Download Regulatory B cells in autoimmune diseases

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Mitosis wikipedia , lookup

List of types of proteins wikipedia , lookup

Cell culture wikipedia , lookup

Cellular differentiation wikipedia , lookup

JADE1 wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Tissue engineering wikipedia , lookup

Cell encapsulation wikipedia , lookup

Amitosis wikipedia , lookup

Transcript
Cellular & Molecular Immunology (2013) 10, 122–132
ß 2013 CSI and USTC. All rights reserved 1672-7681/13 $32.00
www.nature.com/cmi
REVIEW
Regulatory B cells in autoimmune diseases
Min Yang1,3, Ke Rui2,3, Shengjun Wang2 and Liwei Lu1
B cells are generally considered to be positive regulators of the immune response because of their capability to produce
antibodies, including autoantibodies. The production of antibodies facilitates optimal CD41 T-cell activation because B
cells serve as antigen-presenting cells and exert other modulatory functions in immune responses. However, certain B
cells can also negatively regulate the immune response by producing regulatory cytokines and directly interacting with
pathogenic T cells via cell-to-cell contact. These types of B cells are defined as regulatory B (Breg) cells. The regulatory
function of Breg cells has been demonstrated in mouse models of inflammation, cancer, transplantation, and particularly
in autoimmunity. In this review, we focus on the recent advances that lead to the understanding of the development and
function of Breg cells and the implications of B cells in human autoimmune diseases.
Cellular & Molecular Immunology (2013) 10, 122–132; doi:10.1038/cmi.2012.60; published online 7 January 2013
Keywords: autoimmune disease; interleukin-10; regulatory B cells
INTRODUCTION
B-cell development in the bone marrow is a dynamic and complex process involving a delicate balance between cell proliferation
and apoptotic selection. This balance results in the generation of
functional B cells that are responsible for eliciting humoral
immunity.1–3 The concept that suppressor B cells could regulate
the immune response originated in 1974, when the ability of B
cells to suppress delayed-type hypersensitivity responses in guinea
pigs was described.4,5 However, the term ‘regulatory B cells’,
which defines B-cell subsets with regulatory properties, was first
introduced by Mizoguchi and Bhan nearly 30 years later.6 Similar
to regulatory T (Treg) cells, the regulatory function of B cells is
exerted via the production of regulatory cytokines, such as IL-10
and TGF-b, and the ability to express inhibitory molecules that
suppress pathogenic T cells and autoreactive B cells in a cell-tocell contact-dependent manner.7 Until recently, the exact origin
and molecular identity of regulatory B (Breg) cells remained elusive. Accumulating evidence suggests that the Breg cell population
is heterogeneous, meaning that this population can be derived
from all B cells under the correct stimulatory context and time.8 It
has been postulated that Breg cells can exert their suppressive
functions with different mechanisms in various mouse models
of disease, including inflammation, cancer and autoimmunity.9
Moreover, dynamic changes in Breg cells have been associated
with the progression of human autoimmune diseases.10,11 Here,
we review the recent literature studying both the phenotypic and
functional characterization of Breg cells and the implications B
cells have on the pathogenesis of autoimmune diseases.
IDENTIFICATION OF BREG CELLS
Despite the observations made in the 1970s that B cells with
suppressive functions possibly existed, the potential role of B
cells with regulatory functions in inflammatory and autoimmune diseases has only been recently appreciated. Janeway
and colleagues first observed that B10.PL mice lacking B cells
suffered an unusually severe and chronic form of experimental
autoimmune encephalomyelitis (EAE), indicating that B cells
have regulatory properties in a mouse model of EAE.12
Subsequently, it was found that B cells affected this autoimmune disease by regulating IL-10.13 Mizoguchi and Bhan
were the first to introduce the term ‘regulatory B cells’ to
describe these B-cell subsets with regulatory properties.6
While studying the putative pathogenic role of B cells in the
development of colitis, the authors unexpectedly observed that
T cell receptor alpha (TCRa)2/2 mice that were crossed with B
cell-deficient mice spontaneously developed an earlier onset of
colitis that was more severe compared to TCRa2/2 mice.14
Moreover, Mizoguchi et al. further demonstrated that a certain
B-cell subset from gut-associated lymphoid tissues in a chronic
inflammatory environment secreted IL-10, upregulated
1
Department of Pathology and Center for Infection and Immunology, The University of Hong Kong, Hong Kong, China and 2Department of Immunology,
School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
3
These authors contributed equally to this work.
Correspondence: Dr LW Lu, Department of Pathology and Center for Infection and Immunology, The University of Hong Kong, Pokfulam Road, Hong Kong,
China.
Received: 14 October 2012; accepted: 6 November 2012
Regulatory B cells in autoimmune diseases
M Yang et al
123
expression of CD1d and suppressed the progression of intestinal inflammation by downregulating inflammatory cascades
associated with IL-1 and signal transducer and activator of
transcription 3 (STAT3) activation.15
Early studies have revealed that B-1 cells in the peritoneal
cavity are a major source of B cell-derived IL-10.16 Upon IL12 stimulation, B1a cells, but not B-1b cells, have the ability
to produce IL-10.17 Recently, the production of Th2 cytokines by conventional B2 cells has been extensively investigated. The marginal-zone (MZ) B cells have been shown to
regulate immunity by producing IL-10 in response to CpG
stimulation in a mouse model of lupus.18 Moreover, splenic
transitional 2-MZ precursor (T2-MZP) B cells that express
high amounts of CD21, CD23, CD24, IgM and CD1d from
both naive and arthritic mice are capable of producing IL10. Remarkably, the regulatory function of T2-MZP cells
depends on IL-10 production because T2-MZP cells from
IL-102/2 DBA mice show no protection against the development of arthritis.19 Tedder and colleagues have identified a
subset of IL-10-producing B10 cells that contain the unique
phenotype CD1dhiCD51. These cells share certain phenotypic markers with B-1a, MZ B and T2-MZP cells.20 B10
cells normally represent 1%–2% of splenocytes in wild-type
mice and approximately 10% in hCD19 transgenic mice.
Notably, IL-10 production has been found to be restricted
to this B10 cell subset. Interestingly, IL-10 production was
decreased in CD192/2 mice but increased in hCD19 transgenic mice. Rafei et al. have reported a Breg cell subset
induced by a granulocyte-macrophage colony-stimulating
factor–IL-15 fusion protein known as GIFT15.21 These
GIFT15-induced Breg cells possess a phenotype akin to
B10 and T2-MZP Breg cells. A study by Ding et al. revealed
that T-cell Ig domain and mucin domain protein 1 (TIM-1)
is expressed by a large majority of IL-10-producing Breg B
cells, which consist of a heterogeneous population including
transitional B, MZ B, FO B and CD1dhiCD51 B10 cells.
TIM-11 B cells express IL-4 and IL-10, promote Th2 response and directly transfer allograft tolerance.22 Recently,
Qian et al. have reported that regulatory dendritic cells can
program splenic T1, T2, MZ and B1 cells to differentiate into
a distinct regulatory B-cell subset with the phenotype
CD19hiFccIIbhi. This B-cell subset exerts potent regulatory
functions, such as the secretion of IL-10 both in vitro and in
vivo.23
Aside from mouse Breg cells, the existence of human Breg
cells has recently been revealed. A number of studies have
reported that certain B cells can produce IL-10.24,25
Remarkable progress in identifying the phenotype of human
Breg cells has been achieved by the group led by Mauri. In an
elegant study, Mauri and colleagues demonstrated that
CD191CD24hiCD38hi B cells, which are cells that have a
phenotype that has been previously associated with immature
B cells, comprise the highest fraction of IL-10-producing B cells
upon CD40 stimulation in human peripheral blood from
healthy individuals.10 Separately, Tedder and colleagues also
characterized human Breg cells with the phenotype
CD24hiCD271, which is a phenotype related to memory B
cells.11
Although great progress has been made in the characterization of Breg cells, the cell surface markers and/or specific transcription factor(s) that are unique to Breg cells have not been
defined in mice and humans. Most of the currently identified
Breg cells exert their suppressive function at least partially
through the production of regulatory cytokines, such as IL10 and TGF-b. This production of regulatory cytokines has
been demonstrated by both in vitro functional assays and in
vivo mouse studies.
