* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Misguided Beliefs of Financial Advisors
Trading room wikipedia , lookup
Moral hazard wikipedia , lookup
Beta (finance) wikipedia , lookup
Rate of return wikipedia , lookup
Private equity secondary market wikipedia , lookup
Financial economics wikipedia , lookup
Fund governance wikipedia , lookup
Public finance wikipedia , lookup
Modified Dietz method wikipedia , lookup
Modern portfolio theory wikipedia , lookup
The Misguided Beliefs of Financial Advisors∗ Juhani T. Linnainmaa Brian T. Melzer Alessandro Previtero October 2016 Abstract A common view of retail finance is that conflicts of interest contribute to the high cost of financial advice. Using detailed data on financial advisors and their clients, however, we show that most advisors invest their personal portfolios just like they advise their clients. They trade frequently, chase returns, and prefer expensive, actively managed funds over cheap index funds. Differences in advisors’ beliefs affect not only their own investment choices, but also cause substantial variation in the quality and cost of their advice. Advisors do not hold expensive portfolios only to convince clients to do the same—their own performance would actually improve if they held exact copies of their clients’ portfolios, and they exhibit similar trading behavior even after they leave the industry. These results suggest that many advisors offer well-meaning, but misguided, recommendations rather than self-serving ones. Policies aimed at resolving conflicts of interest between advisors and clients do not address this problem. ∗ Juhani Linnainmaa is with the University of Southern California and NBER, Brian Melzer is with the Northwestern University, and Alessandro Previtero is with the Indiana University and NBER. We thank Jason Allen, Diego Garcia, Chuck Grace, John Griffin, Jonathan Reuter, and Sheridan Titman for valuable comments. We are grateful for feedback given by conference and seminar participants at Boston College, Dartmouth College, University of Maryland, Georgetown University, HEC Montreal, Indiana University, Northwestern University, University of Texas at Austin, University of Colorado Boulder, University of Chicago, NBER Behavioral Economics 2016 spring meetings, University of Rochester, SFS Cavalcade 2016, and Western Finance Association 2016 meetings. We are especially grateful to Univeris, Fundata, and three anonymous financial firms for donating data and giving generously of their time. Alessandro Previtero received financial support from Canadian financial firms for conducting this research. Juhani Linnainmaa received financial support from the PCL Faculty Research Fund at the University of Chicago Booth School of Business. Address correspondence to Alessandro Previtero, Indiana University, 1275 E. 10th St., Bloomington, IN 47405, USA (email: [email protected]). 1 Introduction A common criticism of the financial advisory industry is that conflicts of interest compromise the quality, and raise the cost, of advice. Many advisors require no direct payment from clients but instead draw compensation from commission payments on the mutual funds they sell. Within this structure, advisors may be tempted to recommend products that maximize commissions instead of serving the interests of their clients. A growing academic literature has assessed conflicts of interest and has shown suggestive evidence that sales commissions raise costs and distort portfolios.1 Policymakers in Australia, the United Kingdom, and the United States, in turn, have either banned commissions or mandated that advisors act as fiduciaries, placing clients’ interests ahead of their own.2 In this paper we find strong support for an alternative, if not mutually exclusive, explanation of costly and low-quality advice that carries starkly different policy implications. Advisors are willing to hold the investments they recommend—indeed they invest very similarly to clients—but they have misguided beliefs. They recommend frequent trading and expensive, actively managed products because they believe active management, even after commissions, dominates passive management. Eliminating conflicts of interest may therefore reduce the cost of advice by less than policymakers hope. Our analysis uses data provided by two large Canadian financial institutions. Advisors within these firms provide advice on asset allocation and serve as mutual fund dealers, recommending the 1 See, for example, Bergstresser, Chalmers, and Tufano (2009), Mullainathan, Nöth, and Schoar (2012), Christoffersen, Evans, and Musto (2013), Anagol, Cole, and Sarkar (2016), and Egan (2016). 2 In 2012, the Australian government implemented the Future of Financial Advice Reform, which banned conflicted compensation arrangements, including commissions. In 2013, the Financial Conduct Authority in the United Kingdom banned commissions. In 2016, the United States Department of Labor finalized a rule to address conflicts of interest in retirement advice by imposing fiduciary duty on advisors providing such a service. 1 purchase or sale of unaffiliated mutual funds. These advisors are not subject to fiduciary duty under Canadian law (Canadian Securities Administrators 2012). The data include comprehensive trading and portfolio information on more than 3,000 advisors and almost 500,000 clients between 1999 and 2013. Our data also include, for the vast majority of advisors, the personal trading and account information of the advisor himself. This unique feature proves fruitful for our analysis. The advisor’s own trades reveal his beliefs and preferences regarding investment strategies, which allows us to test whether client trades that are criticized as self-serving emanate from misguided beliefs rather than misaligned incentives. We begin by characterizing the trading patterns of advisors and clients in our sample. We measure trading behaviors in dimensions that previous research suggests hurts risk-adjusted performance: high turnover, preference for funds with active management or high expense ratios, return chasing, and home bias.3 Both clients and advisors strongly lean toward trading patterns documented previously for self-directed investors. For example, they purchase funds with betterthan-average historical returns and overwhelmingly favor expensive, actively managed funds. This similarity in trading patterns suggests that advisors do not dramatically alter their recommendations when acting as agents rather than principals. An analysis of fees and investment returns likewise shows little evidence that advisors recommend worse performing funds for clients than they hold themselves. The average expense ratios of 3 These behavioral patterns have been studied extensively. See, for example, Nofsinger and Sias (1999), Grinblatt and Keloharju (2001b), Barber and Odean (2008), and Kaniel, Saar, and Titman (2008) for analyses of how investors trade in response to past price movements; Odean (1999), Barber and Odean (2000), and Grinblatt and Keloharju (2009) for analyses of trading activity; French and Poterba (1991), Coval and Moskowitz (1999), and Grinblatt and Keloharju (2001a) for studies of the home bias; and French (2008) for a discussion of the underperformance of active management. These behavioral patterns may lead to both underperformance and underdiversification. French and Poterba (1991) show that expected domestic returns would need to exceed foreign expected returns by hundreds of basis points per year to offset home bias’s negative effect on portfolio diversification. Barber and Odean (2000) find that active trading—which can result from, e.g., return chasing—significantly lowers individual investors’ portfolio returns. Carhart (1997) shows that returns decrease with fund turnover and expenses reduce performance at least one-for-one. 2 mutual funds in advisors’ and clients’ portfolios are nearly the same, at 2.43% and 2.36%. Advisors benefit from managing their own assets because they earn sales and trailing commissions on their purchases. Even after adjusting for these rebates, however, the average advisor’s performance short of his clients’ performance by 27 basis points. Clients and advisors earn net alphas between −4% and −3% per year. A battery of tests suggests that the similarity in trading emerges due to advisors’ influence over client trades. The identity of the advisor is the single most important piece of information for predicting nearly all of the client trading behaviors. The common variation among co-clients, measured through advisor fixed effects, dominates variation explained by observable client traits such as age, income, risk tolerance, and financial knowledge. We also estimate a model with client fixed effects to address the possibility that the advisor effects capture shared, but unobservable, preferences among co-clients. This two-way fixed effects analysis is feasible because we observe clients who are forced to switch advisors due to their old advisor’s death, retirement, or resignation. These switches exhibit little client-level selection as they are typically transfers of an advisor’s entire “book of business” to a new advisor. The client fixed effects also prove important in explaining portfolio choices, but they do not meaningfully crowd out the advisor effects. We trace differences in advisors’ recommendations to their own beliefs and preferences, as reflected in their own trading. An advisor who encourages his clients to chase returns, for example, typically also chases returns himself. These correlations are significant for all of the trading patterns that we evaluate. These correlations are present, and of similar magnitude, irrespective of whether we measure advisor influence with or without client fixed effects. 3 We use detailed transaction data—the timing of trades and the specific funds purchased—to further illustrate advisors’ impact on client trading. While common strategies, such as return chasing, may coincidentally emerge among clients, it is unlikely that clients would buy specifically the same funds at the same time without common input from the advisor. Clients of the same advisor often purchase the same funds in the same month. By contrast, we rarely observe coordinated trading between clients of different advisors when we randomize the client-advisor pairings. The purchases of advisors show the same pattern. Advisors’ own clients frequently purchase the same funds as the advisor in the same month, whereas other clients do not. More than 80% of an advisor’s purchases are funds currently held or purchased by his clients in the same month. When an advisor deviates from his clients, he favors funds with even stronger prior performance and higher expense ratios. These trades do not outperform the funds that are purchased together by clients and advisors. Collectively, our results suggest that advisors’ own beliefs and preferences drive their recommendations. We examine and rule out two alternative explanations. First, advisors do not appear to engage in “window dressing,” that is, they do not invest in expensive funds only to convince their clients to do the same. We show that advisors’ trading behavior remains largely unchanged after they leave the industry. They continue to chase returns, invest in actively managed funds, and choose funds that are as expensive as those they chose before. Moreover, if advisors were windowdressing, their personal portfolios should perform no worse than those of their clients. However, the average advisor would earn higher returns if he copied his clients’ portfolios. Second, advisors do not seem to push certain mutual funds on behalf of their dealer firms. If advisors serve as salespeople rather than analysts, they might be convinced to purchase, both for 4 their clients and for themselves, the funds promoted by their dealer. Differences between dealers, however, explain little of the differences in client behavior. For example, client attributes alone explain 1.0% of the cross-sectional variation in clients’ return-chasing behavior. The R2 increases only to 1.1% when we account for