Download Word Work File L_3.tmp - FacStaff Home Page for CBU

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Helitron (biology) wikipedia , lookup

DNA nanotechnology wikipedia , lookup

Transcript
THE STRUCTURE AND FUNCTION OF
MACROMOLECULES.
Chapter 5.
Small molecules have unique properties arising from the orderly arrangement of its atoms.
The major groups of biologically important molecules are carbohydrates, lipids, proteins and
nucleic acids.
Usually they are very large containing thousands of atoms: macromolecules.
Macromolecules are giant molecules formed by the union (bonding) of smaller molecules.
They consist of hundreds of thousands of atoms. This is another level of biological organization.
POLYMERS
Most macromolecules are polymers. These are long chains formed by linking small organic
molecules called monomers.
Polymerization is the linking together of monomers to form polymers. It takes place through
dehydration reactions.
1. Condensation is the chemical process by which monomers are linked together.


A molecule of water is removed: dehydration synthesis.
Each of the two monomers forming the bond contributes one part of the water molecule,
the hydroxyl group [–OH] and the hydrogen [–H].
2. Hydrolysis is the chemical process by which polymers can be degraded into monomers.



A molecule of water is broken into H and OH and added to the broken bonds.
Each molecular product receives a hydroxyl group or a hydrogen.
Hydrolysis is the reverse of condensation (dehydration synthesis).
A infinite number of polymers can be built from a limited number of monomers.
Each class of polymer (e. g. lipids, proteins, etc.) is formed from a specific set of monomers.

Proteins (polymer) are made of thousands of amino acid units (monomer).
The uniqueness of organisms depends on the unique arrangement of the same monomers.
Macromolecules are constructed from only 40 to 50 common monomers and some others that
occur rarely.
CARBOHYDRATES
Carbohydrates include sugars and their polymers.
Carbohydrates contain carbon hydrogen and oxygen in a ratio of 1:2:1 or [CH2O]n.
Monosaccharides are simple sugars.





They serve as sources of energy and carbon atoms.
Normally containing 3 to 7 carbon atoms.
A hydroxyl group is bonded to each carbon except one.
That carbon is double bonded to an oxygen atom forming a carbonyl group; depending
on the position of the carbonyl group, the sugar is an aldehyde (aldose sugars) or a
ketone (ketose sugars).
Glucose is an aldose and fructose a ketose. Most sugar names end in -ose.
Dissaccharides are made of two monosaccharide units.



Two monosaccharide rings joined by a glycosidic linkage, a covalent bond formed
between two monosaccharides by a dehydration reactions.
They can be split by the addition of water, hydrolyzed.
Maltose is formed by linking two glucose monomers and sucrose by linking one glucose
and one fructose. Glucose linked to galactose produces lactose, the sugar in milk.
Polysaccharides.



Repeating chains of monosaccharides.
Single long chain or branched chain.
They function either as energy storage material or as building blocks of cellular
structures.
Some important polysaccharides:

Starch is made entirely of glucose and is the main storage carbohydrate of plants:  1-4
linkages; this arrangement makes the starch molecule helical.
 Amylose is the simplest form of starch; it is unbranched and helical.
 Amylopectin is a branched form with 1-6 linkages at the branch point.
Source: http://www.lsbu.ac.uk/water/hysta.html

Glycogen is made of glucose and is the storage carbohydrate of animals:  1-4
linkages.
 The glycogen molecule contains more branches than the amylopectin molecules.
 It is stored mostly in the liver and muscles.

Cellulose is also made of glucose monomers and is a structural carbohydrate:  1-4
linkages.
 The angles of the bonds of the  1-4 linkages make every other glucose monomer
"upside down."
 Cellulose molecules are straight and never branched.
 Its hydroxyl groups are free to form hydrogen bonds with those of adjacent
molecules.
 In plant cell walls, cellulose molecules form minute cables called microfibrils.
 Very few organisms can digest cellulose. In most cases cellulose passes through the
digestive tract and is eliminated in the feces.

Chitin is a polysaccharide used by arthropods in building the exoskeleton.
 The chitin monomer is a glucose-like molecule called N-acetylglucosamine in which
an OH group is replaced by a chain of R–NHCOCH3 group.
 When it becomes encrusted with calcium carbonate, it becomes hard.
 Chitin is also found in the cell wall of fungi, insects, spiders, crustaceans and other
animals.
Some modified and complex carbohydrates have special roles:


Galactosamine is a structural carbohydrate present in cartilage; it is amino derivative of
galactose, an enantiomer of glucose.
Glycoproteins and glycolipids are commonly found on the outer surface of cells.
These are proteins with polysaccharide or fatty acid branches attached.
LIPIDS
Lipids are diverse group of compounds made mostly of carbon and hydrogen, with a few oxygen
atoms found mainly in functional groups.