BREG CELLS IN AUTOIMMUNE DISEASES
The regulatory functions of Breg cells have been extensively
characterized in various animal models of inflammation, cancer and autoimmune diseases. B cells are generally considered
to play a pathogenic role in the development of autoimmune
diseases because B cells produce autoantibodies that cause target tissue damage.26 However, autoantibodies can also exert a
protective effect via the clearance of apoptotic cells and reduction of autoantigen load.27 Moreover, B cells also act as antigen-presenting cells, which are cells that contribute to the
activation and amplification of naive, activated and autoreactive T-cell responses.28–30 It has been reported that antigens
presented by resting B cells can induce the differentiation of
tolerogenic CD41 T cells.31,32 Furthermore, B cells, similar to T
cells, can be defined as B effector 1 and 2 cells. B effector 1 cells
produce Th1-associated pro-inflammatory cytokines, including tumor-necrosis factor (TNF)-a, IFN-c and IL-12, whereas
B effector 2 cells produce Th2-associated cytokines, including
IL-4 and IL-13.33 Notably, certain regulatory B cells that produce IL-10 or TGF-b have recently been shown to possess
inhibitory functions in autoimmune diseases.6 Thus, current
studies on the functional implications of Breg cells in the
pathogenesis of autoimmune diseases can facilitate the
development of combined therapies for autoimmune diseases.
In the following sections, the role of Breg cells in mouse models
of various autoimmune diseases, including rheumatoid arthritis, autoimmune diabetes, autoimmune encephalomyelitis
and lupus, will be discussed.
Breg cells in experimental arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory disease
that is characterized by inflammation in the synovium. This
inflammation is associated with the infiltration of activated T
cells, B cells and macrophages, as well as the progressive
destruction of cartilage and bone structures, which eventually
leads to joint destruction and deformity.34 RA is a common
systemic autoimmune disease that has a prevalence of approximately 0.5%–1% in the adult population.35 An animal model
of human RA exists whereby collagen-induced arthritis (CIA)
is induced in a susceptible strain of DBA/1J mice that are
immunized with heterologous type II collagen emulsified in
complete Freund’s adjuvant.36 CIA is characterized by severe
swelling of the paws, extensive synovial hyperplasia, cartilage
Cellular & Molecular Immunology
Regulatory B cells in autoimmune diseases
M Yang et al
124
damage, bone erosion and joint ankylosis.36–39 Collagen
immunization induces chronic inflammatory arthritis, which
is the result of infiltration of CD41 T cells into the synovial
membrane and the production of collagen-specific IgG autoantibodies by B cells.40 Many types of immune cells, including
natural killer cells, have been shown to possess a regulatory
function in the development of autoimmune arthritis.41 In
CIA mice, B-cell depletion using the CD20 monoclonal antibody (mAb) significantly ameliorates disease severity.42
Interestingly, B-cell depletion before collagen immunization
delays disease onset and autoantibody production and markedly diminishes the severity of arthritis as indicated by both
clinical symptoms and histological changes in joint tissue.
However, B-cell depletion after collagen immunization does
not show any significant effect on arthritis progression or disease severity. These observations suggest that B cells may play a
more prominent regulatory role during the initiation of disease. In CIA mice, IL-10-producing B-cell subsets with varying
phenotypes and origins have also been identified during arthritis development. Mauri et al. have performed a comprehensive study that examines whether adoptive transfer of activated
B cells from arthritic mice has an inhibitory effect on CIA.43
Mauri and colleagues found that the in vitro activation of
splenic arthritogenic B cells with collagen and a CD40 mAb
resulted in IL-10 production. B cells that were injected intraperitoneally into recipient DBA/1-T-cell Ag receptor b-transgenic mice that were concurrently immunized with collagen
significantly reduced the incidence and severity of arthritis and
markedly inhibited Th1 cell differentiation. Moreover, in vitroactivated arthritogenic B cells were also effective in ameliorating the disease. Further studies have demonstrated that IL-10 is
essential for the regulatory function of this subset of B cells
because B cells isolated from IL-10 knockout mice failed to
mediate protective functions. Consistently, B cells isolated
from arthritogenic splenocytes treated with anti-IL-10/antiIL-10R antibodies in vitro were unable to protect recipient mice
from developing arthritis. When sorted MZ B, FO B or T2MZP arthritic B cells were transferred into DBA/1J mice on the
day of the second immunization, only T2-MZP B cells significantly delayed the development of arthritis, and approximately
40% of the mice that received T2-MZP cells developed arthritis. Thus, T2-MZP B cells and cells within this phenotypically
defined subset can inhibit CIA progression.19 Administration
of apoptotic thymocytes to mice up to 1 month before the
clinical onset of CIA has also been shown to have protective
effects on joint inflammation and bone destruction.44
Activated splenic B cells respond directly to apoptotic cell treatment by increasing the secretion of IL-10, which is important
for inducing T cell-derived IL-10. Moreover, the passive transfer of B cells from apoptotic cell-treated mice provides significant protection against developing arthritis. These findings
suggest that certain subsets of IL-10-producing B cells generated in vivo can suppress autoimmune pathogenesis. This
notion is supported by our recent findings that in vitro induced
B10 cells can suppress the development of arthritis and
Cellular & Molecular Immunology
decrease joint pathology in CIA mice.45,46 Adoptive transfer
of in vitro expanded B10 cells in mice on the day of the second
collagen immunization resulted in a marked delay in the onset
of arthritis and a reduced severity of both clinical symptoms
and joint damage. This delay of onset was accompanied by a
substantial reduction in the number of pathogenic IL-17-producing CD41 T cells. Thus, Breg cells expanded in vitro can be a
potential treatment for autoimmune arthritis.
Breg cells in autoimmune diabetes
Type 1 diabetes (T1D) is characterized by the destruction of
insulin-producing pancreatic b cells. This destruction is primarily mediated by CD41 and CD81 T cells.47 In non-obese
diabetic (NOD) mice, which is a spontaneous model of human
T1D, the onset of diabetes is initiated at the age of 13–15 weeks,
and approximately 80% of female mice and 20% of male mice
develop diabetes by the age of 30 weeks.48 There is increasing
evidence that B cells play a pathogenic role in the initiation of
T1D. B cells are among the earliest cells to infiltrate the pancreatic islets in NOD mice, which is where they organize with T
cells into lymphoid structures within germinal centers that
promotes the selection of autoreactive B cells.49,50 These
ectopic lymphoid structures, which consist of a central zone
of T cells surrounded by B cells, begin to generate at the early
stage of peri-insulitis.51 Because B cell-deficient NOD mice fail
to develop diabetes, targeting B cells may be a potential
approach to treating b-cell mediated autoimmune diabetes.52
In 5-week-old female NOD mice treated with CD20 mAbs for a
short amount of time, approximately 95% of B cells were
depleted, which subsequently led to reduced insulitis.
Moreover, diabetes was prevented in more than 60% of the
littermates. However, treating 15-week-old NOD female mice
with a CD20 mAb substantially delays the onset of diabetes, but
does not prevent the disease.53 Recent studies conducted by
Grey and colleagues have shown that B-cell depletion delays
and reduces diabetes by increasing the number of
CD251Foxp31CD41 Treg T cells, thereby enforcing long-term
tolerance.54 Moreover, studies by Smith and Tedder have suggested that Breg cells, such as B10 cells, may represent a significant component of the reconstituted B-cell pool after B-cell
depletion.55 These findings suggest an involvement of Breg cells
in the development of diabetes.