differences between dealers, but to 16.5% when include advisor fixed effects. The same pattern holds for the other trading behaviors. The advisor, rather than the dealer, provides the common input. We conclude by showing that differences in advisors’ beliefs predict substantial differences in clients’ investment performance. We sort advisors into deciles based on the gross performance of their personal portfolio and compare their clients’ performance. Clients advised by bottom-decile advisors earn 1.2% lower returns than clients advised by top-decile advisors. The fees display the same pattern. Advisors who hold portfolios in the top fee decile recommend portfolios that are 0.4% more expensive than those recommended by the advisors at the other end of the distribution. Portfolio risk, as measured by the volatility of idiosyncratic returns, likewise increases for clients served by advisors who personally hold portfolios with high idiosyncratic risk. The risk in clients’ portfolios falls by almost half when their advisor is in the bottom decile of idiosyncratic risk rather than the top decile. Together, these cross-sectional patterns in gross returns, fees, and risk indicate that differences in advisors’ beliefs cause substantial variation in risk-adjusted portfolio returns. We contribute to the literature on financial advice by highlighting the importance of advisors’ beliefs. Our work complements Mullainathan, Nöth, and Schoar (2012), who show that advisors fail to override client biases toward return chasing and active management. We confirm their findings and document a specific reason—mistaken beliefs—as to why advisors fail to de-bias their clients. Our analyses of return chasing, active trading, and fund fees differ from Foerster, Linnainmaa, 5 Melzer, and Previtero (2015), which uses the same data to document advisors’ influence on equity allocations. While advisors do not adjust their personal portfolios to manipulate clients, their choice to hold similar portfolios may engender trust and facilitate client risk-taking (Gennaioli, Shleifer, and Vishny 2015). Our analysis also relates to studies of advisor misconduct (Egan, Matvos, and Seru 2015), conflicts of interest (Bergstresser, Chalmers, and Tufano 2009; Christoffersen, Evans, and Musto 2013; Anagol, Cole, and Sarkar 2016; and Egan 2016), and investment performance of advised accounts (Chalmers and Reuter 2015; Hackethal, Inderst, and Meyer 2012; and Hoechle, Ruenzi, Schaub, and Schmid 2015) Other studies have also used product purchases by sales agents or “experts” to examine the roles of incentives, beliefs, and information in principal-agent problems. Cheng, Raina, and Xiong (2014) find that mid-level managers in securitized finance personally invested in real estate during the mid-2000s housing boom, at the same time they sold mortgage securities. Dvorak (2015), on the other hand, shows that benefits consultants design similar 401(k) plans for clients as they offer themselves, but when they differ the funds specific to the clients’ plans are more expensive. Levitt and Syverson (2008) also find that real estate agents act differently on their own behalf, leaving their own homes on the market for longer and selling them at higher prices than their clients’ homes. Finally, Bronnenberg et al. (2015) show that pharmacists and chefs are substantially less likely to buy nationally branded items than lower-priced, private-label alternatives in their domains of expertise. By contrast, the experts in our setting do not tilt their purchases toward lower-cost alternatives, suggesting that advisors themselves prefer brand-name mutual funds just as their clients do. 6 The rest of the paper is organized as follows. Section 2 describes the data and the sample. Section 3 describes our measures of trading behavior and shows that advisors and clients pursue similar strategies and earn comparable alphas. Sections 4 and 5 measure advisors’ influence on client trading and explore the similarity between their own investments and their recommendations to clients. Section 6 examines the correlation between client and advisor performance. Section 7 examines changes in advisors’ behavior after they exit the industry. Section 8 concludes and discusses the policy implications. 2 Data We use administrative data on client investments and advisory relationships provided by two Canadian Mutual Fund Dealers (MFDs). Non-bank financial advisors of this type are the main source of financial advice in Canada—they account for $390 billion (55%) of household assets under advice as of December 2011 (Canadian Securities Administrators 2012). The two firms for which we have data advise just under $20 billion of assets, so represent roughly 5% of the MFD sector.4 Advisors within these firms are licensed to sell mutual funds and precluded from selling individual securities and derivatives. They make recommendations and execute trades on clients’ behalf but cannot engage in discretionary trading.5 They do not provide captive distribution for particular mutual fund families. Rather, they are free to recommend all mutual funds. As discussed below, the breadth in their clients’ holdings reflects this freedom. 4 These firms are among those studied by Foerster et al. (2015). Two of the firms in that study did not provide the identifiers necessary for matching advisors to their personal portfolios and comparing client and advisor behavior. We exclude these two dealers throughout this study. 5 Under Canadian securities legislation, advisors do not have fiduciary duty, but they have a duty to make suitable investment recommendations, based on their clients’ investment goals and risk tolerance. They are not required to put the client’s interests before their own, but they are legally mandated to “deal fairly, honestly and in good faith with their clients” (Canadian Securities Administrators 2012). 7 Both dealers provided a detailed history of client transactions and demographic information on clients and advisors. Clients and advisors have unique identifiers that are derived from social insurance numbers. We use these identifiers to link advisors to their personal investment portfolios, if held at their own firm. While these portfolios are visible to us, they would only be visible to clients if voluntarily disclosed by the advisor. Most advisors maintain a personal portfolio at their firm. Out of 4,407 advisors, 3,276 appear in the data also as clients. The advisors who do not have their personal portfolio at the firm are usually just starting out. For example, among the 680 advisors who never attract more than four clients—and typically disappear quickly—only 42% have personal portfolios at the firm. But among the 2,123 advisors who go on to advise at least 50 clients, 91% appear in the data also as clients.6 We supplement these administrative data with returns, fees, and net asset values from Fundata, Morningstar, and Univeris. 2.1 Advisors and their clients Table 1 provides the key summary statistics for the clients and financial advisors. The sample includes all individual accounts held at one of the two dealers between January 1999 and December 2013. The sample includes the 3,276 advisors whose personal portfolios appear in the data and the 488,263 clients who are active at some point during the 14-year sample period. The total amount of assets under advice as of June 2012 is $18.9 billion. 6 Table A1 in the Appendix presents an analysis of advisor survival as a function of the number of clients. The estimates show that advisors with more than 100 clients have a survival rate of 98.9%. This survival rate decreases almost monotonically as the number of clients falls, and reaches 81.2% among advisors with at most five clients. 8 Among clients, men and women are equally represented, and client ages range from 32 years old at the bottom decile to 67 years old at the top decile. The average client has 1.7 plans, or sub-accounts, invested in 3.5 mutual funds. The distribution of client assets is right-skewed: while the median client has CND 23,500 in assets, the average account size is CND 55,300. Advisors are slightly different from their clients. Nearly three-quarters of the advisors are men, and the advisors’ own accounts are typically larger than the clients’ accounts. The average advisor’s account value is CND 112,100, which is twice as large as the average client. The second panel shows the distribution of account types. The majority of investors—85% of clients and 86% of advisors—have retirement plans, which receive favorable tax treatment comparable to IRA and 401K plans in the U.S. The next most common account type is the unrestricted general-purpose plan (“open account”), which is held by 28% of clients and 44% of advisors. In some of our analyses, we separate retirement and general accounts because of differences in tax treatment. The second panel also shows the distributions of risk tolerance, financial knowledge, salary, and net worth for clients and advisors. Financial advisors collect this information through “Know Your Client” forms at the start of the advisor-client relationship, and they are required to file these forms also for themselves.7 Most advisors report either moderate-to-high or high risk tolerance, whereas the average client is only moderately risk tolerant. Advisors also have higher salaries and net worth than their clients. Most advisors report “high” financial knowledge although, perhaps surprisingly, a handful of advisors report “low” financial knowledge, which corresponds to a person who has “some investing experience but does not follow financial markets and does not understand the basic characteristics of various types of investments.” 7 Foerster et al. (2015) give examples of the descriptions that accompany some of the risk-tolerance and financialknowledge categories on the Know Your Client forms. 9 The third panel summarizes the overlap in fund purchases between clients and advisors. We exclude purchases made under automatic savings plans and focus on the remaining, “discretionary” purchases. We divide the client purchases into three mutually exclusive groups: funds purchased in the same month by both the client and the advisor; funds purchased by the client that are already held in the advisor’s portfolio; and funds purchased only by the client. Of the 8.1 million purchases made by clients, more that one-quarter of those funds are also purchased or held by the advisor in the same month. For the advisors, the overlap is even more striking. Nearly 20% of purchases are unique to the advisor; the remaining 80% of funds are either purchased contemporaneously or held in a client portfolio. 2.2 Investment options, fund types, and fees The clients in the data invest in 3,023 different mutual funds. In the Morningstar data, a total of 3,764 mutual funds were available to Canadian investors at some point during the 1999–2013 sample period. Most mutual funds are offered with different load structures. The most common structures are front-end load, back-end load (or deferred-sales charge), low load, and no load. All options are available to clients, but it is the advisor who decides the fund type in consultation with the client. These vehicles differ in how costly they are to the investor, how (and when) they compensate the advisor, and how they restrict the investor’s behavior. We provide an overview of fund fees and commissions below, along with more detailed discussion in Appendix A. In measuring investment performance we calculate returns net of all fees and rebates. The fees include recurring management expense charges—assessed in proportion to the investment value— deducted daily by the mutual fund company as well as transaction charges such as front-end and back-end load payments. The rebates include transaction charges reimbursed by the mutual fund or 10 financial advisor. In their own trading, advisors face the same conditions and fees as non-advisors do. For example, if the advisor sells a back-end load fund too early, he incurs the same backend load (or deferred-sales) charge as clients. Advisors do, however, benefit from serving as the agent for their own purchases—they receive commissions from the mutual fund that reduce their cost of investing. Specifically, advisors receive up-front sales commissions that act as discounts on new purchases and recurring “trailing” commissions that lower the effective management expense ratio for as long as they maintain their investments. When measuring advisors’ net investment performance, we account for all fees net of such commissions.8 3 Trading behaviors and investment performance of clients and advisors 3.1 Trading behaviors We compare investors and advisors using four summary measures of trading behavior—return chasing, preference for actively managed funds, turnover, and home bias—and two measures of portfolio cost. Below, we define each measure and discuss the summary statistics reported in Table 2. We calculate these summary statistics using all trades and holdings in open accounts and retirement accounts, and, where relevant, report the estimates separately by account type. For all behaviors except turnover, we measure the behavior using data on the flow of purchases rather than the stock of portfolio holdings. 