we use mass percent as a conversion factor? • To calculate the mass of an element in a given mass of a compound. 78 Section 3.9 Composition of Compounds Example • Sodium chloride (table salt) is 39% sodium by mass. How much sodium chloride is allowed per the RDA (recommended daily allowance) if a person is allowed to consume 2.4 g of sodium per day. 79 Section 3.9 Composition of Compounds Example • Sodium chloride (table salt) is 39% sodium by mass. How much sodium chloride is allowed per the RDA (recommended daily allowance) if a person is allowed to consume 2.4 g of sodium per day. 100 g NaCl 2.4 g Na x 39 g Na = 6.2 g NaCl 80 Section 3.9 Composition of Compounds Learning Check • Calcium carbonate (a common calcium supplement) is 40.04% calcium by mass. How many grams of calcium are present in one tablet of calcium carbonate that has a mass of 500. mg? 81 Section 3.9 Composition of Compounds Solution • Calcium carbonate (a common calcium supplement) is 40.04% calcium by mass. How much calcium is present in one tablet of calcium carbonate that has a mass of 500. mg? 500. mg CaCO3 x 1g 40.04 g Ca x = 0.200 g Ca 1000 mg 100 g CaCO3 82 Section 3.9 Composition of Compounds Conversion Factors from Chemical Formulas • We just determined the amount of calcium in a given mass of calcium carbonate using mass percent as a conversion factor. • There is actually another way to do this calculation • Using the Mole Relationships in the Chemical Formula • What does this mean and how do we use it? 83 Section 3.9 Composition of Compounds Mole Relationships • Chemical formulas tell us the number of atoms in a compound • For a single formula unit of calcium carbonate (CaCO3) 1 atom Ca 1 formula unit CaCO3 1 atom C 1 formula unit CaCO3 3 atoms O 1 formula unit CaCO3 • But what if we have a mole of CaCO3? • Mole Relationships for CaCO3 84 Section 3.9 Composition of Compounds Mole Relationships • Mole Relationships for CaCO3 • There is a 1:1 relationship between moles of calcium or carbon atoms and moles of compound 1 mol Ca 1 mol C 1 mol CaCO 3 1 mol CaCO 3 • There is a 3:1 relationship between moles of oxygen atoms and moles of compound 3 mol O 1 mol CaCO 3 85 Section 3.9 Composition of Compounds Conversion Factors from Chemical Formulas • How do we use mole relationships to determine composition of a compound? • The mole relationship is a conversion factor. • So lets say we want to know how many grams of calcium are in a 500. mg sample of CaCO3 86 Section 3.9 Composition of Compounds Conversion Factors from Chemical Formulas • How many grams of calcium are in a 500. mg sample of CaCO3 0.500 g CaCO3 g Ca • We cannot convert directly from grams to grams. • The relationship between atoms in a compound is moles to moles • How do we use the mole:mole conversion to do this. 87 Section 3.9 Composition of Compounds Conversion Factors from Chemical Formulas • How many grams of calcium are in a 500. mg sample of CaCO3 • Grams of CaCO3 to moles CaCO3 • Moles CaCO3 to moles of Ca • Moles of Ca to grams of Ca • GMMG 0.500 g CaCO 3 x 1 mol CaCO 3 1 mol Ca 40.08 g Ca x x = 0.200 g Ca 100.09 g 1 mol CaCO 3 1 mol Ca 88 Section 3.9 Composition of Compounds Learning Check • The book uses the compound CCl2F2 (chlorofluorocarbons) for several examples • Write out the mole relationships for this compound 89 Section 3.9 Composition of Compounds Solution • The book uses the compound CCl2F2 (chlorofluorocarbons) for several examples • Write out the mole relationships for this compound 1 mol C 1 mol CCl2 F2 2 mol Cl 2 mol F 1 mol CCl2 F2 1 mol CCl2 F2 90 Section 3.9 Composition of Compounds Learning Check • Use the mole relationships from the last problem to determine how many grams of fluorine (F) are in 1500 g of the compound CCl2F2. 