There is compelling evidence that activated B cells can maintain immune tolerance because the transfer of activated B cells
protects NOD mice from diabetes.56,57 Repeated intravenous
transfer of BCR-activated B cells into 5- to 6-week-old NOD
mice delays the onset and reduces the incidence of diabetes,
while treatment starting at 9 weeks of age only delays diabetes
onset. The therapeutic effect from transfusing activated B cells
from NOD mice correlates with the polarization of CD41 T
cells toward a Th2 phenotype in recepient NOD mice.58
Notably, B cell-derived IL-10 is required for protection against
T1D because the transfusion of activated NOD-IL-102/2 B
cells neither confers protection against diabetes nor reduces
the severity of insulitis. Tian et al. have reported that
LPS-activated B cells expressed Fas ligand and secreted TGF-
Regulatory B cells in autoimmune diseases
M Yang et al
125
b.57 Transfer of the activated B cells into prediabetic NOD mice
inhibited spontaneous Th1 immune responses and delayed the
onset of diabetes. Cotransfer of activated B cells and diabetogenic splenic T cells into NOD/scid mice prevented the
development of diabetes; however, cotransfer of control cells
with diabetogenic T cells showed no protective effect. These
results suggest that activated B cells may downregulate pathogenic Th1 immunity by triggering the apoptosis of Th1 cells
and/or inducing the secretion of the regulatory cytokine TGFb. Together, these findings indicate that Breg cells play an
indispensable role in the initiation of T1D, but have little effect
on disease progression in NOD mice.
Breg cells in EAE
Multiple sclerosis (MS) is a prototypic T cell-mediated autoimmune disease that results in the demyelination of cells in the
central nervous system (CNS). This demyelination is mediated
by CD41 T cells specific for myelin oligodendrocyte glycoprotein and other autoantigens in the central nervous system.59
EAE is a mouse model of human MS. Accumulating evidence
has suggested that B cells also play a pathogenic role in
EAE.12,60,61 However, it has been reported that B cell-deficient
mice develop a more severe and non-remitting form of
EAE.12,60 Moreover, CD201 B cell depletion after EAE development dramatically suppresses the disease symptoms.62
Although B-cell depletion ameliorates ongoing EAE, B-cell
depletion occurring before EAE induction exacerbates the disease, suggesting that the Breg cells that negatively regulate
inflammatory reactions are possibly depleted.63 Furthermore,
the regulatory functions of B cells during EAE have been linked
to the production of IL-10 because adoptive transfer of wildtype B cells, rather than IL-102/2 B cells from mMT mice,
decreases the severity of EAE. B cells from recovered mice
produce IL-10, which is important for attenuating pro-inflammatory Th1 responses. Importantly, in the absence of IL-10producing B cells, mice are not able to recover from EAE.60,64 In
a recent study, fusokine GIFT15-induced Breg cells are shown
to secrete IL-10 and express MHC I, MHC II, and surface IgM
and IgD. Moreover, mice with EAE undergo complete
remission after the intravenous transfer of GIFT15-Breg cells.
These cells function by suppressing neuro-inflammation.21
Therefore, IL-10-producing B cells have been identified as
important regulators in controlling EAE. Recently, Tedder
and colleagues characterized the overlapping and differential
roles of Breg and Treg cells in shaping the course of EAE immunopathogenesis.65 Adoptively transferred B10 cells can directly
influence EAE pathogenesis by producing IL-10. Interestingly,
the number of B10 cells expands quickly in the spleen but not in
the CNS, which is consistent with the regulatory function of
B10 cells involved in disease initiation. Furthermore, transfer of
antigen-sensitized B10 cells into wild-type mice dramatically
reduces EAE initiation, but B10 cells could not inhibit ongoing
EAE progression. However, the number of Treg cells expanded
markedly within the CNS during disease progression. This
expansion negatively regulated the late phase of EAE. Thus,
these findings suggest that Breg cells play a predominant role
in the control of disease initiation, whereas Treg cells exert their
regulatory function during the late-phase of disease.
Breg cells in murine lupus
Systemic lupus erythematous (SLE) is a systemic autoimmune
disease that is characterized by high autoantibody production,
increased immune complex deposition, and multiple organ
damage. Both T and B cells contribute to the pathogenesis of
human SLE.66,67 NZB/NZW (NZB/W) F1 hybrid mice develop
a spontaneous lupus-like disease, which is characterized by
immune complex-mediated glomerulonephritis that is associated with IgG autoantibody production against nuclear Ags,
including dsDNA, RNA, chromatin and histones.68 The prominent characteristics of NZB/W F1 mice include the expansion
of B-1a and MZ B cells, activation of polyclonal B cells, and
high serum levels of IgM and IgG.69–72 MRL/lpr mice also
spontaneously develop a similar lupus-like disease.73
Therefore, both NZB/W F1 and MRL/lpr mouse models have
been extensively used for studying human SLE. When 12- to
28-week-old NZB/W F1 mice receive treatment with a low dose
of the CD20 mAb, spontaneous disease progression is significantly delayed. In contrast, B-cell depletion initiated in 4-weekold mice promotes disease onset, most likely due to the depletion of IL-10-producing Breg cells.74 It has been shown that
there is significant expansion of B10 cells in young NZB/W F1
mice.65 Therefore, different B-cell populations can play either
protective or pathogenic roles during disease pathogenesis
because the timing of B-cell depletion has significant effects
on disease progression in NZB/W F1 mice. To examine the
roles of B cells in disease pathogenesis in NZB/W F1 mice,
CD192/2 NZB/W mice were generated. The production of
anti-nuclear Abs was remarkably delayed in CD192/2 NZB/
W mice compared with wild-type NZB/W mice. However,
CD192/2 NZB/W mice developed nephritis significantly earlier and had a substantially reduced survival rate. These results
emphasized that B cells play both pathogenic and protective
roles in lupus pathogenesis.75 B10 cells were increased in wildtype NZB/W mice during disease progression, whereas
CD192/2 NZB/W mice lacked B10 cells, which is similar to
the findings in a previous report.20 Moreover, transfer of
splenic B10 cells from wild-type NZB/W mice into CD192/2
NZB/W recipients significantly prolonged the survival rate of
NZB/W mice. This increased survival was accompanied by
expansion of Treg cells, which suggests that regulatory B10 cells
play a protective role in lupus pathogenesis.75 Moreover, Blair
et al. have demonstrated that the transfer of in vitro anti-CD40induced T2 Breg cells significantly improved the severity of
renal disease and survival rate in MPL/lpr mice in an IL-10dependent manner.76 Thus, both B10 cells and T2-MZP B cells
can effectively protect mice from developing lupus.
Breg cells in human autoimmune diseases
Extensive studies in mice have demonstrated that Breg cells
play important roles in the suppression of autoimmune diseases, but relatively little is known about human Breg cells in
healthy individuals and patients. A remarkable study by Mauri
Cellular & Molecular Immunology
Regulatory B cells in autoimmune diseases
M Yang et al
126
and colleagues has identified a specific subset of human Breg
cells with a phenotype of CD191CD24hiCD38hi in the peripheral blood of healthy individuals.10 This phenotype has been
previously associated with immature transitional B cells.77,78
However, these B cells were able to produce IL-10 in response
to CD40 stimulation. However, CD191CD24hiCD38hi B cells
isolated from the peripheral blood of patients with SLE lacked
the suppressive capacity possessed by their counterparts in
healthy individuals. Moreover, comparisons between B cells
from SLE patients and healthy controls indicate that the defect
in IL-10-production in response to CD40 stimulation in B cells
from SLE patients is possibly due to altered activation of
STAT3.10 Interestingly, SLE patients who received rituximab
treatment had an increased ratio of CD191CD24hiCD38hi B
cells to memory B cells, which supports the notion that B cell
depletion may result in an increased generation of tolerogenic
B cells.77,79
Tedder and colleagues have identified a subset of human B10
cells with a phenotype of CD24hiCD271; approximately 60% of
these B10 cells express CD38.11 CD27 is a well-characterized
marker for human memory B cells. Moreover, CD271 B cells
can expand during autoimmune diseases and act as a biomarker for disease activity.80,81 B10 cells in the blood have a higher
proliferative capacity than other B cells in response to mitogen
stimulation, which indicates that these B cells have not recently
emigrated from the bone marrow.11 The frequency of
CD24hiCD271 B10 cells in human blood was even higher in
the autoimmune diseases including SLE, RA, autoimmune skin
disease and MS. Recently, Bouaziz et al. have demonstrated that
human B cells stimulated with anti-Ig and CpG produced IL-10
and enriched both CD271 memory and CD38hi transitional B
cell compartments.82 Although current findings cannot reconcile the different phenotypes of human Breg cells, it is clear that
Breg cells exist in human blood and lymphoid organs. These
cells have regulatory functions that are partially dependent on
IL-10 production.
