Download Modern Physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Orchestrated objective reduction wikipedia , lookup

Bohr model wikipedia , lookup

Bell's theorem wikipedia , lookup

Quantum state wikipedia , lookup

Schrödinger equation wikipedia , lookup

Quantum field theory wikipedia , lookup

Path integral formulation wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Hydrogen atom wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Wave function wikipedia , lookup

Identical particles wikipedia , lookup

Renormalization wikipedia , lookup

Renormalization group wikipedia , lookup

Scalar field theory wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

EPR paradox wikipedia , lookup

Elementary particle wikipedia , lookup

Dirac equation wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Double-slit experiment wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Max Born wikipedia , lookup

T-symmetry wikipedia , lookup

Matter wave wikipedia , lookup

Canonical quantization wikipedia , lookup

History of quantum field theory wikipedia , lookup

Hidden variable theory wikipedia , lookup

Atomic theory wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Wave–particle duality wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
โครงการอบรมอนุภาคฟิสิกส์มูลฐาน
ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มศว
Modern Physics
ผศ.ดร.สุพจน์ มุศิริ
19 เมษายน 2560 10.45-12.00 น. ห้อง 19-401 มศว
Topics
• Contradiction between Classical mechanics
and Electromagnetic theory
• Theory of Relativity
• Quantum mechanics
• Quantum field theory
• Standard model
Plato (pointing up to heavenly things) and Aristotle (gesturing down to Earth).
From Raphael, The School of Athens(1509)
Contradiction between Classical
mechanics and Electromagnetic theory
• Classical Mechanics (1687)
Newton’s Laws
1.Inertial frame of reference (no accelerated frame)
(Galilean’s transformation)
2.
3.

 dPi
i Fi  dt
action = reaction
Equation of motion
Galilean’s transformation
• Physics is the same in all reference
• The equations of motion are the same in
every frame

a 0
• The coordinates of reference have no
acceleration.

 dPi
i Fi  dt

 dPi '
i F'i  dt'
Equations of motion are the same form
http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/ltrans.html
Electrodynamics
(electromagnetic Theory)
• Maxwell equations (in vacuum)(1862)
• Lorentz Transformation
Maxwell equations have the same from
http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/ltrans.html
Michelson-Morley experiment
• No interference pattern detected (1988)
https://www.youtube.com/watch?v=8QUhgYaxWao
Special Relativity
• Einstein’s postulates
• 1. All observers are in inertial frames
• 2.The speed of light is the same, regardless of
the motion of light source and observer.
Special Relativity (1905)
• Time is a component of a displacement vector
in 4 dimensions
x  (ct, x, y, z)

• Time dilation , Space contraction, E  mc
equivalence of mass and energy,
2
,
General Relativity (1915)
• Equivalence Principle
• Inertial mass = Gravitational mass
http://astro.physics.sc.edu/selfpacedunits/Unit57.html
Curved Spacetime
https://www.quora.com/What-is-gravity#!n=12
Einstein’s equation
1
8G
R  g R  g  4 T
2
c
• A simple solution is the Schwarzschild metric (1916)
ds  (1  rH / r)dt  (1  rH / r) dr
2
2
 r d
2
2
rH  2GM/ c
2
1
2
Black Hole
https://en.wikipedia.org/wiki/Black_hole#/media/File:BH_LMC.pn
Problem with Black Holes
g
https://apod.nasa.gov/apod/ap131120.html
Rutherford Atom Model (1911)
https://en.wikipedia.org/wiki/Geiger%E2%80%93Marsden_experiment
Black Body Radiation (1900)
https://en.wikipedia.org/wiki/Black-body_radiation
Max Planck Postulate (1900)
E  nh
34
h  6.62610 J  s
  light frequency
n  1,2,3,...
discrete values of frequency
= Planck constant,
Photoelectric effect (1905)
E  h
proposed
by Einstein
http://physics.tutorvista.com/modern-physics/photoelectric-effect.html
Bohr Atom Model (1913)
Rydberg formula(1888)
explained
Electrons have fixed orbits
around the nucleus
(not continuous orbits)
Wave-particle Duality (1923)
Louis de Broglie purposed
p  h/ 
p = momentum (of particles)
  wave length
https://socratic.org/questions/what-are-some-examples-of-wave-particle-duality
http://quantummechanics.ucsd.edu/ph130a/130_notes/node68.html
Compton Scattering (1923)
Momentum transfer from wave to particle
Bose-Einstein Statistics (1924)
Boson particles
• All particles are identical, indistinguishable.
• All particles can be in the same state
Pauli Exclusion Principle (1924)
Fermi-Dirac Statistics (1926)
Fermi particles
• All particles are identical, indistinguishable.
• No more one particle can be in the same state
Schrödinger wave equation
d
  2

 2m   V   i dt


2

(r , t )  wave packet
Matrix Mechanics (1925)
• Operator  Matrix representation
• [ P , X ] = -ih/2, Quantization
• Observers are part of the systems
Klein-Gordon Equation (1926)
• Wave equation in relativistic 4-dimension for
boson particles
Heisenberg Uncertainty Principle
(1927)

xp 
2
Dirac Equation (1927)
• Dirac studied the relativistic wave equation of
electrons.
• The second quantization including the time
component.
• (Called quantum electrodynamics, later called
quantum field theory)
EPR Paradox (1935)
(Einstein, Boris Podolsky, Nathan Rosen)
iap.tu-darmstadt.de/lqo/research/epr/
Quantum Electrodynamics (1949)
• Quantum path integral
• Feynman Diagrams
• Renormalization
Quark Model (1964)
• Baryon number
• Strangeness
• Isospin of hardons
http://resource2.rockyview.ab.ca/physics30_BU/Unit_D/m8/p30_m8_l04_p3.html
Standard Model
http://www.particleadventure.org/other/history/smt.html
Quantum - Gravity
• Big Bank
• Black Hole
• (Correspondence Conformal Field Theory/
Anti de Spacetime)