91 Section 3.9 Composition of Compounds Solution • Use the mole relationships from the last problem to determine how many grams of fluorine (F) are in 1500 g the compound CCl2F2. 1500 g CCl2 F2 x 1 mol CCl2 F2 2 mol F 19.00 g F x x = 470 g F 120.91 g 1 mol CCl2 F2 1 mol F 92 Section 3.10 Determining a Chemical Formula from Experimental Data Decomposition Analysis • How do we determine the formula of a compound that is newly isolated? • This is commonly done in the lab when new chemicals/drugs are synthesized • Also common when new compounds are isolated 93 Section 3.10 Determining a Chemical Formula from Experimental Data Decomposition Analysis • First step is to decompose the compound into its constituent parts • Weigh them • But this gives us a ratio of masses (in grams) • Does not really tell us anything about the relationship of the number of atoms in the compound 94 Section 3.10 Determining a Chemical Formula from Experimental Data Decomposition Analysis • • • • If we decompose 7.717 g of water (H2O) we get 6.868 g of oxygen 0.857 g of hydrogen If we divide these it gives an 8:1 ratio of oxygen to water (well we know that’s not right) • To get the ratio of atoms in the compound we have to correct for the different in their atomic weight • We have to convert to moles 95 Section 3.10 Determining a Chemical Formula from Experimental Data Decomposition Analysis • We have to convert to moles 1 mol H 0.857 g H x = 0.850 mol H 1.008 g 1 mol O 6.86 g O x = 0.429 mol O 16.00 g • Now this looks more like it • H0.850 O0.429 • Divide by the smaller number = H1.98O = H2O 96 Section 3.10 Determining a Chemical Formula from Experimental Data Empirical vs Molecular Formula • A decomposition analysis breaks a complex compound down to its elements to determine the relationship between them • This relationship is called an empirical formula • The simplest whole number ratio of atoms in the compound • The form of the compound before it was broken down might actually be a multiple of this empirical formula • This is called the molecular formula 97 Section 3.10 Determining a Chemical Formula from Experimental Data Empirical vs Molecular Formula • To determine the molecular formula you need the empirical formula and the molecular weight of the original compound. • For water the empirical formula and molecular formula are the same • Not true for other compounds • Molecular formula = empirical formula x n molar mass n empirical formula mass 98 Section 3.10 Determining a Chemical Formula from Experimental Data Example • The empirical formula for a compound by decomposition analysis is CH2O and the molar mass is determined to be 180.2. What is the molecular formula? • Molecular formula = (CH2O) x n molar mass 180.2 n = 6 empirical formula mass 30.03 • Molecular formula = C6H12O6 99 Section 3.10 Determining a Chemical Formula from Experimental Data Learning Check • A compound with the following percent composition has a molar mass of 60.10 g/mol. Determine its molecular formula. Assume 100 g of the compound. • C, 39.97% • H, 13.41% • N, 46.62% 100 Section 3.10 Determining a Chemical Formula from Experimental Data Solution 1 mol = 3.33 mol C 12.01 g C 1 mol H 13.41 g H x = 13.3 mol H 1.008 g H 1 mol N 46.62 g N x = 3.33 mol N 14.01 g N 39.97 g C x C 3.33H13.3N 3.33 CH 4 N = empirical formula Molecular formula = empirical formula x n molar mass 60.10 n = = 2 empirical formula mass 30.05 molecular formula = (CH 4 N) x 2 = C 2H 8N 2 101 Section 3.10 Determining a Chemical Formula from Experimental Data Combustion Analysis • One way to determine hydrogen and carbon content of a compound is to react it with oxygen then collect the H2O and CO2 produced 102 Section 3.10 Determining a Chemical Formula from Experimental Data Combustion Analysis • • • How can this information be used to determine a formula? If a substance has been isolated that contains only C, H and N. If 0.1156 g of this sample is reacted with oxygen and 0.1638 g of CO2 and 0.1676 g of H2O are collected. 