Similar to findings in animal models, the relative contribution
of different immune components to the pathogenesis of human
autoimmune disease differs from one disease to another. B cells
may play either a crucial role in the initiation of the disease or
contribute to autoimmune pathogenesis after disease onset.40
Recently, B-cell depletion strategies have been used to treat
patients with autoimmune diseases. In RA patients, B-cell depletion using rituximab significantly diminished ongoing joint
inflammation, but the recrudescence of disease activity was often
accompanied by B-cell recovery.83–85 In human MS, B-cell
depletion appears to be more effective after the onset of disease.
B-cell depletion after the onset of the symptoms can ameliorate
disease progression.86 Clinical studies have shown that B-cell
depletion with rituximab improves the clinical manifestations
of SLE.87 These clinical studies have suggested that B-cell depletion is an effective therapy for treating autoimmune diseases.
However, B-cell depletion may exacerbate disease in some autoimmune conditions. For example, B-cell depletion has been
shown to exacerbate ulcerative colitis and trigger psoriasis,
Cellular & Molecular Immunology
which are both Th1-mediated autoimmune conditions.88,89
These intriguing findings may indicate the existence of Breg cells
that modulate T cell-mediated inflammatory responses in vivo.
Taken together, B cells, autoantibodies and T cells are all
involved in the development of autoimmune diseases and have
unique functions in each autoimmune disease. B cells not only
produce autoantibodies and act as antigen-presenting cells for
CD41 T-cell activation, but also serve as negative regulators
that dampen harmful immune responses. Therefore, the time
window for depleting B cells or transferring Breg cells is
important because the changes in immunological balance
may result in either exacerbation or amelioration of disease
progression.
MICRO-ENVIRONMENTAL SIGNALING IN MODULATING
BREG CELL GENERATION
No common surface markers or specific transcription factor(s)
have been identified yet that define both human and mouse
Breg cells. Moreover, Breg cells can be generated with the
appropriate stimulation both in vitro and in vivo, which reinforces the notion that factors present in the microenvironment
may play a crucial role in the induction of Breg cells.8 Certain
TLR agonists have been demonstrated to be potent inducers of
B cells with suppressive functions. LPS from Gram-negative
bacteria and CpG-containing oligonucleotides that mimic bacterial DNA have been shown to induce IL-10-producing B cells
and inhibit disease progression in a mouse model of EAE.90
Mice containing B-cell deletions of Tlr2, Tlr4 or the TLR
adaptor myeloid differentiation primary-response gene 88
(MyD88) could not recover from EAE, suggesting that TLRs
are directly involved in modulating the regulatory function of B
cells.90
TLR-signaling has been shown to initiate IL-10 production in
naive B cells. However, B cells also require CD40 and BCR
ligation to enable further IL-10-production.60 Accumulating
data support a two-step model for the establishment of B-cellmediated suppression. During the initial stage, TLR stimulation
induces only a few IL-10-producing B cells. During the second
phase, BCR and CD40 ligation, which are classically involved in
B-cell survival and expansion, further amplifies the population
of IL-10-producing B cells, which results in sufficient IL-10
production for effective suppression.90 Yanaba et al. have
demonstrated that splenic B cells treated with LPS, PMA and
ionomycin in vitro for 5 h results in optimal IL-10 production.91
Moreover, LPS or LPS plus CD40 stimulation for 48 h induces
additional splenic CD1dhiCD51 B10 cells to express IL-10 following PMA plus ionomycin stimulation. Human B cells express
TLR9, which is a receptor for CpG, but not TLR4. Bouaziz et al.
have shown that TLR9 is a potent inducer of IL-10 production.
Moreover, the optimal stimulus for human B cells found in the
blood is the combination of CpG and anti-Ig, which can act
synergistically to induce human B cells to produce IL-10.82
Interestingly, CpG and anti-Ig stimuli can effectively induce
memory B cells (CD271), CD51 B cells and immature transitional B cells (CD38hiCD24hi) to produce IL-10.10,11,92 These
Regulatory B cells in autoimmune diseases
M Yang et al
127
findings suggest that TLR signaling plays an important role in
the induction of Breg cells.
CD40 engagement has been found to be required for the
suppression of both EAE and CIA, suggesting that an interaction between B cells and CD40L-expressing CD41 T helper
cells is necessary for B cell-mediated suppression.43,60,76 Mauri
et al. have demonstrated that stimulation of splenocytes from
CIA mice during remission with anti-CD40 mAb induces the
differentiation of IL-10-producing B cells. Furthermore, B cells
from normal mice that have recovered from EAE produced IL10 upon the ligation of CD40.43 In contrast, mice with chimeric
bone marrow that contained B cells lacking CD40 expression
failed to recover from EAE. However, the transfer of B cells
from mice that had recovered from EAE into these chimeric
mice compensated for their inability to recover from EAE.60 In
humans, B cells from the blood that were treated with CD40L
effectively induced CD4hiCD251Foxp31 Treg cells, which suppress CD41CD252 T cells.93 Blair et al. have reported that CD40L
stimulation induces CD191CD24hiCD38hi B-cell expansion and
suppresses Th1 cell differentiation. However, CD191CD24hi
CD38hi B cells from the peripheral blood of SLE patients were
insensitive to stimulation by CD40L and produced a reduced
amount of IL-10. Consequently, these B cells were unable to
suppress CD41CD252 T cells from healthy donors.10 These
results suggest that anti-CD40 ligation is critically involved in
Breg cell activation.
B-cell activating factor (BAFF), which is a member of the
TNF family, acts as a key regulator of B-cell maturation and
survival. Analyses of BAFF-deficient mice reveal a fundamental
role of BAFF in promoting the maturation of T1 B cells to T2 B
cells.94 In addition to the crucial role BAFF plays in the maintenance of the peripheral B cell pool, BAFF has been found to be
essential for MZ B-cell development.95 Moreover, new evidence from BAFF-transgenic mice indicates that BAFF induces
CD41Foxp31 T cells to suppress T-cell responses in an indirect, B cell-dependent manner, which suggests a regulatory role
of BAFF in vivo.96 Recently, we have shown that low dosages of
BAFF can induce B cells of the phenotype CD1dhiCD51 to
induce IL-10, which is similar to B10 cells. BAFF stimulation
can selectively induce the expansion of IL-10-producing B cells
after 3-days in culture. Moreover, BAFF treatment in vivo
increased the number of IL-10-producing B cells in the marginal zone regions.46 These findings reveal a previously unappreciated function of BAFF, which is to induce B cells with
regulatory function.
In addition, other signals have been reported to be important
in the generation of Breg cells. For example, apoptotic cells
(ACs) have been shown to act as endogenous signals that
trigger IL-10 production, leading to the amelioration of
CIA.97 ACs are able to induce splenic B cells to secrete IL-10,
which further enhances antigen-specific T cells to secrete IL-10
and exert immunosuppressive functions. Moreover, ACs can
preferentially induce MZ B cells, rather than FO B cells, to
secrete IL-10, which is most likely related to the fact that MZ
B cells reside on the border between the red and white pulp in
the spleen.98 Interestingly, studies by Rafei et al. have shown
that GIFT15 can induce Breg cells to have a phenotype that is a
hybrid between CD1dhiCD51 B10 and T2-MZP Breg cells and
plasma cells expressing CD138.21 Recently, Qian et al. have
reported that regulatory dendritic cells (DCs) can induce
splenic B cells to differentiate into IL-10-producing B cells that
have the phenotype CD19hiFccIIbhi through IFN-b and
CD40L.23 These results suggest that Breg cells can be generated
in the appropriate temporal and spatial microenvironment.
