* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth
Path integral formulation wikipedia , lookup
Quantum decoherence wikipedia , lookup
Particle in a box wikipedia , lookup
Bra–ket notation wikipedia , lookup
Quantum dot wikipedia , lookup
Quantum entanglement wikipedia , lookup
Quantum field theory wikipedia , lookup
Coherent states wikipedia , lookup
Quantum fiction wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Many-worlds interpretation wikipedia , lookup
Quantum computing wikipedia , lookup
Quantum teleportation wikipedia , lookup
Tight binding wikipedia , lookup
Hydrogen atom wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Renormalization wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum key distribution wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Density matrix wikipedia , lookup
Canonical quantization wikipedia , lookup
Quantum machine learning wikipedia , lookup
Yang–Mills theory wikipedia , lookup
Quantum group wikipedia , lookup
Scalar field theory wikipedia , lookup
Quantum state wikipedia , lookup
History of quantum field theory wikipedia , lookup
Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Jelena Sjakste and Nathalie Vast Ecole Polytechnique, Palaiseau, France Matteo Calandra and Francesco Mauri University Paris 6, France Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 1 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity 1. Ab initio calculation of the thermal conductivity 2. Electron-phonon coupling for electron transport Methods for the calculation of the electron-phonon coupling 3. Wannier method to interpolate electron-phonon 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 2 Materials for the energy: towards a descrip7on ab ini7o of thermoelectricity Thermoelectric effect: • Seebeck effect: a temperature gradient at the boundaries of an open circuit induces a potential difference: => application: generation of electrical power silicium-germanium alloys SiGe • Pelletier effect: reversible production of heat at the junction between two conductors in which there is an electrical current: => application: cooling module Tellure de bismuth Bi2Te3 • Aim at a niche market (no large scale e) • Figure of merit : ZT=S2 σ T/ κ S : Seebeck coefficient (µV/K) σ : electrical onductivity κ : thermal conductivity Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 3 Materials for the energy: towards a descrip7on ab ini7o of thermoelectricity A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011) Figure of Merit ZT ZT=S2 σ T/ κ Electrical conductivity Thermal conductivity (electron + phonon) S Seebeck coefficient In this talk, mainly S et kLattice Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 4 Aim: descrip7on ab ini7o of transport proper7es, of which thermoelectricity Electronic band structure and low energy excitations like phonons are properly described by density functional theory for semiconductors and bismuth Thermoelectric factor of merit ZT=S2 σ T/ κ Need to describe electron-phonon and phonon-phonon interaction without ajustable parameters, based on density functional (perturbation) theory Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 5 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity ➔ 1. Ab initio calculation of the thermal conductivity 2. Electron-phonon and the Seebeck coefficient of silicon Methods for the calculation of the electron-phonon coupling 3. Wannier method to interpolate electron-phonon 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 6 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity ➔ 1. Ab initio calculation of the thermal conductivity 2. Electron-phonon and the Seebeck coefficient of silicon Methods for the calculation of the electron-phonon coupling 3. Wannier method to interpolate electron-phonon 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 7 Boltzmann transport equa7on (BTE) for phonons Need the phonon distribution function nq Scattering probabilities of a phonon by the phonon-phonon interaction ph-ph Bords de l’échantillon Transport coefficient: Lattice thermal conductivity κL obtained Supplementary material: BTE solution – 1. by Fourier’s law Phonon transport proportional velocitycq Température energyħωq gradient Distribution phonon nq Phonon scattering probabilities are computed ab initio (Monday we have listened to Lorenzo Paulatto’s talk about D3) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 8 Boltzmann transport equa7on for phonons BTE for phonons: on obtains the phonon distribution function nq ph-ph Sample boundaries Phonon-phonon and phonon-interface scattering … or phonon decay by the phonon-phononinteraction (anharmonicity) Phonon creation… Scattering by sample borders Phonon scattering probabilities are computed ab initio (Monday we have listened to Lorenzo Paulatto’s talk about D3) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 9 LaEce thermal conduc7vity in bismuth Trigonal crystal of bismuth : binary direction (perpendicular to the trigonal axis) Black: Our ab initio calculation Bi Ph-ph scattering Normal + Umklapp Scattering By sample border 100-nm 50-nm Umklapp 1/T Green: measurements Issi, Aust. J. Physics (1979) Red: Calculations (USA) Lee, Esfarjani, Mendoza, Dresselhaus, Gang Chen, Phys. Rev. B (2014) Effet of the nanostructuring: Decrease of thermal Conductivity by 50% in a 100-nmnanostructure at 100 K Maksim MARKOV PhD, Ecole Polytechnique Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 10 Phonons scaHering by phonon-‐phonon coupling (anharmonicity) The three acoustic phonons in bismuth The longitudinal LA phonon has a short lifetime (>10 ps) Forte (high scattering probability phonon-phonon interaction) Phonon frequency (cm-1) Bi Green, red, blue colors: scattering probability by phonon-phonon interaction (one color per phonon) Maksim MARKOV PhD, Ecole Polytechnique High symmetry direction in the Brillouin zone Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 11 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity 1. Ab initio calculation of the thermal conductivity ➔ 2. Electron-phonon coupling for electronic transport Methods for the calculation of the electron-phonon coupling 3. Wannier method to interpolate electron-phonon 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 12 Input data for Boltzmann transport equa7on (BTE) for electrons Besides electronic energy εk and velocity vk , need sca3ering probabili6es of electrons by phonons through the el-‐ph interac6on calculated ab ini&o Want the electron distribution function fk e BTE for electrons BTE linearized: gk Transport coefficients: Electrical conductivity Seebeck coefficient S Need an efficient method to compute electron-phonon coupling matrix elements Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 13 Seebeck coefficient of n-‐doped silicon (low doping) BTE + ab initio calculations matrix elements of the e-p interaction Need vk Good agreement by coupling BTE to DFT G. Kané, M. Markov, J. Sjakste, F. Fugallo, L. Paullatto, M. Lazzeri, F. Mauri and N. Vast (to be submitted) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 14 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity 1. Ab initio calculation of the thermal conductivity 2. Electron-phonon coupling for electron transport Methods for the calculation of the electron-phonon coupling ➔ 3. Wannier method to interpolate electron-phonon 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 15 Theore7cal framework to compute electron-‐phonon coupling 1) Density Functional Theory &(H 0 − ε 0 ) ψ 0 = 0 ( 0 ' ρ0 = ψ ψ0 ( 0 0 0 v = v ( ρ ) ) eff eff ε n,k , ψ n,k ,v eff Hohenberg, Kohn, Phys. Rev. 1964; Kohn, Sham, ibid 1965" v eff0 = v eff0 + Δv, ρ = ρ 0 + Δρ ((H € − ε ) Δψ = −P Δv ψ c eff * ) Δρ = ψ Δψ + Δψ ψ *€€ λ λ λ Δv = Δv (u eff ,q eff ,q q ,Δρ ) + 2) Density Functional Perturbation Theory ω ,Δv λ q € λ eff ,q 0 Baroni, de Gironcoli, Dal Corso, Giannozzi, " Rev. Mod. Phys. 2001" € 0 0 0 0 3) Matrix elements for electron-phonon coupling ψ n,k Δv λ eff ,q elphon.f90 ψ n,k +q € Mauri, Zakharov, de Gironcoli, S. Louie PRL 1996" Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 