8 Advisors do share their commissions with their dealer firms. A 2010 industry study of the top ten Canadian dealers reports that advisors received, on average, 78% of the commission payments (Fusion Consulting 2011). We therefore assume that advisors keep 78% of commissions in calculating their net cost of investment. 11 Both clients and advisors purchase funds with better recent performance. We define return chasing as in Grinblatt, Keloharju, and Linnainmaa (2012), by ranking all mutual funds based on their net returns over the prior one year period and computing the average percentile rank of the funds purchased by investors. A high measure implies that investors purchase funds with high prior one-year returns. Clients purchase funds that are, on average, in the 60th percentile of prior year performance. Advisors display slightly more return chasing, with average purchases in the 63rd percentile of prior year performance. Clients and advisors are also similar in their overwhelming preference for actively managed mutual funds. We define active management as the fraction of (non-money market) assets invested in actively managed mutual funds. We classify as passive those funds that are identified as index funds in Morningstar or that call themselves “index fund” or “target-date fund”. The average client invests almost exclusively in actively managed mutual funds, with only 1.5% allocated to passive funds. Likewise, advisors allocate only 1.2% to passive funds. These allocations are close to the 1.5% market share of index mutual funds in the Canadian market (Canadian Securities Administrators 2012). For comparison, the market share of index mutual funds in the United States is 9% (Investment Company Institute 2012). Advisors trade more actively than clients, particularly in non-retirement accounts. We define turnover as the market value of funds bought and sold divided by the beginning-of-the-month market value of the portfolio, as in Barber and Odean (2000). We split the sample between taxdeferred retirement accounts and general-purpose (or “open”) accounts within which income and capital gains are taxed annually. Clients and advisors display slightly lower turnover in retirement accounts—annual purchases and sales comprise just under 31% of retirement account value for 12 clients and 39% of account value for advisors. Advisors also trade substantially more in open accounts, with average turnover of 52% compared to 34% for clients. We next consider international diversification and find pronounced home bias among both clients and advisors. To measure home bias we compute the fraction of the equity holdings invested in Canadian equities. The average client allocates 54% to Canadian equities, and the average advisor allocates 46%. These proportions significantly exceed Canada’s share of the global market portfolio, which is less than 4% (Pakula et al. 2014). Finally, we consider the cost of funds purchased and find similar, but slightly higher, costs in advisor accounts compared to client accounts. We measure the average cost of funds purchased in two ways. The first measure is the average annualized management expense ratio (MER) of the funds purchased. The second measure is the average percentile rank of management expense ratio, computed separately within five asset classes: equities, balanced, fixed income, money market, and alternatives.9 This measure is neutral with respect to asset allocation. A high percentile rank implies that clients hold mutual funds that are expensive compared to other funds in the same class. Both advisors and clients invest in expensive mutual funds. The average annualized MERs are 2.36% and 2.43% for clients and advisors, and the difference between the two is statistically significant. This difference also holds within asset classes: the average fund bought by a client lies in the 43th percentile while that bought by the advisor is in the 46th percentile. The difference between these ranks is statistically significant with a t-value of −10.1. To summarize, the estimates in Table 2 show broad similarity in the trading of advisors and clients. Not only do advisors and clients display similar patterns such as return chasing and turnover, they also invest in funds of similar cost. 9 The category “alternatives” includes funds classified as commodity, real estate, and retail venture capital. 13 3.2 Investment performance Table 3 summarizes the investment performance of advisors and clients. For both advisors and clients, we compute value-weighted returns, and use three alternative asset pricing models to estimate alphas. We measure both gross and net returns. In calculating net returns we consider both mutual fund expense ratios and further fees paid on transactions. These fees consist of front-end loads and deferred sales charges. When measuring advisors’ net returns, we include the sales and trailing commissions that mutual funds rebate on their personal fund purchases and holdings. Due to these rebates, advisors’ net returns inclusive of fees and commissions are almost always higher than their returns net of mutual fund expense ratios. Table 3 presents estimates from three asset pricing models. The first model is the Sharpe (1964)Lintner (1965) capital asset pricing model with the excess return on the Canadian equity market as the market factor. The second model adds a factor measuring the term spread in bonds, the return difference between the long-term and short-term Canadian government bonds. The third model adds the North American size, value, and momentum factors, and the return difference between high-yield Canadian corporate debt and investment grade debt. We include bond market factors to account for clients’ and advisors’ bond holdings, and the size, value, and momentum factors to adjust for any style tilts. We report the estimates for all three models to assess whether the alpha estimates are sensitive to the choice of factors. Table 3 reports annualized alphas.10 Both clients and advisors earn gross alphas that are statistically indistinguishable from zero. In the first model, gross alpha is 14 basis points (t-value = 0.15) per year for clients and −68 basis points (t-value = −0.66) per year for advisors. The 10 Table A2 in the Appendix reports the factor loadings and model fits. 14 addition of the other factors in the second and third models lowers the alpha estimates, which remain statistically indistinguishable from zero. The full model with six factors explains 87% to 88% of the time-series variation in the value-weighted returns on the client and advisor portfolios. The alpha on the return difference between clients and advisors, which is equivalent to taking a $1 short position on the advisor portfolio and investing that in the client portfolio, is statistically highly significant in all three models. The alpha on this return difference is measured more precisely because the difference removes much of the time-series variation in returns. In the full model, the alpha for the difference in gross returns is 55 basis points per year (in the clients’ favor), and this difference is significant with a t-value of 2.55. Because both clients and advisors invest in funds with high management expense ratios (see Table 2), their net alphas—computed after management expense ratios but before other fees—are substantially negative. The annualized six-factor model alphas are −3.07% (t-value = −3.42) for clients and −3.66% (t-value = −3.79) for advisors. Foerster et al. (2015) discuss clients’ negative net alphas and their implications for long-term wealth accumulation in detail. The additional fees—front-end loads and deferred sales charges—net of any rebates reduce clients’ alphas by an additional 15 basis points per year. The sales commissions rebated to advisors, net of deferred sales charges, raise advisors’ net alpha by 17 basis points per year. Net of all mutual fund expenses, fees and commission rebates, then, the total performance of advisors and clients is similar. In the six-factor model, advisors lag clients by a statistically insignificant 27 basis points per year. 15 4 Measuring advisors’ influence on client trading In this section we measure advisors’ influence on client portfolios. We use the return chasing behavior to introduce the methodology in detail and then present the key results for the remaining trading patterns and the fee measures. 4.1 Return chasing behavior The distribution of return chasing, plotted in Figure 1, shows considerable variation across clients and advisors. Although the mean of the distribution is positive, some clients and advisors exhibit contrarian tendencies. In the following analysis, we study the cross-section of clients and test whether the advisor’s common input explains where his clients fall within this distribution. Subsequently, in Section 5, we test whether a client’s position in this distribution correlates with his advisor’s position in the distribution. Table 4 Panel A displays estimates from the following regression model: yia = µa + θXi + εia , (1) in which the dependent variable, yia , is the average percentile rank of the funds bought by client i when advised by advisor a. The vector Xi includes investor attributes summarized in Table 1— such as risk tolerance, investment horizon, and age—as well as geographic location (province fixed effects). The advisor fixed effects µa capture common variation in the return chasing behavior among clients of the same advisor. We estimate the model using OLS, with standards errors clustered by advisor to account for correlation in behavior between clients who share an advisor. 