Future studies identifying more signals involved in the differentiation of B cells into Breg cells are anticipated.
MECHANISMS UNDERLYING BREG CELL FUNCTION
There are several direct and indirect mechanisms by which
Breg cells exert their regulatory functions during the
immune response (Figure 1). In mice, there are currently
two well-characterized subsets of IL-10-producing B cells.
The first is a B10 cell subset with the phenotype
CD19hiCD1dhiCD51, and the second is a T2-MZP cell subset with the phenotype CD191CD231CD211CD1dhi.20,99
Although the frequency of naturally existing IL-10-producing regulatory B cells is extremely low, Breg cells can
be expanded in vitro. This expansion allows for the enrichment of Breg cells and permits a more comprehensive study
of the mechanisms by which Breg cells mediate immune
suppression. These two Breg subsets produce IL-10 and suppress both the proliferation of T cells and cytokine production (IFN-c and TNF-a) by Th1 cells.20,46,99 Moreover,
transfer of a relatively low number of in vitro expanded
Breg cells maintains long-term protection against several
autoimmune diseases in animal models, which suggests that
Breg cells can either further proliferate in vivo or initiate an
efficient immunosuppressive cascade with other immune
suppressive cells.100 Breg cells can not only suppress Th1mediated immune responses but also convert effector T cells
into regulatory Tr1 cells.76,97,101 Gray et al. have clearly
shown that ACs induce B and T cells to produce IL-10.
Moreover, B cell-derived IL-10 has been shown to be essential in the induction of T cells to secrete IL-10 in vitro.97
Furthermore, Mauri et al. have observed that there is a
longer contact time between CD41CD252 T cells and IL10-producing B cells than IL-10-deficient B cells. This longer
contact time enables IL-101 B cells to convert effector T cells
into Tr1 cells, which is mediated by IL-10 that is produced
by B cells.101 B cells can also promote DCs to not only
secrete IL-4 but also downregulate IL-12, which affects the
Th1/Th2 balance.102 In addition to IL-10-producing Breg
cells, TGF-b1-producing Breg cells have been identified in
response to LPS stimulation in vitro.103,104 These B cells can
trigger pathogenic Th1 cells to undergo apoptosis through
Fas–FasL interactions and/or the inhibition of antigen-presenting cell activity via the secretion of TGF-b1.103
In addition to regulating the Th1/Th2 balance, Breg cells
have been shown to affect the balance between Foxp31 and
IL-17–producing T cells.101,105 Worm-induced Breg cells have
been shown to suppress allergic airway inflammation by
Cellular & Molecular Immunology
Regulatory B cells in autoimmune diseases
M Yang et al
128
DC
Treg
IL-10,TLR
TH17
IL-
10
-b
GF
0,T
1
IL-
Breg
IL-
TH2
INF- c
TNF-a
10
CD80 CD28
CD86 CTLA-4
Teff
FasL Fas
CD1d
NKT
TH1
IL-4,IL-10
IL-13
AC
Figure 1 Mechanisms of action for Breg cells in immune responses. The possible mechanisms by which Breg cells modulate immune responses
may include the following: Breg cells restore the Th1/Th2 balance by producing IL-10; Breg cells inhibit Th1 and Th17 cell differentiation, but
promote Treg cell expansion. These effects are mediated not only through the release of soluble factors such as IL-10 and TGF-b, but also via cellto-cell contact involving CD80, CD86 and FasL, etc. Interactions between Breg and Teffs) can result in the induction of ACs as well as the induction
of both Foxp31 Treg cells and IL-10-producing Tr1 cells. Breg cells can dampen the activation of DCs and macrophages. Moreover, Breg cells
express CD1d, which may activate iNKT cells with regulatory functions. AC, apoptotic cell; Breg, regulatory B; DC, dendritic cell; iNKT, invariant
natural killer T; Teff, effector T cell; TNF, tumor-necrosis factor; Treg, regulatory T.
promoting pulmonary infiltration of CD41CD251Foxp31 Treg
cells, which is a IL-10-dependent but TGF-b-independent mechanism.105,106 Carter et al. have elegantly demonstrated that endogenous IL-10-producing B cell-deficient mice develop an
exacerbated case of arthritis and exhibit an increased frequency
of Th1/Th17 pro-inflammatory cells, but a decreased frequency of
Treg cells.101,107 Consistent with these findings, we have also
demonstrated that B10 cells induced in vitro can suppress Th17
cell differentiation by decreasing the phosphorylation levels of
Stat3, which subsequently reduces the levels of RORct, and partially inhibits the Th17 cell population in an IL-10-dependent
manner.45 Based on these current findings, it is likely that Breg
cells play an important role in T-cell plasticity.
Apart from cytokine-mediated suppression, B cells can also
exert their regulatory effects by cellular interactions. Both B10
and T2-MZP Breg cells share the phenotype CD1dhi, which is a
MZ B cell marker. CD1d-expressing MZ B cells have been
shown to activate invariant natural killer T (iNKT) cells in
the presence of DCs and aid in the establishment of peripheral
tolerance by the induction of Tr1 cells, which is a process that is
dependent on the activation of iNKT cells via CD1d.108,109
Moreover, CD1dhi MZ B cells are capable of presenting glycolipids through CD1d. These glycolipids are recognized by NKT
cells, which are cells that have been shown to play important
Cellular & Molecular Immunology
roles in autoimmune development. Interestingly, EAE is exacerbated in CD1d2/2 mice, which lack NKT cells.110 Recently,
human transitional B cells (CD191CD24hiCD38hi) have been
shown to play an essential role in iNKT cell expansion and
activation in healthy individuals, but not in SLE patients
because transitional B cells from SLE patients have defects in
CD1d recycling.111 Thus, CD1d-expressing Breg cells can exert
their regulatory functions by activating NKT cells.
The mechanisms for regulating the immune response are
mediated by either the release of suppressive soluble cytokines,
including IL-10 and TGF-b, by regulatory cells or promotion of
activation-induced cell death (or apoptosis), which is mediated
by death-inducing ligands, including FasL, TNF-related apoptosis-inducing ligand, and programmed death ligands 1 and 2 (PDL1 and PD-L2), etc.112–114 B cells can express FasL and other
death-inducing ligands under many circumstances. Both FasL
and IL-10 are highly expressed in the CD51 B-cell population,
which indicates that CD51 B cells may exert regulatory effects by
their killing ability.7 Interestingly, a recent study by Ray et al. has
suggested that B cells can induce the proliferation of Treg cells in
the CNS during the development of EAE via the expression of
glucocorticoid-induced TNF receptor ligand rather than IL10.115 In addition, costimulatory molecules are also involved in
Breg-mediated suppression. The synergistic effects of IL-10,
Regulatory B cells in autoimmune diseases
M Yang et al
129
CD80 and CD86 interactions have been demonstrated in both
mouse and humans.10,116 Thus, signaling through CD80 and
CD86 is an additional effector mechanism for immune suppression.
In summary, Breg cells can exert their suppressive effects by
secreting anti-inflammatory cytokines, such as IL-10 and TGFb, and engaging in cell-to-cell contact via activating cell death
markers or costimulatory molecules. Moreover, Breg cells can
not only regulate the balance of T helper cells, but also induce
tolerogenic DC or invariant NKT cells to further influence T
helper cell plasticity.
CONCLUDING REMARKS: BREG CELLS FROM BENCH
TO BEDSIDE
The pathogenic roles of B cells in autoimmune diseases have
been extensively characterized. These roles have been further
confirmed by the efficacy of B-cell depletion in treating autoimmune diseases in both humans and mice. Although B celltargeted therapies are very promising, long-term B-cell depletion may lead to the development of immunopathology. CD20
is expressed on B cells ranging from the pre-B to mature stages,
but not on plasma cells, which suggests that long-lived plasma
cells that produce autoantibodies may not be affected by antiCD20 mAb treatment. Moreover, current approaches to target
B cells cannot distinguish between pathogenic B and Breg cells.