Hydrophobic molecules: water repellent.
They are made mostly of hydrocarbons.
Soluble in nonpolar solvents.
For energy storage, hormones, structure of cell membrane.
Neutral fats, phospholipids, steroids, waxes, carotenoids and other pigments.
Storage lipids
Fats are large molecules made from smaller molecules linked together by dehydration
reactions.
Neutral fats are made of glycerol and three fatty acids.
Glycerol is a 3-carbon alcohol.
Fatty acids are long unbranched hydrocarbon chain with a carboxyl group (COOH) at one end.
The carbon skeleton of the fatty acid usually has 16 to 18 carbon atoms.
At one end there is a carboxyl group that gives these molecules the name of fatty acids.
The nonpolar C–H is the reason for the hydrophobic properties of the hydrocarbons.
When a fatty acid combines with a glycerol molecule a molecule of water is removed and an
ester linkage is formed.
The fatty acids in a fat molecule may or may not be the same.
Triglyceride (triacylglycerol) is a synonym for fat.
Saturated fats have a maximum number of hydrogen atoms in the chain, and are usually are
solid at room temperature, e. g. lard, blubber and butter.
Unsaturated fats have double bonds between some of the carbon atoms and have less than
the maximum number of hydrogen atoms.
Unsaturated fats have bends in the chains that prevent the aligning with the adjacent chain and
prevent the van der Waals forces from acting. They are usually liquid at room temperature, e. g.
vegetable oils.
Fats store at least twice as much energy as starch.
Humans and mammals store their fat in the adipose tissue of the body. This tissue serves as a
reservoir of energy, as an insulator, and cushions internal organs.
Structural lipids
Phospholipids are major components of cell membranes.
Phospholipids differ from fats in having only two fatty acids instead of three and a phosphate
group with a small additional molecule attached to the third carbon of glycerol instead of a
hydroxyl group.
The hydrocarbon chains are hydrophobic but the phosphate group and its attached organic
molecule (e. g. choline, lecithin) are hydrophilic (affinity for water).

Amphipathic molecule.
Phospholipids form micelles and bilayers or double layers in aqueous solutions.

A micelle is a droplet formed by phospholipid molecules arranged with their hydrophilic
heads facing out toward the water medium, and their hydrophobic tails facing inward
away from the water.

Bilayers are double membranes. In a bilayer, the heads face toward the aqueous
solution and the tails point to the interior of the membrane.
Cholesterol is a steroid component of cell membranes of animals.
Waxes are complex lipids made of many fatty acids linked to a long-chain alcohol.


Hydrophobic
Coating of fruits and leaves, beeswax, ear wax, some insects.
Functional fats
Steroids have their carbon skeleton bent into four fused rings with a carbon chain attached to
one of the rings.
Three rings have six carbon atoms and one has five carbons.
There are different functional groups attached to the rings.

The length and structure of the chain distinguishes one steroid from another.
“All steroids have the same fundamental structure of four (tetracyclic) carbon rings called the
steroid backbone or steroid nucleus. The addition of different chemical groups at different
places on this backbone leads to the formation of many different steroidal compounds, including
the sex hormones progesterone and testosterone, the anti-inflammatory steroid cortisone, and
the cardiac steroids digoxin and digitoxin.” http://waynesword.palomar.edu/plsept96.htm#foam
Some steroids function as hormones (e. g. sex hormones), chemical messengers in the body of
animals.
The function of steroids depends on the functional groups attached to their carbon rings.
Cholesterol is a structural component of cell membranes but it is also a precursor from which
other steroids are made.
Carotenoids are plant pigments involved in photosynthesis. They are insoluble in water.
PROTEINS
Proteins make more than 50% of the dry weight of most cells.
Proteins perform a variety of functions in the body: structural support, transport of other
molecules, body defense, signaling between cells, chemical catalysts called enzymes, storage,
and other functions.
Proteins vary in their structure so they can perform specific functions.
Proteins are large complex molecules, polymers of amino acids, joined by peptide bonds. These
polymers are called polypeptides.
A protein is made one or more polypeptides folded and coiled into a specific conformation.







20 amino acids (AA) involved.
Carbon, hydrogen, oxygen, nitrogen and usually sulfur.
AA contain an amino group, NH2, at one end and a carboxyl group, COOH, at the
other end, both attached to an alpha carbon (α).
AAs have a variable side chain (R group) that determines the specific physical and
chemical properties of each AA.
Except for glycine all other 19 amino acids used to synthesize proteins can exist as L- or
D- enantiomorphs. Only L- amino acids are used for protein synthesis.
Bacteria and plants can synthesize all AA. There are a few exceptions.
Animals synthesize some but not all AA. Essential AA must be obtained from the diet.
Summarizing the four variable components of an amino acid: alpha carbon, amino group,
carboxyl group and the side chain.
AAs are usually ionized in the cell. See Figure 5.17 on page 79 of your textbook.
The properties of the AA depend on the side chain.