16 The first model reported in Table 4 excludes the advisor fixed effects to gauge the explanatory power of the dealer effect and investor attributes alone. This model’s explanatory power is modest. The adjusted R2 is 1.1% with the dealer effect and 1.0% without this effect. Some covariates stand out. Return chasing is more common among more risk tolerant and financially knowledgeable clients who are wealthier and report short investment horizons. The second regression includes advisor fixed effects. These fixed effects increase the model’s explanatory power substantially, to 16.5%. The estimates indicate that clients who share the same advisor chase returns to a similar extent; some advisors’ clients follow momentum strategies while others’ clients follow contrarian strategies. The significance of the advisor fixed effects in Table 4 could emanate from endogenous matching between advisors and clients. An investor who is predisposed to chase returns may seek an advisor who recommends such trades to all his clients. In that case, the advisor fixed effects may overstate the common input of the advisor—some of the common trading among clients may reflect trades that clients initiate themselves. Although the regressions control for many demographics that plausibly relate to the advisor-client matching, such as gender, age, and income, it is possible that advisors and clients also match with each other in some other dimension that also correlates with return chasing. We use a two-way fixed effects approach to address this issue. In this analysis, we limit the sample to clients who switch advisors (within the same dealer firm) after their initial advisor dies, retires, or leaves the industry. We exclude client-initiated switches since they may coincide with a change in client preferences. We identify a client as having been displaced if the advisor goes from having at least ten clients to quitting within six months. By observing clients who switch advisors, 17 we can simultaneously identify advisor and client fixed effects, the latter controlling for unobserved characteristics that may be similar among clients of the same advisor. To the extent that clients and advisors match on characteristics that remain fixed over time, the client fixed effects absorb those differences and purge the advisor fixed effects of potential bias due to matching. While it is true that clients can still select their post-switch advisor, the data reveal that selection at this stage is somewhat rare. The vast majority of switches in our sample represent transfers of entire client groups, or “books of business,” from one advisor to another at the same dealer. Upon being displaced, 85% of clients maintain an account at the same dealer, and conditional on staying, 87% of the clients end up with the same new advisor. The variation that we examine in the two-way fixed effects model, therefore, is mostly unaffected by client-level selection. The estimates in Panel B of Table 4 show that advisors significantly influence client behavior. The regression with just client fixed effects has an adjusted R2 of 5.1%; that with just advisor fixed effects has an adjusted R2 of 19.7%; and the model with both client and advisor fixed effects has an adjusted R2 of 29.1%. The F -tests at the bottom of the table indicate that both client and advisor fixed effects in the last of these regressions are statistically highly significant. 4.2 Other trading patterns We repeat the analysis of Section 4.1 for each measure of trading behavior and the two fee measures. After first estimating regressions of trading behavior on client attributes and advisor fixed effects, we then estimate a model with investor fixed effects in the subsample of displaced clients. Because the differences between open accounts and retirement accounts in Table 2 are relatively modest for turnover and home bias, we henceforth pool these accounts when measuring behavior. 18 The estimates in Panel A of Table 5 show that, in most cases, the inclusion of advisor fixed effects yields a significant boost to the model’s explanatory power. In the active-management regressions, for example, the client attributes explain just 0.9% of the variation in the use of passive investment vehicles. With the advisor fixed effects added into this regression, the model’s explanatory power increases 18.0%. The explanatory power of these advisor fixed effects does not arise from differences between dealers. Models with and without the dealer effect have the same explanatory power of 0.9%. These results do not support the view that advisors passively implement dealer recommendations. The other columns in Panel A use displaced clients to estimate models with client fixed effects, advisor fixed effects, and both. Similar to the return-chasing regressions presented in Table 4 Panel B, advisor fixed effects often increase the model’s explanatory power significantly. In all four behavior regressions and two fee regressions, F -tests (not reported) reject the null that the advisor fixed effects in the full model with both sets of fixed effects are jointly zero. In the active management regression, for example, investor fixed effects alone yield a negative adjusted R2 because the reduction in the degrees of freedom more than offsets the amount of variation they resolve. These estimates suggest that advisors have substantial influence over their clients’ decisions and direct many clients to trade in similar ways. 4.3 Event-study analysis of purchases by clients of the same advisor As further illustration that advisors provide common recommendations to their clients, we show that clients of the same advisor (“co-clients”) often purchase the same funds at the same time. We use an event-study approach. First, we identify all events in which a client purchases a new mutual 19 fund. Second, for a two-year window around this month, we estimate the probability that at least one co-client buys the same fund for the first time. Figure 2 displays these estimates. The black line indicates the estimates from month t − 12 to month t+12, where month t is the client’s purchase month. The dashed lines denote 95% confidence intervals, computed with clustering at the advisor level. The estimated probability that at least one co-client purchases the same fund in the same month is 0.45. In addition to this contemporaneous spike in purchases, there is also an elevated probability of a co-client purchase in the two months before or after the original client’s purchase. By contrast, when we randomly match each client with another advisor’s clients, we find little overlap in their purchases. For this analysis we resample the data 100 times with replacement, each time matching the client to another advisor at the same dealer (blue line) or the other dealer (red line). We then measure the fraction of fund purchases that are also made by at least one counterfactual co-client during a two-year window. Regardless of whether the counterfactual co-clients are drawn from the same dealer or the other dealer, we find few common purchases. The coordination in trading that we observe among co-clients is strong evidence that advisors direct clients to trade in similar ways. Even if clients selected advisors who prefer a given trading strategy such as return chasing, it would be unlikely that co-clients would purchase precisely the same funds at the same time without common input from the advisor. Clients could also buy the same funds at the same time because of other coordination mechanisms, such as news stories or ratings changes. However, the fact that the clients’ trades only overlap with those of their co-clients, and not with other clients, rules out this possibility. 20 5 Do advisors encourage clients to trade like themselves? We now explore whether advisors adopt for themselves the same trading strategies or individual trades that we have identified as common among their clients. In these tests, we compare each advisor’s estimated fixed effects to his own trading behaviors, and we also examine the overlap in individual trades between advisors and their clients. 5.1 Explaining advisor fixed effects with advisors’ own investment behavior Table 6 reports estimates from regressions of advisor fixed effects on advisor attributes and advisor behavior. The dependent variables are the estimated fixed effects from the regressions reported in Panels A and B of Table 5. We first examine the advisor fixed effects estimated from models that control for client attributes. We then examine advisor fixed effects estimated for the subset of displaced clients and their advisors. While the latter analysis covers a smaller set of advisors—those that work with displaced clients—its measure of advisor influence cleanly identifies the causal input of those advisors. The key explanatory variable in each regression is the advisor’s own behavior. The regressions in the first column, for example, explain variation in the advisor fixed effects estimated from the return chasing regression with the return chasing behavior measured in the advisor’s personal portfolio. Alongside advisor behavior, each model includes controls for advisor age, gender, native language, number of clients, and risk tolerance. The estimates in Table 6 indicate that, in most cases, an advisor’s personal investment behavior correlates closely with that of his clients. In the return chasing regression, for example, the slope estimate for the advisor-behavior variable is 0.24 (t-value = 13.67). If an advisor chases returns, his clients are more likely to chase returns. For the other trading behaviors, the advisor-behavior 21 coefficients range from a low of 0.13 (for total MER) to a high of 0.34 (for home bias), indicating some variation in which dimensions advisor behavior most closely tracks that of his clients. Advisor attributes, by contrast, do not correlate meaningfully with advisor fixed effects: the adjusted R2 decreases only modestly when we exclude them from the regressions. The bottom half of Table 6 shows that the estimates are generally similar when we use the fixed effects from the displacement regressions. 5.2 Similarity in fund purchases and timing between advisors and clients The estimates in Table 6 suggest that an advisor’s personal beliefs may be an important reason why his clients trade differently from those of other advisors. That is, clients may chase returns because the advisor advises them to do so, and he advises them to do so because he personally follows the same investment strategy. The connection between the advisor and client behavior is even closer than what the estimates in Table 6 suggest. Advisors often personally purchase the very same funds that they recommend to their clients, meaning that advisors do not just pursue similar strategies they even invest in the same funds at the same time as their clients. We compare advisor and client purchases in an event study, just as we did for clients and coclients. We identify all events in which an advisor purchases a new mutual fund and estimate the probability that at least one of the advisor’s clients buys the same fund around the same time. We also compare each advisor’s purchases to the purchases of clients that use another advisor. For this comparison, we resample other advisors’ client groups 100 times with replacement, and compute the fraction of times that at least one counterfactual client purchases the same fund as the advisor in the months surrounding the advisor’s own purchase. 22 The black line in Figure 3 shows that an advisor’s clients often buy the same new fund as the advisor within a month or two of the advisor’s own purchase. The estimated probability of contemporaneous purchase by at least one client is 0.45.11 There is little overlap in purchases with respect to the clients of other advisors. The probability of common purchase with at least one client of the randomly matched advisor never exceeds 0.04. This estimate is similar for counterfactual advisors drawn from the same dealer (blue line) or the other dealer (red line). As in the estimation of advisor fixed effects, the sample of displaced clients is useful for establishing a causal link between advisors’ own trades and their clients’ trades. Before a client is displaced, we can measure the overlap between a client’s purchases and those of his current and future advisors. Figure 4 shows that clients’ purchases overlap with their current advisors’ purchases. Before the displacement, more than 5% of client purchases overlap with the current advisor’s purchases, and just 1% overlap with their future advisor. Following the switch, however, the overlap in purchases with the new advisor increases more than four-fold, to nearly the same level as exhibited with the old advisor. This pattern is consistent with a causal connection—advisors’ preferred investments appear in their clients’ portfolios as well not at all times, but specifically when they work together. 5.3 A comparison of advisors’ and clients’ overlapping and non-overlapping trades Advisors often, but not always, purchase the same mutual funds for themselves as for their clients. Table 1 Panel C shows that one-fifth of advisor purchases are “advisor-only purchases,” mutual 11 Figure A1 estimates the same probabilities using data on advisors who have no more than ten clients at the time of the purchase. The estimated probabilities for this sample are approximately the same as what they are in Figure 3 Panel A. The estimates suggest that advisors with a large number of clients do not drive the results. 