Recently, the anti-BAFF mAb has been shown to be effective in
treating autoimmune diseases such as SLE. Although blocking
BAFF can inhibit the survival and maturation of B cells that
contribute to autoimmune pathogenesis, this approach may
also reduce the number of IL-10-producing Breg cells.
Because low dosages of BAFF induce the generation of Breg
cells, the timing and choice of suitable antibodies for B cell
depletion is critical depending on the pathogenic features of
each autoimmune disease. Increasing evidence indicates that
B-cell depletion results in long-term remission, which is most
likely due to the expansion of Treg and Breg cells. In particular,
recent studies from various mouse models have suggested that
B-cell depletion leads to an increased Breg cell subset in the
reconstituted B-cell population. Thus, it would be of interest to
determine the effects of the adoptive transfer of Breg cells either
alone or in combination with B-cell depletion for the treatment
of autoimmune diseases.
The adoptive transfer of Breg cells is a potential therapeutic
strategy. IL-10-producing Breg cells can continually secrete IL10, whereas the direct administration of IL-10 has a restricted
therapeutic effect due to its short half-life. There is also compelling evidence that transferred Breg cells can migrate to local
inflammatory sites and reside in joint tissue for more than 3
weeks in CIA mice. Hence, Breg cells may exert regulatory
functions in local sites depending on their homing capacity
and the survival signals present in the local environment.
However, there are also some critical questions that need to
be addressed before the clinical application of Breg cells can be
considered. Similar to the therapeutic application of Treg cells,
one of the major challenges is the functional stability of transferred Breg cells in vivo. Thus, further characterization of the
functional features of Breg cells in vivo will provide a more
complete understanding of the roles Breg cells play in autoimmune pathogenesis. The knowledge gained is essential to
facilitate the development of Breg cells as a potential cellular
therapy for human autoimmune diseases.
ACKNOWLEDGEMENTS
The authors dedicate this review manuscript to Dr Dennis G Osmond
at McGill University for his mentorship. Dr Lu is a Croucher Senior
Research Fellow supported by Hong Kong Croucher Foundation. This
work was supported by grants from the National Basic Research
Program of China (Grant No. 2010 CB 529100) and Research Grants
Council of Hong Kong. The authors apologize to those researchers
whose work could not be cited due to space limitations.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Osmond DG. B cell development in the bone marrow. Semin Immunol
1990; 2: 173–180.
Cooper MD. Exploring lymphocyte differentiation pathways. Immunol
Rev 2002; 185: 175–185.
Welner RS, Pelayo R, Kincade PW. Evolving views on the genealogy of
B cells. Nat Rev Immunol 2008; 8: 95–106.
Katz SI, Parker D, Turk JL. B-cell suppression of delayed hypersensitivity
reactions. Nature 1974; 251: 550–551.
Neta R, Salvin SB. Specific suppression of delayed hypersensitivity:
the possible presence of a suppressor B cell in the regulation of
delayed hypersensitivity. J Immunol 1974; 113: 1716–1725.
Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol 2006;
176: 705–710.
Lundy SK. Killer B lymphocytes: the evidence and the potential.
Inflamm Res 2009; 58: 345–357.
Gray D, Gray M. What are regulatory B cells? Eur J Immunol 2010; 40:
2677–2679.
DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells
balance immune responses during inflammation, autoimmunity, and
cancer. Ann NY Acad Sci 2010; 1183: 38–57.
Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA,
Ehrenstein MR et al. CD191CD24hiCD38hi B cells exhibit regulatory
capacity in healthy individuals but are functionally impaired in
systemic Lupus Erythematosus patients. Immunity 2010; 32: 129–
140.
Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et
al. Characterization of a rare IL-10-competent B-cell subset in
humans that parallels mouse regulatory B10 cells. Blood 2011;
117: 530–541.
Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr. Experimental
autoimmune encephalomyelitis induction in genetically B celldeficient mice. J Exp Med 1996; 184: 2271–2278.
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells
regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3:
944–950.
Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK.
Suppressive role of B cells in chronic colitis of T cell receptor alpha
mutant mice. J Exp Med 1997; 186: 1749–1756.
Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK.
Chronic intestinal inflammatory condition generates IL-10producing regulatory B cell subset characterized by CD1d
upregulation. Immunity 2002; 16: 219–230.
O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M. Ly-1 B
(B-1) cells are the main source of B cell-derived interleukin 10. Eur J
Immunol 1992; 22: 711–717.
Spencer NF, Daynes RA. IL-12 directly stimulates expression of IL-10
by CD51 B cells and IL-6 by both CD51 and CD52 B cells: possible
involvement in age-associated cytokine dysregulation. Int Immunol
1997; 9: 745–754.
Cellular & Molecular Immunology
Regulatory B cells in autoimmune diseases
M Yang et al
130
18 Lenert P, Brummel R, Field EH, Ashman RF. TLR-9 activation of
marginal zone B cells in lupus mice regulates immunity through
increased IL-10 production. J Clin Immunol 2005; 25: 29–40.
19 Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A,
Rawlings DJ, Ehrenstein MR et al. Novel suppressive function of
transitional 2 B cells in experimental arthritis. J Immunol 2007;
178: 7868–7878.
20 Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A
regulatory B cell subset with a unique CD1dhiCD51 phenotype controls
T cell-dependent inflammatory responses. Immunity 2008; 28: 639–
650.
21 Rafei M, Hsieh J, Zehntner S, Li M, Forner K, Birman E et al. A
granulocyte-macrophage colony-stimulating factor and interleukin15 fusokine induces a regulatory B cell population with immune
suppressive properties. Nat Med 2009; 15: 1038–1045.
22 Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H et al.
Regulatory B cells are identified by expression of TIM-1 and can be
induced through TIM-1 ligation to promote tolerance in mice. J Clin
Invest 2011; 121: 3645–3656.
23 Qian L, Qian C, Chen Y, Bai Y, Bao Y, Lu L et al. Regulatory dendritic
cells program B cells to differentiate into CD19hiFcgammaIIbhi
regulatory B cells through IFN-beta and CD40L. Blood 2012; 120:
581–591.
24 Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H et al.
Distinct effector cytokine profiles of memory and naive human B cell
subsets and implication in multiple sclerosis. J Immunol 2007; 178:
6092–6099.
25 Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector
cytokines: a role in immune regulation? J Immunol 2004; 172: 3422–
3427.
26 Edwards JC, Cambridge G, Abrahams VM. Do self-perpetuating B
lymphocytes drive human autoimmune disease? Immunology 1999;
97: 188–196.
27 Shimomura Y, Mizoguchi E, Sugimoto K, Kibe R, Benno Y, Mizoguchi
A et al. Regulatory role of B-1 B cells in chronic colitis. Int Immunol
2008; 20: 729–737.
28 Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again:
positive feedback in systemic autoimmune disease. Nat Rev Immunol
2001; 1: 147–153.
29 Rodriguez-Pinto D, Moreno J. B cells can prime naive CD41 T cells in
vivo in the absence of other professional antigen-presenting cells in a
CD1542CD40-dependent manner. Eur J Immunol 2005; 35: 1097–
1105.
30 Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ. B cells drive
early T cell autoimmunity in vivo prior to dendritic cell-mediated
autoantigen presentation. J Immunol 2006; 177: 4481–4487.
31 Fuchs EJ, Matzinger P. B cells turn off virgin but not memory T cells.
Science 1992; 258: 1156–1159.
32 Eynon EE, Parker DC. Small B cells as antigen-presenting cells in the
induction of tolerance to soluble protein antigens. J Exp Med 1992;
175: 131–138.
33 Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM et al.
Reciprocal regulation of polarized cytokine production by effector B
and T cells. Nat Immunol 2000; 1: 475–482.
34 Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell
1996; 85: 307–310.