1616 CALC_ISDP op7on Electron-phonon calculation in semiconductors. Inside Iurii’s dropbox repository The CALC_ISDP option allows the direct calculation of one single deformation potential Dk k+q where k is the wave vector of the initial electronic state and q is the phonon wave vector. CALC_ISDP is an option of the electron-phonon calculation. It consists - in a subroutine calc_isdp.f90 called in ph.x, coming from elphsum_simple.f90 with no call to symdyn_munu - in several modications through the pw.x and ph.x codes. The calc isdp subroutine is called in the ph.x program when the CALC_ISDP is set to true in the inputph namelist for electron-phonon calculation. The ph.x/calc isdp call must come after an scf (pw.x) , then a PHonon (ph.x) and a then non-scf calculation with the flag calc isdp set to true (pw.x). Jelena Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Matteo CALANDRA, MAURI Sjakste, Nathalie Vast andNathalie ValeriyVAST, Tyuterev, Phys. Rev.Francesco Lett. 99, 236405 (2007). 17 Electron-‐phonon scaHering 7me 3) Matrix elements for el-ph coupling : λ ψ n,k Δv eff ,q ψ n,k +q calc_isdp.f90 4) TAU-ISDP programme tau_isdp.f90 Probability of the transition from |n;k> to |n’;k+q> 2 € 2π n,n' Pk,k +q = ! n,k Δv eff n',k + q δ (ε nk − ε n',k +q ) Integration of all possible final valleys 9 Electron-phonon scattering time ! " Γn",""k" = " <"τn" ,""k" >" Energy eV € d 3q n,n ' 1 Γn ,k (T ) = 2∑ ∫ 3 Pk ,k + q ( N q (ωq , T ) + ) 8π 2 8 n' Nq – Bose-Einstein phonon distribution Ψ n,k+q Ψ n,k D 7 6 X1 L1 X3 GaAs Γ1 Sjakste, Vast, Tyuterev, PRL (2007) Γ 15 5 meeting : linear Advanced Quantum ESPRESSO developer’s response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 18 TAU_ISDP programme Inside Iurii’s dropbox repository The tau_isdp program contains the calculation of the electron-phonon scattering rate/time for a given initial electronic state according to the Fermi Golden Rule. Use: the tau_isdp can be used independently, after a set of direct calculations performed with the calc_isdp, or after a Wannier interpolation of the electron-phonon matrix elements. If compiled inside the Quantum ESPRESSO package it could make use of refold_q_ws.f90 subroutine in D3Q subroutine and w0gauss.f90 subroutine in PW. Jelena Sjakste, Nathalie Vast and Valeriy Tyuterev, Phys. Rev. Lett. 99, 236405 (2007). Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 19 Wannier method to interpolate electron-‐phonon matrix elements (1) Maximally localized Wannier functions (MLWF) are defined as: QE Bloch functions The matrix U is obtained at the end of the Wannierization procedure. The converse transformation is The deformation potential is defined as Fourier transform of the phonon displacement, s=(A,α) Bloch-function periodic-part Nkw= number of k-points used in the wannierization. Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 20 Wannier method to interpolate electron-‐phonon matrix elements (2) The calculation of is very expensive as it requires one ph.x calculation for each q. Thus obtaining d on ultradense phonon and electron momentum grids brute force is difficult (impossible). The solution is to use maximally localized Wannier function. We first calculate dsmn (k+q,k) on a coarse k and q point grid with ph.x (we assume Nq=Nkw) Then we write the deformation potential in the Wannier function basis using MLWF where the R are on a supercell compatible with Nkw and translational invariance has been used. Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 21 Wannier method to interpolate electron-‐phonon matrix elements (3) s If dmn (R,RL) is localized, then we can go back in k, q space where now q and k are any point (and not necessary points of the initial coarse grid). The localization of the deformation potential in real space is the key property. It depends on: 1. The localization of Wannier functions (for k vectors) 2. How much the force constants are short range (for q vectors) In metals, despite the presence of Kohn anomalies, the method works very well. In polar insulators special care is needed to treat the q->0 limit. Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 22 How it works in prac7ce (1) 1. Obtain matrices U and functions ψkn on a Nkw k-point grid from Wannier90 2. Calculate the dynamical matrices and derivatives of VSCF on the Nkw q-point grid reduced by symmetries (ph.x) 3. Use symmetries to obtain the derivatives of VSCF on the full Nkw q-point (dfile_star.f90 already included in ph.x – used also by D3 L. Paulatto) 4. Calculate dmns(k+q,k) on for k in the full Nkw k-point and q in the full Nkw q-point grid using the same wavefunctions saved in step 1: this implies assuming that both k and k+q belongs to the Nkw grid a part from trivial refoldings) ( ph.x, routine ep_matrix_element_wannier.f90 included in Phonon/PH) 5. Obtain first dmns(R,RL) and then dmns(k+q,k) at any k and q by using U from step 1 and dmns(k+q,k) from step 4 (independent code epiq.f90/epik.f90 , not yet included in qe-forge) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 23 How it works in prac7ce (2) Note that in Step 4 : the use of the same wavefunction used in step 1 is crucial as any spurious phase (e.g. random phase from the diagonalization procedure) kills the localization of Wannier functions and of dmns(R,RL) Step 1 Wannier90 package Step 2 ph.x Steps 3 and 4 are already included in SVN version of ph.x Step 3 dfile_star.f90 already included in ph.x Step 4 ph.x, routine ep_matrix_element_wannier.f90 They will be probably extracted into a separate program soon. Step 5: independent code epiq.f90/epik.f90 will be included soon M. Calandra, G. Profeta, and F. Mauri, PRB 82, 165111 (2010) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 24 Electron-‐phonon coupling in metal : phonon linewidth, λ Adiabatic and nonadiabatic phonon idspersion In a Wannier approach M. Calandra, G. Profeta, and F. Mauri, PRB 82, 165111 (2010) High pressure hydrogen sulfide from first-principles: a strongly anharmonic phonon-mediated superconductor I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, PRL 114, 157004 (2015) Quantum hydrogen-bond symmetrization and high-temperature superconductivity in hydrogen sulfide, I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, arXiv:1512.02933, to Appear in Nature Universal increase in the superconducting critical temperature of two-dimensional semiconductors at low doping by the electron-electron interaction M. Calandra, P. Zoccante, and F. Mauri, PRL 114, 077001 (2015) Intercalant and intermolecular phonon assisted superconductivity in K-doped picene M. Casula, M. Calandra, G. Profeta, and F. Mauri, PRL 107, 137006 (2011) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 25 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches Outline : Materials for the energy: towards a description ab initio of thermoelectricity 1. Ab initio calculation of the thermal conductivity 2. Electron-phonon coupling for electron transport Methods for the calculation of the electron-phonon coupling 3. Extension to polar-optical coupling ➔ 4. Extension to polar-optical coupling Keywords: high performance computing, atomic scale, density functional theory, Boltzmann’s transport equation Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 26 Electron-‐phonon coupling in a polar materials: troubles with Fröhlich’s interac7on • Need to interpolate DFT matrix elements: Ψn,k ΔW qλ Ψn',k +q Vast, Sjakste, Kane, Trinite, Book Chapter, Simulation of transport in nanodevices, ed. Dollfus/Triozon (exp. 2016) Sjakste, Timrov, Gava, Mingo, Vast, Annual Reviews of Heat Transfer 17, 333 (2014) • But LO phonon generates macroscopic electric field Matrix element (eV/A) € GaAs Non-local part from Vogl’s exact theory 4π ie q Z (α )eλ (αq̂) 2 µ ∑ µλ ε∞ q α Vogl, PRB 13 (1976) The Fröhlich coupling is not localised in real space! Usual methods fail ! M. Calandra, G. Profeta, F. Mauri, PRB 82, 165111 (2010) F. Giustino, M.L. Cohen, S.G. Louie, PRB 76, 165108 (2007) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 27 Electron-‐phonon coupling for polar materials