23 funds not bought or held by clients at the same time. Among client transactions, three-quarters of fund purchases are “client-only purchases,” neither bought nor held by advisors at the same time. In Table 7, we measure the differences in characteristics—return chasing, home bias, and fees— and future performance of the funds bought just by the advisor, just for the clients, or jointly. After classifying all fund purchases into one of these three “purchase types,” we collapse the data by advisor. The resulting sample provides the average characteristics for just over 10,000 advisorpurchase type pairs. The regressions reported in Panel A summarize the differences across purchase types. The omitted category consists of the client-only purchases. The advisor-only fund purchases are significantly different from client-only purchases. The differences between client-only and joint purchases, by contrast, are small in economic magnitude and statistical significance. The funds purchased solely by the advisor have earned higher returns over the prior year; their percentile rank is, on average 5 points higher than funds purchased or owned on behalf of clients too. Advisor-only purchases also exhibit less home bias, an estimated 11-percentage point decline in exposure to non-Canadian equities. Finally, purchases made solely by the advisor are more expensive. The average advisor-only purchase lies 3 percentage points higher in the fee distribution (within asset class) compared to client-only and joint purchases. The funds that advisors purchase only for themselves are not better investments than those purchased just for the client. In Panel B, we create three value-weighted portfolios that select funds based on the value of the purchases in each of the three categories over the prior one-year period. The advisor-only portfolio, for example, holds funds in month t that we identify as advisoronly purchases in months t − 12 to t − 1. The weights are proportional to the total dollar amounts of these purchases. The two sets of columns in Panel B compare the performance of the advisor- 24 only purchases to the client-only purchases and joint purchases to client-only purchases. The first difference, for example, can be interpreted as a long-short strategy that purchases funds recently bought just by advisors, financing these purchases by selling funds recently bought just for the clients. The differences in average returns are close to zero and statistically insignificant. In the advisoronly versus client-only comparison, the difference in the average gross returns is 0.55 percentage points per year, and this difference is associated with a t-value of 0.90. The regression that adjusts for the market factor lowers this difference to just −7 basis points. None of the differences in average returns or alphas in Panel B are more than one standard error away from the zero. 6 Summarizing advisors’ impact: Comparing the risk and return of client and advisor portfolios The fee estimates in Table 5 indicate that advisors who choose expensive mutual funds themselves tend to have clients who do the same. If advisors recommend for their clients the same investments as they hold personally, then client and advisor performance will correlate in the cross section because of differences in fees and performance of the mutual funds. Advisors who pay high fees will underperform those who pay low fees and so will their clients; and advisors whose mutual fund investments perform relatively poorly will have clients whose returns fall short of those earned by others. Likewise, advisors who fail to diversify, for example by holding an outsized share of Canadian equities, will experience more volatile returns themselves and deliver a riskier portfolio to their clients as well. 25 Panel A of Figure 5 plots the association in fees between advisors and clients by sorting advisors into deciles based on the average fees that they personally pay on their investments during the sample period. These fees consist of management expense ratios and deferred sales charges. We compute the average fee paid by the clients of each advisor and then average across advisors in each decile. This methodology equal weights the advisors within each decile. Client fees increase significantly with advisors’ personal fees. Moving from the bottom decile to the top decile corresponds to an increase of 36 basis points in annualized fees. The standard deviation of fees in the cross section of clients is 76 basis points. This comparison indicates that an indirect sort on advisor fees generates considerable amount of dispersion in client fees. Panels B and C of Figure 5 examine the association between client alphas and advisor fees or alphas. We construct this graph as follows. First, we estimate each advisor’s gross and net alphas using a two-factor model that includes the market and term factors. We then sort advisors into deciles based on these estimated alphas, and form a time-series of client returns within each decile by taking the cross-sectional average of that month’s advisor-level client return. Similar to the fee computation, we give each advisor the same weight. Appendix B describes our methodology in detail. Panel B of Figure 5 shows that client net alphas decrease significantly in advisor fees. Likewise, Panel C shows clients’ gross and net alphas increase significantly in advisor alphas. Moving from the bottom decile to the top decile, the point estimate for the gross alpha increases by 1.17% per year and the net alpha estimate increases by 1.21%. The differences between the top and bottom deciles are significant with t-values in excess of 5.0. The positive association between client and advisor performance in Figure 5 is thereby consistent with advisors and clients following similar 26 trading rules, investing in similar—and sometimes the same—funds, and paying similar amounts in fees for their holdings. The fourth panel of Figure 5 examines portfolio risk. For each client and advisor portfolio, we estimate a two-factor model and calculate the residual, or unexplained, portfolio return for the full sample of monthly returns. To measure idiosyncratic risk, we then compute the annualized volatility of those monthly residuals. Less diversified portfolios will display greater idiosyncratic risk. In Panel D, we sort advisors into deciles based on the idiosyncratic risk of their own portfolio, which ranges from 3% per year in the bottom decile to 14% per year at the top decile. For each decile of advisors, we calculate the average idiosyncratic risk for clients of those advisors. We find that client idiosyncratic risk increases strongly with the advisor’s own idiosyncratic risk. Moving from the bottom decile to the top decile of the advisor distribution, idiosyncratic risk increases by more than half, from 3.9% per year to 6.6% per year.12 Table 8 reports cross-sectional Spearman rank correlations between advisors’ alphas and fees and those of their clients. We estimate gross and net alphas for each advisor and his clients and then compute the cross-sectional correlation in these estimates. We compute the standard errors by block bootstrapping the data by calendar month 100 times. In each iteration, we resample calendar months with replacement, recompute alphas and average fees, and obtain a new set of estimates for the correlations. The correlations range between 0.37 and 0.40, and they are not sensitive to the choice of returns (gross or net) or the asset pricing model. The estimates in Table 8 are consistent with the positive association apparent in Figure 5. 12 Figure A2 reports estimates from two alternative specifications. First, we find that the pattern in idiosyncratic risk is the same when we use the six-factor model for idiosyncratic risk. Second, for each advisor we measure the idiosyncratic risk for his clients’ aggregate portfolio, rather than the average idiosyncratic risk among his clients. The amount of idiosyncratic risk falls because the aggregate portfolio is better diversified but, similar to Figure 5 Panel D, the idiosyncratic risk increases significantly when we move from a low-risk advisor to the high-risk advisor. 27 An alternative method for assessing the return correlation between advisors and clients is to estimate a panel regression of client net returns on advisor net returns with month fixed effects, client advisor ra,t − rf,t = µt + β(ra,t − rf,t ) + εa,t , (2) advisor is the return on the advisor a’s personal portfolio, r client is the return on the valuewhere ra,t a,t weighed portfolio of advisor a’s clients, and µt are the month fixed effects. The month fixed effects subsume all common shocks in the time series. That is, β measures the marginal correlation in client and advisor returns when holding constant market-wide movements. The estimate of β from equation (2) is 0.176, which is statistically significant with a t-value of 43.2 when we cluster standard errors by month. This estimate indicates that if an advisor’s portfolio earns an “idiosyncratic” return of 10% (that is, a return unrelated to market-wide shocks subsumed by the month fixed effects), the average return on the client portfolio is 1.8%. 7 7.1 Do advisors trade contrary to their beliefs? Post-career advisors Advisors may trade contrary to their personal beliefs for two reasons. First, even though clients cannot observe advisors’ personal portfolios, advisors could voluntarily disclose this information to gain their clients’ trust. For example, if an advisor personally invests in expensive actively managed funds, the client can perhaps be convinced to do the same. Although advisors could lie about their own investments, doing so might generate legal liabilities. Second, an advisor might suffer from cognitive dissonance if he advises his clients to invest differently than he invests himself. In both 28 explanations, the advisor-client relationship changes the advisor’s behavior. We test this conjecture by studying advisors’ behavior after they stop advising clients. We observe more than 400 advisors that stop advising clients. Nearly 90% of those advisors continue to hold a personal portfolio at their old firm. Table 9 presents estimates of advisor behavior before and after advisors exit the industry. The change in behavior is a pairwise t-test, comparing the behavior of the same advisor before and after he leaves the industry. The estimates suggest that active advisors’ personal investment behavior is probably not significantly affected by the presence of their clients. During the post-career period, advisors trade substantially more often, with turnover of 53% compared to 35% during their career. This change is inconsistent with the view that they trade actively to convince clients to do the same. Advisors slightly moderate their return chasing behavior in the post-career period, though they still purchase funds that are, on average, in the 58th percentile of past-year returns. Post-career advisors continue to favor actively managed funds and Canadian equities, with allocations similar to when they were advising clients. Advisors’ annualized management expense ratios decrease by 14 basis points (t-value = −2.84) after they leave the industry, but this change relates to changes in asset allocation—the within-asset class fee measure remains nearly unchanged (t-value = 0.26) around the 46th percentile. Advisors’ preference for expensive mutual funds is thus not specific to the time they advise clients—they maintain this preference even after there is no need to keep up the appearances. 