35 Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010;
376: 1094–1108.
36 Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen
an experimental model of arthritis. J Exp Med 1977; 146: 857–868.
37 Lu L, Osmond DG. Apoptosis and its modulation during B
lymphopoiesis in mouse bone marrow. Immunol Rev 2000; 175:
158–174.
38 Zhang M, Srivastava G, Lu L. The pre-B cell receptor and its function
during B cell development. Cell Mol Immunol 2004; 1: 89–94.
39 Zhang M, Ko KH, Lam QL, Lo CK, Srivastava G, Zheng B et al.
Expression and function of TNF family member B cell-activating
factor in the development of autoimmune arthritis. Int Immunol
2005; 17: 1081–1092.
Cellular & Molecular Immunology
40 Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder
TF. B-lymphocyte contributions to human autoimmune disease.
Immunol Rev 2008; 223: 284–299.
41 Lo CK, Lam QL, Sun L, Wang S, Ko KH, Xu H et al. Natural killer
cell degeneration exacerbates experimental arthritis in mice via
enhanced interleukin-17 production. Arthritis Rheum 2008; 58:
2700–2711.
42 Yanaba K, Hamaguchi Y, Venturi GM, Steeber DA, St Clair EW, Tedder
TF. B cell depletion delays collagen-induced arthritis in mice: arthritis
induction requires synergy between humoral and cell-mediated
immunity. J Immunol 2007; 179: 1369–1380.
43 Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by
interleukin 10-producing B cells. J Exp Med 2003; 197: 489–501.
44 Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice
from autoimmune inflammation by the induction of regulatory B cells.
Proc Natl Acad Sci USA 2007; 104: 14080–14085.
45 Yang M, Deng J, Liu Y, Ko KH, Wang X, Jiao Z et al. IL-10-producing
regulatory B10 cells ameliorate collagen-induced arthritis via
suppressing Th17 cell generation. Am J Pathol 2012; 180: 2375–
2385.
46 Yang M, Sun L, Wang S, Ko KH, Xu H, Zheng BJ et al. Novel function of
B cell-activating factor in the induction of IL-10-producing regulatory
B cells. J Immunol 2010; 184: 3321–3325.
47 Anderson MS, Bluestone JA. The NOD mouse: a model of immune
dysregulation. Annu Rev Immunol 2005; 23: 447–485.
48 Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or
major players in the pathogenesis of type 1 diabetes. Trends
Endocrinol Metab 2006; 17: 128–135.
49 Fox CJ, Danska JS. Independent genetic regulation of T-cell and
antigen-presenting cell participation in autoimmune islet
inflammation. Diabetes 1998; 47: 331–338.
50 Kendall PL, Yu G, Woodward EJ, Thomas JW. Tertiary lymphoid
structures in the pancreas promote selection of B lymphocytes in
autoimmune diabetes. J Immunol 2007; 178: 5643–5651.
51 Henry RA, Kendall PL. CXCL13 blockade disrupts B lymphocyte
organization in tertiary lymphoid structures without altering B cell
receptor bias or preventing diabetes in nonobese diabetic mice. J
Immunol 2010; 185: 1460–1465.
52 Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder
TF. B-lymphocyte contributions to human autoimmune disease.
Immunol Rev 2008; 223: 284–299.
53 Xiu Y, Wong CP, Bouaziz JD, Hamaguchi Y, Wang Y, Pop SM et al. B
lymphocyte depletion by CD20 monoclonal antibody prevents
diabetes in nonobese diabetic mice despite isotype-specific
differences in Fc gamma R effector functions. J Immunol 2008;
180: 2863–2875.
54 Marino E, Villanueva J, Walters S, Liuwantara D, Mackay F, Grey ST.
CD41CD251 T-cells control autoimmunity in the absence of B-cells.
Diabetes 2009; 58: 1568–1577.
55 Smith SH, Tedder TF. Targeting B-cells mitigates autoimmune
diabetes in NOD mice: what is plan B? Diabetes 2009; 58: 1479–
1481.
56 Hussain S, Delovitch TL. Intravenous transfusion of BCR-activated B
cells protects NOD mice from type 1 diabetes in an IL-10-dependent
manner. J Immunol 2007; 179: 7225–7232.
57 Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL.
Lipopolysaccharide-activated B cells down-regulate Th1 immunity
and prevent autoimmune diabetes in nonobese diabetic mice. J
Immunol 2001; 167: 1081–1089.
58 Hussain S, Delovitch TL. Intravenous transfusion of BCR-activated B
cells protects NOD mice from type 1 diabetes in an IL-10-dependent
manner. J Immunol 2007; 179: 7225–7232.
59 Williams KC, Ulvestad E, Hickey WF. Immunology of multiple
sclerosis. Clin Neurosci 1994; 2: 229–245.
60 Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells
regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3:
944–950.
61 Cross AH, Trotter JL, Lyons J. B cells and antibodies in CNS
demyelinating disease. J Neuroimmunol 2001; 112: 1–14.
Regulatory B cells in autoimmune diseases
M Yang et al
131
62 Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of
immune responses and inflammation. Immunol Rev 2008; 224: 201–
214.
63 Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF.
Regulatory B cells inhibit EAE initiation in mice while other B cells
promote disease progression. J Clin Invest 2008; 118: 3420–3430.
64 Ray A, Mann MK, Basu S, Dittel BN. A case for regulatory B cells in
controlling the severity of autoimmune-mediated inflammation in
experimental autoimmune encephalomyelitis and multiple sclerosis.
J Neuroimmunol 2011; 230: 1–9.
65 Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells
(B10 cells) and regulatory T cells have independent roles in
controlling experimental autoimmune encephalomyelitis initiation
and late-phase immunopathogenesis. J Immunol 2010; 185:
2240–2252.
66 Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of
B cell hyperactivity. Nat Immunol 2001; 2: 764–766.
67 Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C et al.
Abnormal germinal center reactions in systemic lupus erythematosus
demonstrated by blockade of CD154–CD40 interactions. J Clin Invest
2003; 112: 1506–1520.
68 Mountz J. Animal models of systemic lupus erythematosus and
Sjogren’s syndrome. Curr Opin Rheumatol 1990; 2: 740–748.
69 Wither JE, Roy V, Brennan LA. Activated B cells express increased
levels of costimulatory molecules in young autoimmune NZB and
(NZB3NZW)F1 mice. Clin Immunol 2000; 94: 51–63.
70 Schuster H, Martin T, Marcellin L, Garaud JC, Pasquali JL, Korganow
AS. Expansion of marginal zone B cells is not sufficient for the
development of renal disease in NZB3NZW F1 mice. Lupus 2002;
11: 277–286.
71 Atencio S, Amano H, Izui S, Kotzin BL. Separation of the New Zealand
Black genetic contribution to lupus from New Zealand Black
determined expansions of marginal zone B and B1a cells. J
Immunol 2004; 172: 4159–4166.
72 Vyse TJ, Halterman RK, Rozzo SJ, Izui S, Kotzin BL. Control of
separate pathogenic autoantibody responses marks MHC gene
contributions to murine lupus. Proc Natl Acad Sci USA 1999; 96:
8098–8103.
73 Chan OT, Madaio MP, Shlomchik MJ. The central and multiple roles of
B cells in lupus pathogenesis. Immunol Rev 1999; 169: 107–121.
74 Haas KM, Watanabe R, Matsushita T, Nakashima H, Ishiura N, Okochi
H et al. Protective and pathogenic roles for B cells during systemic
autoimmunity in NZB/W F1 mice. J Immunol 2010; 184: 4789–
4800.
75 Watanabe R, Ishiura N, Nakashima H, Kuwano Y, Okochi H, Tamaki
K et al. Regulatory B cells (B10 cells) have a suppressive role in
murine lupus: CD19 and B10 cell deficiency exacerbates systemic
autoimmunity. J Immunol 2010; 184: 4801–4809.