Non-polar side chain makes the AA hydrophobic.
Polar side chain makes the AA hydrophilic.
Negative side chain makes the AA acidic. This is due to the presence of a carboxyl group in
the side chain that is usually dissociated at the cellular pH.
Positive side chain makes the AA basic.
Both acidic and basic side chains are hydrophilic.
More: http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/Enantiomers.html
Peptide bond
Two AA combine to form a dipeptide; three form a tripeptide; many form a polypeptide.


The amino end of one AA joins the carboxyl end of the adjacent AA.
An enzyme catalyzes the dehydration reaction. The resulting covalent bond is called a
peptide bond.
When this process is repeated thousands of times the resulting molecule is called a
polypeptide.
Polypeptide chain may contain thousands of AA.
Polypeptide and protein are not synonymous.
Proteins consist of one or more polypeptide chains twisted into a unique shape.
The function of the protein depends on its ability to bind to another molecule.
Proteins have four levels of organization.

Primary structure: a unique sequence of AA for each polypeptide chain.
 The sequence of AA is determined by inherited genetic information.
 All proteins of a kind have the same AA sequence, e. g. all lysozyme molecules.
 A change in the sequence of AA is called a mutation.

Secondary structure results from hydrogen bonds between H and O atoms of the
backbone of the chain resulting in coiling (α helix) or folding (β pleated sheet). The side
chains atoms are not involved in the secondary structure of polypeptides.

Tertiary structure is the overall shape of the polypeptide due to the interaction among the
side chains, R groups.
 Hydrophobic interactions between side chains usually end up in the interior of the
twisted polypeptide chain while hydrophilic side chains are exposed to the aqueous
solutions.
 Disulfide bridges are formed between the two sulfhydril groups of the AA cysteine.
This strong bonds.
 Van der Waals forces, ionic bonds and hydrogen bonds also contribute to the tertiary
structure of the polypeptide chain.

Quaternary structure is the relationship among several polypeptide chains of a protein.
These polypeptide chains become aggregated into a functional protein.
 Fibrous proteins have several polypeptides coiled or aligned into rope-like structures.
 Globular proteins are roughly spherical or compact.
The shape of the proteins determines its function.
Protein conformation depends also on the physical and chemical conditions of the environment
like salt concentration, temperature, pH, etc.
Changes in any of these conditions can cause the protein to unravel and become denatured.
Proteins become denatured become biologically inactive.
Scientists do not know little about the principles of protein folding.
Most proteins probably go through several intermediate stages before achieving its active
conformation.
Chaperonins or chaperone proteins help in the proper folding of proteins but do not specify the
conformation. They protect the polypeptide from denaturing influences in the cytoplasm.
X-ray crystallography is a method used in determining the three dimensional structure of a
protein.
NUCLEIC ACIDS
Encoded in the structure of DNA is the information that programs all the cell's activities.
The DNA molecule contains hundreds of thousands of genes.
Genes determine the polymer sequence of AA in a protein.
Proteins are needed to implement what is in the genetic code, in the DNA.
Two classes: DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).


Transmit hereditary information.
Determine what the cells manufacture.
Nucleic acids are polymers that serve blueprints of proteins.
DNA is the genetic material that organisms inherit from their parents.
Flow of genetic information within the cell.
DNA → mRNA → protein
DNA is located in the nucleus of the cell.
Protein synthesis takes place in organelles called ribosomes found in the cytoplasm of the cell.
Messenger RNA, mRNA, is synthesized in the nucleus following the DNA blueprint and then
moves to the ribosomes with the message of about the protein to be synthesized.
Structure of nucleic acids.
Nucleic acids are polymers of nucleotides. They are called polynucleotides.
A nucleotide is made of three parts: an organic molecule called a nitrogenous base, a pentose
sugar (5-C sugar), and a phosphate group.
There are two groups of nitrogenous bases:
Pyrimidines:




6 member ring of carbon and nitrogen atoms.
Nitrogen atoms tend to take H+ from water and from there the name "nitrogenous base"
is derived.
Cytosine (C), thymine (T) and uracil (U).
Cytosine is found in both DNA and RNA; thymine is found only in DNA; uracil found only
in RNA.
Purines:




Made of a six-member ring fused to a five-member ring.
Nitrogen and carbon make the rings.
Adenine (A) and guanine (G).
Both are found in DNA and RNA
Pentose sugars:



Ribose is found in RNA and deoxyribose in DNA.
They differ in the absence of an oxygen atom on the 2-carbon of deoxyribose molecules.
Deoxy- = without an oxygen.
The combination of a sugar with a nitrogenous base forms a nucleoside (with an S and not a
T.)
The addition of a phosphate group to a nucleoside makes a nucleotide also known as a
nucleoside monophosphate.
Nucleotides form polymers with the formation of a covalent bond between the phosphate on one
nucleotide and the sugar of the next.
These covalent bond are of a kind called phosphodiester bond.
The resulting polymer forms the backbone that will make the DNA or RNA molecule. The
nitrogenous bases stick out to the side of the backbone.
The pentose (sugar) in RNA is ribose, and in DNA is deoxyribose.


The carbons in these sugars are numbered and a prime (‘) after them, e.g. the second
carbon is written as 2’, two prime.
The carbon that stick up from the ring is the 5’ carbon.
The phosphodiester linkages occur between the –OH group on the 3’ carbon of one nucleotide
and the phosphate on the 5’ of the next.
The two free ends of the backbone chain are different from each other. One end has a
phosphate attached to a 5’ carbon and the other has a hydroxyl attached to 3’ carbon. We refer
to these as the 5’ and the 3’ ends of the strand.
Only certain bases are compatible to establish the required hydrogen bonds. In other words, the
two strands of a double helix are complementary:


Adenine always pairs with thymine, a purine with a pyrimidine.
Guanine always pairs with cytosine.
If a strands has the sequence ATGGCAACC, its complementary strand will be TACCGTTGG.
The complementarity of the strands makes it possible to make an accurate copy of each of the
two strands and, therefore, of the genes.
The linear sequence of bases is passed from parents to offspring. Closely related individuals
have greater similarity in their DNA and proteins than unrelated individuals.
Closely related species will share a greater portion of their DNA than distantly related species.
The sequence of nucleotides in these polymers is limitless and so is the number of nitrogenous
bases forming the side branches.
Genes are made of hundreds of nucleotides.
Double helix and inheritance.
The RNA molecule consists of a single polynucleotide chain.
The DNA molecule is made of two polynucleotide chains or strands forming a double helix.
The two sugar-phosphate backbones run in opposite 5’→3’ directions from each other, an
arrangement referred to as antiparallel.
5’-ATGGCAACC-3’
3’-TACCGTTGG-5’
The strands are held together by hydrogen bonds and van der Waals forces established
between facing nitrogenous bases.
Summary of chapter 5 in this site: http://www.mansfield.ohio-state.edu/~sabedon/campbl05.htm
1. Macromolecules of life: carbohydrates, lipids, proteins and nucleic acids
2. Polymers and polymerization
 Monomers
 Dehydration reactions
 Condensation reactions
 Hydrolysis
3. Carbohydrates
 Structure - carbon hydrogen and oxygen in a ratio of 1:2:1 or [CH2O]n.
 Include sugars and polymers of sugars
 Monosaccharides – aldoses and ketoses; ring form in aqueous solutions.
 Polysaccharides – glycosidic linkage
 Storage polysaccharides – starch (amylose, amylopectin) and glycogen
 Structural polysaccharides – cellulose and chitin
4. Lipids
 Structure - carbon and hydrogen, with a few oxygen atoms found mainly in functional
groups.
 Hydrophobic
 Fat structure: glycerol, ester linkage, fatty acids
 Fatty acid structure – hydrocarbon, carboxyl group; saturated, unsaturated
 Phospholipids – hydrophilic head, hydrophobic tail
 Steroids – skeleton of four fused rings
5. Proteins
 Structure – polymer of amino acids
 Peptide bond – learn the structure of the peptide bond and it is formed
 Polypeptides
 Conformation determines how it words - enzymes
 Four levels of protein structure
o Primary: unique sequence of AA
o Secondary: repeated portions of coils and folds; alpha helix, pleated sheets
o Tertiary: formed by the interactions of side chains of the AA that causes three
dimensional structures; ionic and H bonds, disulfide bridges, van der
Waals interactions.
o Quaternary: overall structure of the protein due to the aggregation of several
polypeptide subunits.
 Folding and denaturing of proteins
6. Nucleic Acids
 DNA and RNA
 Polymers of monomers called nucleotides
 Nucleotides structure: sugar, phosphate and nitrogenous base
 Two sugars: ribose and deoxyribose
 Four nitrogenous bases:
o Purines have two rings: adenine and guanine
o Pyrimidines have one ring: cytosine and thymine (or uracil in RNA)
 DNA double helix
 Base pairing: C – G and A - T