29 7.2 Hypothetical investment performance of advisors: What if advisors held perfect copies of their clients’ portfolios? In addition to examining changes in advisor behavior after departures from the industry, we can compute hypothetical advisor returns to assess the plausibility of advisors holding portfolios that are contrary to their beliefs. If advisors make poor investments only to convince their clients to do the same, their optimal portfolio should perform no worse than their clients’ portfolio. That is, if an advisor wants to use his own portfolio to convince his clients to invest in funds A and B, the best way to do so would be to invest personally in funds A and B in the desired proportions. In Table 10, we measure the extent to which advisors enhance or hurt their investment returns by deviating from the portfolio held by their clients. We first report alphas based on advisors’ actual portfolios and trades. We compute net returns after all fees and rebates on this portfolio. The six-factor model alpha for this return series is −3.49% per year (t-value of −3.57), as reported in Table 3. We next report alphas for a hypothetical portfolio that the advisors could have held instead. This computation replaces the advisor’s personal portfolio with the value-weighted portfolio of his clients. To make this return series comparable with the actual return series, we assume that the advisor would have paid the same deferred sales charges as those paid by his clients, and we credit the advisor with the sales and trailing commissions generated by this client portfolio. The six-factor model alpha for this hypothetical “perfect-copy” portfolio is −2.67% per year, and this estimate has a t-value of −2.96. This estimate is higher than the net alpha with fees estimate of −3.22% for the clients reported in Table 3 because of the sales commissions and trailing commissions that advisors would earn by serving as agent for their own purchases and holdings. 30 The bottom part of Table 10 measures how much advisors’ alphas would change if they shifted to holding perfect copies of their clients’ portfolios. In the six-factor model, the annual 0.82% increase has a t-value of 3.79. This estimate is not particularly sensitive to the choice of the asset pricing model; the alpha estimates for the return difference range from 0.82% to 1.10% across the three models. These estimates suggest that advisors probably do not use their personal investments to convince their clients to hold particular funds. Under this explanation, we would expect that component of the advisor’s portfolio that does not overlap with the client portfolio to outperform the overlapping part. In the data, however, this non-overlapping portfolio performs significantly worse than the client portfolio. Advisors could significantly improve their performance by holding the same portfolios as held by their clients. 8 Conclusions Many households turn to financial advisors for guidance, and receive advice that has been criticized as costly or of low-quality. A central concern, highlighted in academic studies and policy debates alike, is that advisors lack a fiduciary obligation to clients and are paid through commissions that may create an agency conflict with their clients. For example, advisors receive more commissions when their clients trade frequently and larger commissions when their clients purchase expensive, actively managed funds even if clients do not benefit from those strategies. We show, however, that many advisors invest personally just as they direct their clients to invest. They trade actively and tilt their purchases toward expensive, actively managed mutual funds with high past returns, despite evidence that these strategies often underperform. Advisors 31 also favor domestic assets, both in their own and their clients’ portfolios, despite evidence that international diversification can substantially reduce portfolio risk. Notably, these similarities emerge even though the advisors in our sample lack fiduciary duty and receive compensation through sales commissions. Advisors pursue similar strategies in their own portfolios even after they stop advising clients, which rules out strategic “window dressing” in which advisors hold expensive portfolios merely to convince clients to do the same. Rather than passively implementing their firm’s strategy as an uninformed salesperson might, advisors of the same dealer display considerable autonomy. Our results suggest that advisors have the wrong beliefs rather than the wrong incentives. Differences in advisors’ beliefs, as reflected in their personal investments, predict substantial differences in clients’ bottom-line investment performance. Advisors in the top decile of investment returns deliver higher gross returns to clients, a difference of 1.4% per year above compared to clients of bottom-decile advisors. Advisors in the top decile of portfolio fees likewise deliver portfolios that cost 0.4% per year more than advisors in the bottom decile. Finally, advisors that invest personally in high-volatility strategies (controlling for differences in asset allocation) also deliver portfolios with nearly twice the idiosyncratic volatility as advisors in the bottom decile. Policies aimed at resolving conflicts of interest—by imposing fiduciary duty or banning commissions—do not address misguided beliefs. When advisors recommend strategies that underperform, they often act as an agent exactly as they would as a principal, so aligning their interests would not change their behavior. Solving the problem of misguided beliefs would instead require improved education or screening of advisors, perhaps enforced with professional licensing requirements. The market, of course, may not reward such actions if clients cannot differentiate good and bad advice. Changing advisors’ views about active investment strategies may also be difficult. Advisors are not 32 random draws from the population, and they may pursue their vocation in part because of their misguided beliefs. Those who believe that active management adds value, for example, may be more likely to pursue a career in financial advice. 33 A Appendix: Mutual Fund Fee Structures The differences in mutual fund fee structures are relevant for advisors’ and clients’ incentives, and we therefore briefly describe them. Every fund purchase by a client involves four parties: the client, the advisor, the mutual fund company, and the advisor’s dealer firm. Mutual fund transactions can generate five types of payments: 1. Front-end load is a direct payment from the client to the advisor at the time of a purchase of a front-end load fund. The minimum and maximum front-end loads are set by the mutual fund company, but the mutual fund company does not receive any of this payment. 2. Sales commission is a payment from the mutual fund company to the advisor at the time of a purchase of a back-end load fund. The typical sales commission is 5% of the value of the purchase. 3. Deferred sales charge is a payment from the client to the mutual fund company at the time the client redeems his shares in a back-end load fund. The deferred sales charge typically starts at the same level as the sales commission, but the penalty is amortized: it is typically 5% of the value of the investment if the fund is sold in the first year, 6/7th of 5% if sold in the second year, continuing to decrease to 1/7th of 5% if sold in year seven. The seven-year mark for the expiration of deferred sales charge schedule is the most common, followed by eight-year schedules. Additionally, some mutual funds free 10% of the shares each year, which means that the client can sell a fraction of the shares each year without incurring a penalty. 34 The deferred sales charge is based either on the value of the initial purchase or the value of the shares at the time of the redemption.13 4. Trailing commission is a recurring payment from the mutual fund company to the advisor. The fund pays the trailing commission for as long as the client remains invested in the fund. Trailing commissions of 0.25% to 1% per year are standard on all funds sold by advisors. 5. Management expense ratio is a recurring payment from the client to the mutual fund company. These expenses are subtracted daily from the fund’s net asset value. 6. Administrative fee is a recurring payment from the client to the mutual fund company. Some mutual funds charge this fee for shares held in retirement accounts. These payments vary across load structures, and the load structures differ in how they restrict client behavior by imposing costs: 1. Front-end load fund. The advisor and client negotiate the front-end load, and the investor is free to sell the mutual fund at any time without any additional cost. The trailing commission associated with this option is typically the highest because the mutual fund company does not pay an upfront sales commission to the advisor. 2. Back-end load fund. The client makes no payment to the advisor at the time of the purchase, but the mutual fund company pays the advisor a sales commissions. If the client sells the mutual fund “too soon,” he incurs a deferred sales charge. Back-end load funds 13 Some mutual fund families let clients “switch” from one fund to another in the same family without triggering the deferred sales charge. The client is typically charged a 2% switching fee for this service. When we measure performance, we combine these switching fees with deferred sales charges. Similarly, some mutual funds, regardless of their type, impose restrictions on short-term trading. In the typical arrangement, a client has to pay a 2% short-term trading fee if he sells the fund within a month of the purchase. We combine also these penalties with deferred sales charges when measuring performance. 35 also often release 10% of the shares each year so that the client can sell these shares without incurring a sales charge. The trailing commission associated with this option is typically low because of the upfront sales commission. 3. Low-load fund. These investments are similar to back-end load funds, except that the sales commission is smaller and the deferred sales charge schedule shorter. 4. No-load fund. The client makes no payment to the advisor at the time of the purchase, and the mutual fund company does not pay the advisor a sales commission. The trailing commission is often also 0%. In every option, the client pays the mutual fund company the management expense ratio. Advisors share their commissions with their dealer firms. A 2010 industry study of the top ten Canadian dealers reports that advisors received, on average, 78% of the commission payments (Fusion Consulting 2011). B Appendix: Method for analyzing client fees and performance across deciles of advisors We normalize monthly decile returns by subtracting the average return across the deciles, and run the two-factor asset pricing regression using these normalized returns. That is, the regression we estimate is rd,t − r̄t = αd + βd,mkt MKTRFt + βterm TERMt + ed,t , where rd,t is decile d’s month t return and r̄t = (1/10) P10 d=1 rd,t . (3) We also estimate this regression with r̄t −rf,t as the dependent variable, where rf,t is the riskless rate, and we denote this regression’s 36 alpha with ᾱ. This normalization strategy gives more precise estimates for comparing performance across deciles; it removes the time-series variation in returns that is common to all clients. In ˆ to restore the level of alphas, but we take the standard errors Panel B of Figure 5, we plot α̂d + ᾱ from the normalized regressions, thereby showing only the across-advisors estimation uncertainty. This procedure removes uncertainty about the level of alpha, which we set equal to its point estimate for each decile of advisors.14 14 Because we take out the time-series variation in returns that is shared by all clients, the standard errors that we report are appropriate for comparing alpha estimates across deciles. They are not the correct standard errors for tests concerning the level of alphas, such as for a test of whether decile d’s alpha is significantly different from zero. The estimates reported in Table 3 are appropriate for the latter test. 37 REFERENCES Anagol, S., S. Cole, and S. Sarkar (2016). Understanding the advice of commissions-motivated agents: Evidence from the indian life insurance market. Review of Economics and Statistics. Forthcoming. Barber, B. M. and T. Odean (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. Journal of Finance 55 (2), 773–806. Barber, B. M. and T. Odean (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies 21 (2), 785–818. Bergstresser, D., J. M. R. Chalmers, and P. Tufano (2009). Assessing the costs and benefits of brokers in the mutual fund industry. Review of Financial Studies 22 (10), 4129–4156. Bronnenberg, B. J., J.