0.1638 g CO2 x 12.01 g C 44.01 g CO2 0.04470 g C 0.1676 g H2O x 2.016 g H 18.02 g H2O 0.01875 g H • • The nitrogen is what is left over 0.1156 – (0.04470 + 0.01875) = 0.05215 g N • To determine formulas though we need numbers of atoms and grams don’t really help us with that 103 Section 3.10 Determining a Chemical Formula from Experimental Data Combustion Analysis 0.04470 g C x 0.01875 g H x 0.05215 g N x • • 1 mole C 12.01 g C 1 mole 1.008 g H 1 mole 14.01 g N 0.00372 mole C 0.0186 mole H 0.00372 mole N Ratio of moles is the same as ratio of atoms (Section 3.3 The Mole) Divide by the smallest value 104 Section 3.10 Determining a Chemical Formula from Experimental Data Combustion Analysis • So we need to convert grams to moles 0.04470 g C x 0.01875 g H x 0.05215 g N x • 1 mole C 12.01 g C 1 mole 1.008 g H 1 mole 14.01 g N 0.00372 mole C/0.00372 = 1 0.0186 mole H/0.00372 = 5 0.00372 mole N/0.00372 = 1 Empirical Formula = C1H5N1 105 Section 3.11 Writing and Balancing Chemical Equations How to Write Balanced Chemical Equations • Chemical equations include the states of the reactants and products • CH4 (g) + O2 (g) → CO2 (g) + H2O (g) • All of the reactants and products in this reaction are gases 106 Section 3.11 Writing and Balancing Chemical Equations States of reactants and products • Notice the difference between (l) liquid and (aq) aqueous • Aqueous is something dissolved in water. 107 Section 3.11 Writing and Balancing Chemical Equations How to Write Balanced Chemical Equations • Balanced equation • CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O (g) 108 Section 3.11 Writing and Balancing Chemical Equations Tips for balancing • Balance polyatomic ions as a group • Always balance oxygen last • Can used fractions to balance – then multiply them out at the end • Practice, practice, and practice. 109 Section 3.11 Writing and Balancing Chemical Equations Example Write a balanced equation for the reaction of aqueous lead (II) nitrate with aqueous sodium phosphate to produce solid lead (II) phosphate and aqueous sodium nitrate. Pb(NO3)2 (aq) + Na3PO4 (aq) → Pb3(PO4)2 (s) + NaNO3 (aq) 3 Pb(NO3)2 (aq) + 2 Na3PO4 (aq) → Pb3(PO4)2 (s) + 6 NaNO3 (aq) Section 3.11 Writing and Balancing Chemical Equations Learning Check Write a balanced equation for the reaction of ammonia (NH3) with the oxygen to produce nitrogen monoxide and water Section 3.11 Writing and Balancing Chemical Equations Solution Write a balanced equation for the reaction of ammonia (NH3) with the oxygen to produce nitrogen monoxide and water NH3 + O2 → NO + H2O 4NH3 + 5O2 → 4NO + 6H2O Section 3.11 Writing and Balancing Chemical Equations Learning Check Write a balanced equation for the reaction of aqueous cobalt (I) nitrate with sulfuric acid to produce solid cobalt (I) sulfate and nitric acid. Both acids are aqueous solutions Section 3.11 Writing and Balancing Chemical Equations Solution Write a balanced equation for the reaction of aqueous cobalt (I) nitrate with sulfuric acid to produce solid cobalt (I) sulfate and nitric acid. Both acids are aqueous solutions CoNO3 (aq) + H2SO4 (aq) → Co2SO4 (s) + HNO3 (aq) 2 CoNO3 (aq) + H2SO4 (aq) → Co2SO4 (s) + 2 HNO3 (aq) Section 3.11 Writing and Balancing Chemical Equations Conceptual Connection • Which quantity or quantities must always be the same on both sides of a chemical equation? • (a) the