* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Sample Question for the Advanced Mathematical Ability Test
Mathematics of radio engineering wikipedia , lookup
Large numbers wikipedia , lookup
Abuse of notation wikipedia , lookup
Location arithmetic wikipedia , lookup
Infinitesimal wikipedia , lookup
Fundamental theorem of algebra wikipedia , lookup
Vincent's theorem wikipedia , lookup
Elementary mathematics wikipedia , lookup
CALCUTTAMATHEMATICALSOCIETY AE374,SaltLake(SectorI),Kolkata700064 MathematicalAbilityTest:SampleQuestion ------------------------------------------------------------------------------------------------ Trytoanswerasmanyquestionsasyoucan SectionA(MCQType)/FullMarks40 Allquestionscarryequalmarks Putatick(√)markagainstyouranswer (Nonegativemarkingforwronganswer) Allquestionscarryequalmarks ---------------------------------------------------------------- 1. Thenumberofrealrootsoftheequation │1-x│+x2=5is (A) 1(B)2(C)4(D)0 2. Asquareiscutintotworectanglessuchthatthesumofthe perimetersofthetworectanglesis48cm;thenthesideofthe squareis(incm) (A) 5(B)8(C)6(D)Noneoftheabove 3. Given(x+2)and(2x-1)arefactorsof(2x3+ax2+bx+10) then(a2+b2)isequalto (A)338(B)218(C)74(D)noneoftheabove. 4.Thesumoftendistinctrealnumbersis50.Thenthesumof theirsquaresis: (A)canbe50(B)is100(C)lessthan250(D)isalways greaterthan250 5.Letx,ybepositiveintegerssuchthat(x+y)2-2(xy)2=1 Ifz=x+y,thenzequalsto (A)2(B)3(C)4(D)5 6.ApersonispaidRs150foreachdayheworksandis finedRs30foreachdayheisabsent.Ifin40dayshis netearningisRs3300/-thenthenumberofdayshe wasabsentis (A)20(B)10(C)15(D)12 7. Atwowheelercompanyincreaseditsproductionofaparticular brandfrom80000to92610inthreeyears.Therateofgrowthfor theparticularbrandis (A) 6%(B)4%(C)4.5%(D)5% 8. AthinksofapositiveintegerwhichBdoublesandCtreblestheB’s number.FinallyDmultipliesC’snumberby6.Enoticesthatthe sumofthefournumbersisaperfectsquare.Thesmallestnumber thatAcouldhavethoughtofis (A)3(B)2(C)4(D)5 9. RamandRahimindividuallycancompleteaworkin15daysand20 daysrespectively.Theyjointlycompletedanotherworkin30days. Theirearningratiofromtheworkshouldbe (A) 5:4(B)4:3(C)2:3(D)noneoftheabove 10.pandqaretwodistinctprimenumbers(p>q)greaterthan5. thenp2-q2is (A) alwaysdivisibleby6butnotdivisibleby12 (B) alwaysdivisibleby12butnotdivisibleby24 (C) alwaysdivisibleby24butnotnecessarilydivisibleby48 (D) noneoftheabove. SectionB(ShortAnswerType) FullMarks80 Allquestionscarryequalmarks Giveallrelevantstepsforallanswers. (1) Howmanypositiveintegerslessthan2015maybewrittenasasum oftwoconsecutivepositiveintegersandalsocanbewrittenassum offiveconsecutivepositiveintegers. (2) Apositiveintegerpcanbewrittenasm2+3n2,wheremandnare positiveintegers.Anotherpositiveintegerqcanbewrittenas q=c2+3d2,wherecanddarepositiveintegers.Showthatpqalso canbewritteninthesameformi.e.pqcanbewrittenas pq=r2+3s2whererandsarepositiveintegers. (3) Whichisgreater(31)11or(17)14?Givereasonsforyouranswer (Hint:replace31by34) (4) Solveforx,y,z x+y+z=14 x2+y2+z2=84 xy=z2 (5) Findthesmallestnumberwhichwhendividedby3,5,7,11leaves remainder2,4,6,1respectively. (6) Aconewithcircularbaseiscutintotwosectionsbyahorizontal planeparalleltothebaseinsuchamannerthatthecurvedsurfaces ofthetwosectionsareofequalarea.Iftheheightoftheoriginal coneis15cmfindtheheightofthesmallerconeremainedafterthe cut. (7) Findthevalueofthesum cos(π/1000) + cos (2π/1000) + .......... + cos(999π/1000) (8) Twocirclesofradiir,stoucheachotheratapoint.Acommon tangent(otherthantheoneatA)touchesthecirclesatPandQ respectively.ShowthatPQ2=4rs (9) Iff(x)isapolynomialwithintegercoefficientsandf(1)andf(2) arebothoddthenprovethatthereexistsnointegernforwhichf(n) =0 (10) Supposem,nareintegersbothgreaterthan3andm=n2-n. Showthat(m2-2m)isdivisibleby24. .....................xxxxxxxxxxxxxxxxxx.......................