-P. Dubé, M. Gentzkow, and J. M. Shapiro (2015). Do pharmacists buy bayer? informed shoppers and the brand premium. Quarterly Journal of Economics 130 (4), 1669–1726. Canadian Securities Administrators (2012). Mutual fund fees. Discussion paper and request for comment 81-407. Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance 52 (1), 57–82. Chalmers, J. and J. Reuter (2015). Is conflicted investment advice better than no advice? Working paper. Cheng, I., S. Raina, and W. Xiong (2014). Wall street and the housing bubble. American Economic Review 104 (9), 2797–2829. Christoffersen, S. E. K., R. Evans, and D. K. Musto (2013). What do consumers’ fund flows maximize? Evidence from their brokers’ incentives. Journal of Finance 68 (1), 201–235. Coval, J. D. and T. J. Moskowitz (1999). Home bias at home: Local equity preference in domestic portfolios. Journal of Finance 54 (6), 2045–2073. Dvorak, T. (2015). Do 401k plan advisors take their own advice? Journal of Pension Economics and Finance 14 (1), 55–75. Egan, M. (2016). Brokers vs. retail investors: Conflicting interests and dominated products. Working paper. Egan, M., G. Matvos, and A. Seru (2015). The market for financial adviser misconduct. University of Chicago working paper. 38 Foerster, S., J. T. Linnainmaa, B. T. Melzer, and A. Previtero (2015). Retail financial advice: Does one size fit all? Journal of Finance. Forthcoming. French, K. R. (2008). Presidential address: The cost of active investing. Journal of Finance 63 (4), 1537–1573. French, K. R. and J. Poterba (1991). Investor diversification and international equity markets. American Economic Review 81 (2), 222–226. Fusion Consulting (2011). State of the industry. Gennaioli, N., A. Shleifer, and R. Vishny (2015). Money doctors. Journal of Finance 70 (1), 91–114. Grinblatt, M. and M. Keloharju (2001a). How distance, language, and culture influence stockholdings and trades. Journal of Finance 56 (3), 1053–1073. Grinblatt, M. and M. Keloharju (2001b). What makes investors trade? Journal of Finance 56 (2), 589–616. Grinblatt, M. and M. Keloharju (2009). Sensation seeking, overconfidence, and trading activity. Journal of Finance 64 (2), 549–578. Grinblatt, M., M. Keloharju, and J. Linnainmaa (2012). IQ, trading behavior, and performance. Journal of Financial Economics 104 (2), 339–362. Hackethal, A., R. Inderst, and S. Meyer (2012). Trading on advice. CEPR Discussion Paper 8091. Hoechle, D., S. Ruenzi, N. Schaub, and M. Schmid (2015). Financial advice and bank profits. Swiss Institute of Banking and Finance Working paper. Investment Company Institute (2012). 2012 investment company fact book, 52nd edition. Kaniel, R., G. Saar, and S. Titman (2008). Individual investor trading and stock returns. Journal of Finance 63 (1), 273–310. Lakonishok, J., A. Shleifer, R. Thaler, and R. Vishny (1991). Window dressing by pension fund managers. American Economic Review 81 (2), 227–231. Levitt, S. D. and C. Syverson (2008). Market distortions when agents are better informed: The value of information in real estate transactions. Review of Economics and Statistics 90 (4), 599–611. Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47 (1), 13–37. 39 Mullainathan, S., M. Nöth, and A. Schoar (2012). The market for financial advice: An audit study. NBER Working Paper No. 17929. Nofsinger, J. R. and R. W. Sias (1999). Herding and feedback trading by institutional and individual investors. Journal of Finance 54 (6), 2263–2295. Odean, T. (1999). Do investors trade too much? American Economic Review 89 (5), 1279–1298. Pakula, D. C., D. J. Walker, D. T. Kwon, P. M. Bosse, V. Maciulis, and C. B. Philips (2014). Global equities: Balancing home bias and diversification—a Canadian investor’s perspective. Vanguard reseach. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19 (3), 425–442. Sias, R. W. and L. T. Starks (1997). Institutions and individuals at the turn-of-the-year. Journal of Finance 52 (4), 1543–1562. 40 5 5 4 4 3 3 2 2 1 1 0 0 10 20 30 40 50 60 70 80 90 Density of advisors Density of clients Clients Advisors 0 100 Return chasing estimate Figure 1: Return chasing by clients and advisor. We measure return chasing by computing the average percentile return rank of mutual funds bought. This figure plots these measures for each advisor and client with at least 10 mutual fund purchases during the sample period. In this figure, the advisor measures on the secondary y-axis are scaled down to make it easier to distinguish the two distributions from each other. 41 Pr(Co-client purchases the same fund) 0:5 0:4 Own co-clients Random clients (same dealer) Random clients (di,erent dealer) 0:3 0:2 0:1 0 !12 !9 !6 !3 0 3 Month relative to the client purchase 6 9 12 Figure 2: Similarity in fund purchases and timing between clients and co-clients. For all purchases of a new fund by a client, we compute the probability that at least one client of the same advisor (a “co-client”) makes a new purchase of the same fund in the two-year window around the purchase. The solid black line indicates this estimated probability and the dashed black lines indicate the 95% confidence interval associated with these estimates. Repeating this exercise, we compute the probabilities of common purchase between a client and counterfactual co-clients drawn from a different advisor at the same dealer (blue line) or the other dealer (red line). To form these estimates we resample the data 100 times with replacement and match each client with a randomly drawn advisor’s clients. 42 Pr(Client purchases the same fund) 0:5 0:4 Own advisor Random advisor (same dealer) Random advisor (di,erent dealer) 0:3 0:2 0:1 0 !12 !9 !6 !3 0 3 Month relative to the advisor purchase 6 9 12 Figure 3: Similarity in fund purchases between advisors and clients. For all purchases of a new fund by an advisor, we compute the probability that at least one client of the advisor makes a new purchase of the same fund in the two-year window around the purchase. The solid black line indicates this estimated probability and the dashed black lines indicate the 95% confidence interval associated with these estimates. Repeating this exercise, we compute the probabilities of common purchase between a client and a counterfactual advisor drawn from the same dealer (blue line) or the other dealer (red line). To form these estimates we resample the data 100 times with replacement and randomly match each advisor with the client group of another advisor that purchased a new fund in the same month. 43 8 Before displacement After displacement Co-purchase probability (%) 7 6 5 4 3 2 1 0 Old New New Advisor Figure 4: Estimated co-purchase probabilities for displaced clients. This figure studies the co-purchase probabilities of clients and their advisors using the sample of displaced clients. The before-displacement bars denote the probabilities that a client’s current advisor and future (after displacement) advisor purchase the same fund as the client. We measure co-purchase probabilities using a three-month window around the client purchase. The after-displacement bar denotes the probability that the client’s new advisor (after displacement) purchases the same fund as the client. The before-displacement sample is restricted to purchases when also the future advisor has clients. We compute the average purchase propensity at the advisor level, and then report the average probabilities across advisors. The error bars indicate 95% confidence intervals. 44 Panel A: Client fees conditional on advisor fees Client fee, annualized % 2:7 2:6 2:5 2:4 2:3 1 2 3 4 5 6 7 8 9 10 9 10 Advisor fee decile Panel B: Client net alpha conditional on advisor fees Client net alpha, annualized % !2:0 !2:5 !3:0 !3:5 1 2 3 4 5 6 Advisor fee decile 45 7 8 Panel C: Client alphas conditional on advisor alphas 1:0 Gross alpha Net alpha 0:5 Client alpha, annualized % 0:0 !0:5 !1:0 !1:5 !2:0 !2:5 !3:0 !3:5 !4:0 Advisor alpha decile !4:5 1 2 3 4 5 6 7 8 9 10 Panel D: Client idiosyncratic risk conditional on advisor idiosyncratic risk Client idiosyncratic risk, annualized % 7 6 5 4 3 1 2 3 4 5 6 7 8 9 10 Advisor idiosyncratic risk decile Figure 5: Client fees, performance, and idiosyncratic risk conditional on advisor fees, performance, and idiosyncratic risk. This figure sorts advisors into deciles based on their personal fees (Panels A and B), alphas (Panel C), and idiosyncratic portfolio risk (Panel D) and reports the average fees, alphas, portfolio idiosyncratic risks of the clients of these advisors. The fees consist of management expense ratios, front-end loads, and deferred sales charges. The alphas in Panels B and C are estimated using a two-factor model with the market (equity) and term (fixed income) factors. In Panels A through C, we compute the 95% confidence intervals after removing the variation in the time series of fees and returns that is shared by all clients; see the text for details. The idiosyncratic risks in Panel D are the annualized volatilities of the residuals from the two-factor model. We estimate the two-factor model for every client and advisor, and then compute, for each advisor, the average volatility over each advisor’s clients. 46 Table 1: Descriptive statistics from dealer data This table reports demographics and portfolio information for clients and financial advisors, and client information for financial advisors. “Account age (years)” is the number of years an investor’s account has been open. “Experience” is the number of years since the advisor obtained a license or, if not available, the number of years after becoming an advisor in the dealer data. “Risky share” is the fraction of assets invested in equities. In computing the risky share, we assume that balanced funds invest 50% in equities. In Panel A, we first compute the distributions for each calendar month and then average these distributions over time. Time horizon, risk tolerance, financial knowledge, income, and net worth information, reported in Panel B, is collected on the “Know-Your-Client” forms. Panel C categorizes clients’ and advisors’ discretionary mutual fund purchases and reports the distributions across these types. Discretionary purchases are purchases that are not part of automatic savings plans. The client only-category contains purchases in which the advisor does not purchase the same fund at the same time and does not hold the fund; the client and advisor purchase-category contains purchases in which both the client and advisor buy the same fund in the same month; and the client purchases and advisor holds-category contains purchases in which the client purchases a fund that is held by the advisor but not bought in the same month. The advisor-side categories are defined analogously. 