number of atoms of each kind • (b) the number of molecules of each kind • (c) the number of moles of each kind of molecule • (d) the sum of the masses of all the substances involved 115 Section 3.11 Writing and Balancing Chemical Equations Solution • Which quantity or quantities must always be the same on both sides of a chemical equation? • (a) the number of atoms of each kind • (b) the number of molecules of each kind • (c) the number of moles of each kind of molecule • (d) the sum of the masses of all the substances involved 116 Section 3.12 Organic Compounds Organic vs Inorganic Compounds • Early chemists divided compounds into two types • Organic - Originated from living things – sugars • Inorganic - Originated from the earth – salts 117 Section 3.12 Organic Compounds Organic vs Inorganic Compounds • Organic and inorganic compounds have different chemical properties • Organic – Easy to decompose – Very hard to synthesize – very complex • Inorganic – – Hard to decompose – Easier to synthesize 118 Section 3.12 Organic Compounds What are organic compounds • Major components of living organisms – Proteins, fats, DNA • • • • Smells, tastes, fuels Drugs Food Pretty much everything we consume 119 Section 3.12 Organic Compounds What are organic compounds made of? • Organic compounds are composed primarily of carbon and hydrogen with a few other elements – Nitrogen, oxygen and sulfur • Key element in an organic compound is carbon 120 Section 3.12 Organic Compounds What are organic compounds made of? • Carbon makes 4 bonds and often bonds to itself to make chain, branched and ring structures. 121 Section 3.12 Organic Compounds Hydrocarbons • Organic compounds that contain only carbon and hydrogen. • These are all the common fuels that we use • Gasoline, propane, natural gas • Can have single, double or triple bonds – Alkane – single bonds – Alkenes – double bonds – Alkynes – triple bonds 122 Section 3.12 Organic Compounds Naming Hydrocarbons • Base name determined by a prefix that indicates the number of carbons – Meth = 1, eth = 2, prop = 3, but = 4, pent = 5 – hex = 6, hept = 7, oct = 8, non = 9, dec = 10 • Suffix indicates the presence of a multiple bond – Single bonds - ane – Double bond - ene – Triple bond - yne 123 Section 3.12 Organic Compounds Naming Hydrocarbons • Butane CH3CH2CH2CH3 • Butene CH3CH2CH=CH2 124 Section 3.12 Organic Compounds Common Hydrocarbons 125 Section 3.12 Organic Compounds Learning Check • Write the name for the following hydrocarbons • CH3CH2CH2CH2CH2CH3 126 Section 3.12 Organic Compounds Solution • Write the formula or the name for the following hydrocarbons • CH3CH2CH2CH2CH2CH3 6 carbons hexane 7 carbons with double bond heptene 127 Section 3.12 Organic Compounds Functionalized Hydrocarbons • A functionalized hydrocarbon is a carbon hydrogen chain that has a functional group added to it. • What is a functional group? • A functional group is a group of atoms that change the characteristics of the hydrocarbon. 128 Section 3.12 Organic Compounds Functionalized Hydrocarbons • Example of a functionalized hydrocarbon. • Ethane • Ethanol 129 Section 3.12 Organic Compounds Functional Groups Ethanoic Acid * *Acetic Acid (Vinegar) 130 Section 3.12 Organic Compounds Learning Check • For the following compounds, give the family of the functional group (try to name the compound!) 131 Section 3.12 Organic Compounds Solution • For the following compounds, give the family of the functional group Alcohol - Propanol Carboxylic Acid - Butyric Acid Amine Ethyl amine 132 Section 3.12 Organic Compounds Suggested Homework • Chapter 3 • Review Questions 1 – 5, 8, 14 – 22 • Odd numbered problems 23 – 118 (skip 25, 63, 69, 73, 79, 87, 89, 97) 133