76 Blair PA, Chavez-Rueda KA, Evans JG, Shlomchik MJ, Eddaoudi A,
Isenberg DA et al. Selective targeting of B cells with agonistic antiCD40 is an efficacious strategy for the generation of induced
regulatory T2-like B cells and for the suppression of lupus in MRL/
lpr mice. J Immunol 2009; 182: 3492–3502.
77 Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C et al.
Novel human transitional B cell populations revealed by B cell
depletion therapy. J Immunol 2009; 182: 5982–5993.
78 Plebani A, Lougaris V, Soresina A, Meini A, Zunino F, Losi CG et al. A
novel immunodeficiency characterized by the exclusive presence of
transitional B cells unresponsive to CpG. Immunology 2007; 121:
183–188.
79 Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ et al.
Delayed memory B cell recovery in peripheral blood and lymphoid
tissue in systemic lupus erythematosus after B cell depletion
therapy. Arthritis Rheum 2007; 56: 3044–3056.
80 Sanz I, Wei C, Lee FE, Anolik J. Phenotypic and functional
heterogeneity of human memory B cells. Semin Immunol 2008; 20:
67–82.
81 Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory
B-cell marker. Immunol Today 2000; 21: 204–206.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
Bouaziz JD, Calbo S, Maho-Vaillant M, Saussine A, Bagot M,
Bensussan A et al. IL-10 produced by activated human B cells
regulates CD41 T-cell activation in vitro. Eur J Immunol 2010; 40:
2686–2691.
Edwards JC, Cambridge G. Sustained improvement in rheumatoid
arthritis following a protocol designed to deplete B lymphocytes.
Rheumatology (Oxford) 2001; 40: 205–211.
Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A,
Emery P, Close DR et al. Efficacy of B-cell-targeted therapy with
rituximab in patients with rheumatoid arthritis. N Engl J Med
2004; 350: 2572–2581.
Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of peripheral blood B cells after depletion with rituximab
in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54:
613–620.
Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ et al.
B-cell depletion with rituximab in relapsing-remitting multiple
sclerosis. N Engl J Med 2008; 358: 676–688.
Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ et al.
B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis
Rheum 2004; 50: 2580–2589.
Goetz M, Atreya R, Ghalibafian M, Galle PR, Neurath MF. Exacerbation of ulcerative colitis after rituximab salvage therapy.
Inflamm Bowel Dis 2007; 13: 1365–1368.
Dass S, Vital EM, Emery P. Development of psoriasis after B cell
depletion with rituximab. Arthritis Rheum 2007; 56: 2715–2718.
Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E,
Sweenie CH et al. TLR-activated B cells suppress T cell-mediated
autoimmunity. J Immunol 2008; 180: 4763–4773.
Yanaba K, Bouaziz JD, Matsushita T, Tsubata T, Tedder TF. The
development and function of regulatory B cells expressing IL-10
(B10 cells) requires antigen receptor diversity and TLR signals.
J Immunol 2009; 182: 7459–7472.
Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul
AH. Human CD5 promotes B-cell survival through stimulation of
autocrine IL-10 production. Blood 2002; 100: 4537–4543.
Tu W, Lau YL, Zheng J, Liu Y, Chan PL, Mao H et al. Efficient
generation of human alloantigen-specific CD41 regulatory T cells
from naive precursors by CD40-activated B cells. Blood 2008;
112: 2554–2562.
Schiemann B, Gommerman JL, Vora K, Cachero TG, ShulgaMorskaya S, Dobles M et al. An essential role for BAFF in the
normal development of B cells through a BCMA-independent
pathway. Science 2001; 293: 2111–2114.
Schneider P, Takatsuka H, Wilson A, Mackay F, Tardivel A, Lens S
et al. Maturation of marginal zone and follicular B cells requires B
cell activating factor of the tumor necrosis factor family and is
independent of B cell maturation antigen. J Exp Med 2001; 194:
1691–1697.
Walters S, Webster KE, Sutherland A, Gardam S, Groom J, Liuwantara
D et al. Increased CD41Foxp31 T cells in BAFF-transgenic mice
suppress T cell effector responses. J Immunol 2009; 182: 793–801.
Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect
mice from autoimmune inflammation by the induction of regulatory
B cells. Proc Natl Acad Sci USA 2007; 104: 14080–14085.
Lopes-Carvalho T, Kearney JF. Development and selection of
marginal zone B cells. Immunol Rev 2004; 197: 192–205.
Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings
DJ, Ehrenstein MR et al. Novel suppressive function of transitional
2 B cells in experimental arthritis. J Immunol 2007; 178: 7868–7878.
Mauri C. Regulation of immunity and autoimmunity by B cells. Curr
Opin Immunol 2010; 22: 761–767.
Carter NA, Vasconcellos R, Rosser EC, Tulone C, Munoz-Suano A,
Kamanaka M et al. Mice lacking endogenous IL-10-producing
regulatory B cells develop exacerbated disease and present with an
increased frequency of Th1/Th17 but a decrease in regulatory T cells.
J Immunol 2011; 186: 5569–5579.
Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M.
B lymphocytes regulate dendritic cell (DC) function in vivo: increased
Cellular & Molecular Immunology
Regulatory B cells in autoimmune diseases
M Yang et al
132
103
104
105
106
107
108
interleukin 12 production by DCs from B cell-deficient mice
results in T helper cell type 1 deviation. J Exp Med 2000; 192:
475–482.
Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL.
Lipopolysaccharide-activated B cells down-regulate Th1 immunity
and prevent autoimmune diabetes in nonobese diabetic mice.
J Immunol 2001; 167: 1081–1089.
Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC.
B cells activated by lipopolysaccharide, but not by anti-Ig and antiCD40 antibody, induce anergy in CD81 T cells: role of TGF-beta 1.
J Immunol 2003; 170: 5897–5911.
Tedder TF, Matsushit, T. Regulatory B cells that produce IL-10: a
breath of fresh air in allergic airway disease. J Allergy Clin Immunol
2010; 125: 1125–1127.
Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A,
Fallon PG. Regulatory B cells prevent and reverse allergic airway
inflammation via FoxP3-positive T regulatory cells in a murine
model. J Allergy Clin Immunol 2010; 125: 1114–1124.e8.
Carter NA, Rosser EC, Mauri C. IL-10 produced by B cells is crucial
for the suppression of Th17/Th1 responses, induction of Tr1 cells
and reduction of collagen-induced arthritis. Arthritis Res Ther 2012;
14: R32.
Bialecki E, Paget C, Fontaine J, Capron M, Trottein F, Faveeuw C. Role
of marginal zone B lymphocytes in invariant NKT cell activation.
J Immunol 2009; 182: 6105–6113.
Cellular & Molecular Immunology
109 Sonoda KH, Stein-Streilein J. CD1d on antigen-transporting APC and
splenic marginal zone B cells promotes NKT cell-dependent
tolerance. Eur J Immunol 2002; 32: 848–857.
110 Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T.
Invariant Valpha19i T cells regulate autoimmune inflammation. Nat
Immunol 2006; 7: 987–994.
111 Bosma A, Abdel-Gadir A, Isenberg DA, Jury EC, Mauri C. Lipid-antigen
presentation by CD1d1 B cells is essential for the maintenance of
invariant natural killer T cells. Immunity 2012; 36: 477–490.
112 Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of
programmed cell death 1 and its ligands in regulating autoimmunity
and infection. Nat Immunol 2007; 8: 239–245.
113 Alderson MR, Lynch DH. Receptors and ligands that mediate
activation-induced death of T cells. Springer Semin Immunopathol
1998; 19: 289–300.
114 Anel A, Bosque A, Naval J, Pineiro A, Larrad L, Alava MA et al. Apo2L/
TRAIL and immune regulation. Front Biosci 2007; 12: 2074–2084.
115 Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A novel IL-10independent regulatory role for B cells in suppressing autoimmunity
by maintenance of regulatory T cells via GITR ligand. J Immunol
2012; 188: 3188–3198.
116 Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. B cell regulation
of CD41CD251 T regulatory cells and IL-10 via B7 is essential
for recovery from experimental autoimmune encephalomyelitis.
J Immunol 2007; 178: 3447–3456.