Reciprocal space Bloch functions Initial grid Ψn,k ΔW qλ Ψn',k + q - Non-local part GaAs Real space Maximally localized Wannier functions € Interpolation on dense grid Reciprocal space Bloch functions Dense grid Ψn,k ΔW qλ Ψn',k + q + Non-local part More accurate description of the electron-phonon matrix elements J. Sjakste, N. Vast, M. Calandra, F. Mauri, PRB 92, 054307 (2015) Verdi and Giustino, PRL 115, 176401 (2015) €Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 28 Time-‐, angle-‐ and energy-‐ resolved spectroscopy in photoexcited GaAs J. Kanasaki, H. Tanimura, K. Tanimura, PRL 113, 237401 (2014) H. Tanimura, J. Kanasaki, K. Tanimura, J. Sjakste, N. Vast, M. Calandra, F. Mauri, submitted (2015) GaAs Pump: 2.3 eV Probe: at 0.75 –to 0.55 eV Above Conduction Band minimum Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 29 Dynamics of hot electrons en7rely governed by electron-‐phonon scaHering Solid line: our interpolation of matrix elements GaAs n,n', λ k,k ± q P 2π = Ψn,k ΔW qλ Ψn',k ± q ! ! Relaxation time (ps) τ nk = € 2 δ (ε n',k ± q − ε n,k ∓ !ω qλ ) Γnk Symbols: relaxation times from expt. € « Slow » time: energy relaxation all phonons are involved « Fast » time: momentum relaxation Wavepacket spreads over Brillouin zone Tanimura, Kanasaki, Tanimura, Sjakste, Vast, Calandra, Mauri, submitted (2015) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 30 What can the code epiq calculate ? 1. Electron-phonon coupling in metals (phonon linewidth , λ) 2. Electron-phonon coupling in polar and non polar semiconductors 3. Lifetimes of excited states in semiconductors Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 31 Life7me of « excited states » due to electron-‐phonon coupling GaAs BC Band structure and broadening BV Broadening due to el-ph BC: conduction band BC BV: valence band BV DOS of final states restricted by ε- and kconservation rules Minor role of matrix elements BC BV BC Proportion of Fröhlich interaction BV Non-vanishing Fröhlich Interaction through BZ J. Sjakste, N. Vast, M. Calandra, F. Mauri, PRB 92, 054307 (2015) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 32 What can the code epiq calculate ? 1. Electron-phonon coupling in metals (phonon linewidth , λ) 2. Electron-phonon coupling in polar and non polar semiconductors 3. Lifetimes of excited states in semiconductors 4. Phonon frequencies in metals with ultradense k- and q-points grids but no Acoustic Sum Rule (ASR) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 33 Phonon frequencies on ultradense grids (1) MgB2 Phonon dispersion s Substantial enhancement of the in-plane E2g Kohn anomaly related to the inter-cylinder nesting Kortus et al. PRL 86, 4656 (2001) M. Calandra, G. Profeta and F. Mauri, PRB 82, 165111 (2010) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI Phonon frequencies on ultradense grids (2) MgB2 Phonon dispersion Substantial enhancement of the in-plane E2g Kohn anomaly related to the inter-cylinder nesting A Kohn-anomaly appears on E2g and B1g branches along ΓA s Kortus et al. PRL 86, 4656 (2001) M. Calandra, G. Profeta and F. Mauri, PRB 82, 165111 (2010) Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI What can the code epiq calculate ? 1. Electron-phonon coupling in polar and non polar semiconductors 2. Lifetimes of excited states in semiconductors 3. Phonon frequencies in metals with ultradense k and q points grids (no AS rule yet) 4. Electron-phonon coupling in metals (phonon linewidth , λ) 5. Double resonant Raman (Herziger et al., PRL 113,187401 (2014) ) 6. Multiband Migdal Eliashberg Part of these developments will be public very soon Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 36 Elec-‐ph. and ph.-‐ph. coupling in semiconductors and bismuth, theore7cal approaches J.Sjakste, G. Kane, M. Markov, G. Fugallo, N. Vast Univ. Paris 6 (F. Mauri, M. Lazzeri, M. Calandra) Maksim Markov Gaston Kané Jelena Sjaskte Advanced Quantum ESPRESSO developer’s meeting : linear response, TRIESTE 2016 Jelena SJAKSTE, Nathalie VAST, Matteo CALANDRA, Francesco MAURI 37