47 Panel A: Demographics, portfolio characteristics, and client accounts Percentiles th th Variable Mean 10 25 50th 75th 90th Clients (N = 488,263) Demographics Female (%) Age Investment portfolio Account age (years) Number of plans Number of funds Account value, $K Risky share (%) 52.2 49.2 32.1 39.7 48.4 58.1 67.4 4.6 2.0 4.7 55.3 73.3 0.9 1.0 1.0 2.2 46.6 2.3 1.0 1.8 7.3 56.9 4.5 1.7 3.5 23.5 76.5 6.9 2.4 6.3 63.4 96.7 8.0 3.9 10.0 136.0 100.0 Financial advisors (N = 3,276) Demographics Female (%) Age Investment portfolio Account age (years) Number of plans Number of funds Account value, $K Risky share (%) Client accounts Experience Number of clients Client assets, $ thousands 27.1 48.4 34.8 40.9 48.3 56.1 62.0 5.4 3.4 8.7 112.1 80.7 1.2 1.0 1.3 3.8 51.2 2.8 1.1 2.9 14.7 70.2 5.2 2.7 6.4 50.9 88.1 7.4 4.6 12.0 130.7 99.7 8.8 6.7 18.7 269.2 100.0 5.8 109.8 6,242.6 2.3 4.2 94.9 4.3 17.7 569.4 6.9 63.6 2,546.8 7.0 153.6 7,799.2 7.0 275.2 17,499.5 48 Panel B: Account and client characteristics Account types Clients Advisors General 27.6% 44.3% Retirement 84.9% 85.6% Education savings 9.4% 23.0% Tax-free 4.3% 7.4% Other 0.6% 0.1% Time horizon 1–3 years 4–5 years 6–9 years 10+ years Clients 2.5% 8.1% 69.7% 19.7% Advisors 2.2% 5.3% 67.2% 25.3% Risk tolerance Very low Low Low to Moderate Moderate Moderate to High High Clients 4.2% 4.3% 8.5% 51.5% 19.7% 11.9% Advisors 1.0% 2.7% 3.1% 30.1% 20.7% 42.3% Salary $30–50k $50–70k $70–100k $100–200k $200–300k Over $300k Clients 34.6% 35.4% 17.3% 12.1% 0.2% 0.2% Advisors 15.1% 26.1% 21.6% 34.1% 2.2% 0.8% Financial knowledge Low Moderate High Clients 40.3% 54.5% 5.2% Advisors 1.5% 15.7% 82.8% Net worth Under $35k $35–60k $60–100k $100–200k Over $200k Clients 3.6% 6.2% 9.3% 18.3% 62.7% Advisors 1.3% 2.5% 5.9% 13.1% 77.2% Panel C: Clients’ and advisors’ discretionary mutual Client only 72.5% Client and advisor purchase 4.3% Client purchases, advisor holds 23.3% No. of discretionary purchases 8,119,446 fund purchases Advisor only Advisor and client purchase Advisor purchases, client holds No. of discretionary purchases 49 19.7% 43.7% 36.6% 127,251 Table 2: Measures of trading behavior: Clients versus advisors This table reports estimates of how clients and advisors trade. The measures are defined as follows: (i) Return chasing is the average percentile rank of prior one-year returns for funds bought; (ii) Active management is the proportion of index funds and target-date funds bought; (iii) Turnover is the market value of purchases and sales divided by the beginning of month market value of holdings, annualized by multiplying by 12; and (iv) Home bias is the fraction of Canadian equity mutual fund purchases out of all equity fund purchases. We compute these measures for each client and then aggregate the data to the advisor level. The bottom two rows report two measures of fees. “Total MER” is the average management expense ratio of the funds bought by clients and advisors. “Percentile within asset class” is the average percentile fee rank of funds bought. We compute percentile ranks within five asset classes: equity, balanced, fixed income, money market, and alternatives. We include clients’ and advisors’ open and retirement accounts, and in the case of turnover and home bias, also report the measures separately for the two account types. Behavior Return chasing Active management Turnover Retirement accounts Open accounts All Home bias Retirement accounts Open accounts All Fees Percentile within asset class Total MER Clients Mean SE 60.3 0.2 98.5 0.1 Advisors Mean SE 63.1 0.3 98.8 0.2 Difference, t-value −9.67 −1.52 N 2,313 2,380 30.9 33.7 31.5 0.7 0.9 0.7 38.9 52.2 40.0 1.3 1.9 1.2 −6.15 −9.83 −7.20 2,352 1,498 2,589 54.1 50.6 53.9 0.4 0.7 0.4 45.7 42.6 45.9 0.6 0.9 0.6 15.01 9.45 15.57 2,131 1,269 2,330 43.2 2.36 0.2 0.01 45.9 2.43 0.3 0.01 −10.10 −6.70 2,361 2,364 50 Table 3: Investment performance of clients and advisors This table reports annualized percentage alphas for clients’ and advisors’ portfolios. We measure gross returns, net returns, and net returns adjusted for fees and (advisor) rebates for value-weighted client and advisor portfolios. Gross return adds back the management expense ratio; net return is the return on the investment portfolio without additional fees or rebates; net return with fees and rebates subtracts off front-end loads and deferred sales charges and, for advisors, adds back rebates earned through sales commissions on personal purchases and trailing commissions earned on funds held. We measure alphas using three asset pricing models. The first model is the Sharpe (1964)Lintner (1965) capital asset pricing model with the excess return on the Canadian equity market as the market factor; the second model adds the return difference between the long-term and shortterm Canadian government bonds (the term factor); and the third model adds the return difference between high-yield Canadian corporate debt and investment grade debt (the default factor) and the North American size, value, and momentum factors. Factors in the asset pricing model Return series Clients Return type Gross return Net return w/fees and rebates MKTRF, TERM MKTRF, SMB, HML, UMD, TERM, DEF α̂ 0.14 −2.23 −2.38 t(α̂) 0.15 2.40 2.56 α̂ −0.11 −2.49 −2.64 t(α̂) −0.12 −2.64 −2.80 α̂ −0.69 −3.07 −3.22 t(α̂) −0.78 −3.42 −3.59 Advisors Gross return Net return w/fees and rebates −0.68 −3.10 −2.92 −0.66 −2.99 −2.79 −0.88 −3.30 −3.11 −0.84 −3.13 −2.93 −1.25 −3.66 −3.49 −1.29 −3.79 −3.57 Clients − Advisors Gross return Net return w/fees and rebates 0.82 0.86 0.53 2.50 2.62 1.61 0.77 0.81 0.47 2.30 2.42 1.40 0.55 0.60 0.27 2.55 2.74 1.21 MKTRF 51 Table 4: Explaining cross-sectional variation in return chasing behavior with client attributes and advisor fixed effects This table evaluates the importance of client attributes, advisor, client, and dealer fixed effects, and province fixed effects in explaining cross-sectional variation in clients’ return chasing behavior. Return chasing is the average percentile rank of prior one-year returns of funds bought. The unit of observation is a client-advisor pair. The first regression in Panel A includes the client attributes and a dealer effect. The second regression adds advisor fixed effects. The age fixed effects are based on the client’s average age during the time the client is active, measured in five-year increments. Panel B uses a sample that consists of clients who are forced to switch advisors when their old advisor dies, retires, or leaves the industry. The model in Panel B includes both advisor and client fixed effects. 52 Independent variable Constant Risk tolerance Low Low to Moderate Moderate Moderate to High High Financial knowledge Moderate High Time horizon Short Moderate Long Female French speaking Salary $30-50k $50-70k $70-100k $100-200k Over $200k Net worth $35-60k $60-100k $100-200k Over $200k Advisor FEs Dealer FE Age FEs Province FEs N Adjusted R2 w/o Dealer FE EST 55.12 Regression 1 t-value 48.47 EST 56.39 Regression 2 t-value 73.56 −0.26 −0.03 1.48 2.10 1.47 −0.35 −0.04 2.42 3.34 2.06 −0.21 −0.14 0.97 1.29 0.14 −0.35 −0.28 2.01 2.65 0.26 0.75 1.48 4.07 4.41 0.28 0.99 3.14 4.30 1.95 1.62 0.94 −0.06 1.19 3.87 3.35 1.84 −0.62 2.19 1.82 1.75 1.52 0.06 0.26 4.27 4.33 3.69 0.94 0.83 −0.05 0.17 0.16 −2.61 0.19 −0.46 1.02 0.87 −1.95 0.28 −0.03 0.22 0.26 −1.43 0.20 −0.37 2.21 2.18 −1.17 0.37 0.64 0.66 0.85 1.37 2.60 2.56 3.63 5.36 0.36 0.35 0.52 0.79 1.65 1.66 2.58 3.95 No Yes Yes Yes Yes – Yes Yes 311,032 311,032 1.1% 1.0% 16.5% 53 Panel B: Regressions with advisor and client fixed effects Advisor FEs Client FEs Yes No No Yes Yes Yes Test: Client FEs jointly zero Test: Advisor FEs jointly zero Adjusted R2 19.7% 5.1% 29.1% F (9537, 2495) = 1.30 F (154, 1402) = 4.19 Number of observations 12,476 54 Table 5: Explaining cross-sectional variation in client behavior with client attributes, advisor fixed effects, client fixed effects, and advisor behavior Panel A evaluates the importance of client attributes, advisor fixed effects, and province fixed effects in explaining cross-sectional variation in client behavior. The measures of behavior are described in text and summarized in Table 2. The unit of observation is a client-advisor pair. The estimates reported in Panel A are the models’ adjusted R2 s. The measures pool trades and holdings across open and retirement accounts. Panel B estimates models with advisor and client fixed effects using a sample of displaced clients. These are clients who are forced to switch advisors when their old advisor dies, retires, or leaves the industry. Panel A: Regressions with client attributes and advisor fixed effects Client attributes Behavior Client attributes + dealer effect Return chasing 1.0% 1.1% Active management 0.9% 0.9% Turnover 0.7% 0.7% Home bias 2.7% 2.9% Fees Total MER 8.1% 8.3% Percentile within asset class 3.0% 3.1% Panel B: Two-way fixed effects models for client behavior Client Advisor Behavior FEs FEs Return chasing 5.1% 19.7% Active management 8.8% 34.1% Turnover 7.2% 13.9% Home bias 33.3% 31.5% Fees Total MER 57.0% 34.3% Percentile within asset class 30.7% 29.3% 55 Client attributes + advisor FEs 16.5% 18.0% 7.1% 25.9% N 311,032 325,472 387,640 312,085 26.1% 22.4% 322,968 321,064 Both FEs 29.1% 49.0% 21.9% 47.1% N 12,476 13,259 22,764 12,544 67.3% 47.9% 13,161 13,076 Table 6: Explaining advisor fixed effects with advisor attributes and investment behavior This table reports estimates from regressions of advisor fixed effects on advisor attributes and investment behavior. These advisor fixed effects are from Table 5’s all-clients regressions of client behavior on client attributes and advisor fixed effects. Regressor Return chasing Active management Fees Turnover Home bias Total MER Cond. percentile Advisor fixed effects from simple regressions Advisor behavior 0.24 (13.67) 0.29 (4.21) 0.16 (2.71) 0.34 (18.89) 0.13 (3.73) 0.27 (15.54) Adjusted R2 w/o Advisor attributes 22.3% 18.7% 19.2% 18.4% 7.3% 6.9% 25.6% 24.1% 9.9% 9.3% 20.1% 20.7% N 1,982 2,105 2,209 1,983 2,073 2,056 Advisor fixed effects from the two-way FE analysis Advisor behavior 0.29 (5.48) 0.26 (1.87) 0.22 (2.78) 0.28 (6.01) 0.14 (2.22) 0.25 (4.57) Adjusted R2 w/o Advisor attributes 6.4% 5.9% 6.7% 5.5% 2.2% 1.5% 7.9% 5.4% 2.1% 2.3% 7.3% 6.1% N 592 624 739 598 616 613 56 Table 7: Differences in mutual fund purchases between advisors and clients We categorize clients’ and advisors’ discretionary mutual fund purchases depending on who purchases the fund and whether the other party already owns the same fund or purchases it at the same time. A purchase is a client-only purchase if the advisor does not purchase the same fund at the same time and does not hold the fund; it is an advisor-only purchase if none the clients purchase the same fund at the same time and do not hold the fund. A purchase is a joint purchase if both the client and purchase the same fund at the same time, or if the other party already owns the fund at the time of the purchase. Panel A compares the characteristics of the mutual funds bought by regressing the percentile rank of past returns, home bias, MER, and percentile fee on advisor-only and joint-purchase indicator variables. The omitted category is the client-only category. The unit of observation is an advisor-purchase type pair, and the standard errors cluster by advisor. Panel B computes value-weighted returns on portfolios that choose weights based on which funds are bought in each category. The returns are net returns without an adjustment for additional fees and rebates. A fund’s weight in month t in purchase category c is proportional to the total value of purchases of this fund in category c in months t − 12 to t − 1. Panel B compares returns advisor-only and client-only purchases and joint purchases and client-only purchases. Panel A: Differences in the characteristics of mutual fund purchases Dependent variable Return Home Regressor chasing bias MER Intercept 59.36 52.71 2.39 [0.19] [0.38] [0.01] Fees Percentile fee 44.14 [0.19] 5.06 [0.40] −11.23 [0.79] 0.05 [0.01] 2.77 [0.38] Joint purchase −0.30 [0.36] 0.96 [0.70] 0.03 [0.01] −0.70 [0.34] R2 N 1.6% 10,558 2.2% 10,368 0.2% 10,697 0.6% 10,675 Advisor-only purchase Panel B: Differences in future fund returns (%) conditional on purchase type Return difference Advisor-only purchase Joint purchase − Client-only purchase − Client-only purchase Model α̂ t(α̂) α̂ t(α̂) Gross return Average return 0.55 0.90 0.37 0.80 CAPM −0.07 −0.14 −0.09 −0.21 Six-factor model −0.01 −0.02 −0.10 −0.25 Net return Average return CAPM Six-factor model 0.36 −0.26 −0.19 0.59 −0.51 −0.44 57 0.41 −0.05 −0.06 0.88 −0.12 −0.16 Table 8: Correlations between advisors’ and their clients’ alphas and fees This table reports Spearman rank correlations between advisors’ and their clients’ gross and net alphas and fees. The gross and net alphas are estimated using three asset pricing models that are described in Table 3. The fees consist of management expense ratios, front-end loads, and deferred sales charges. We block bootstrap the data by calendar month 100 times to compute the standard errors. We include advisors and clients with at least one year of returns. MKTRF MKTRF, TERM MKTRF, SMB, HML, UMD, TERM, DEF EST 0.40 0.40 0.37 Correlation Bootstrapped SE 0.04 0.04 0.04 Net alphas MKTRF MKTRF, TERM MKTRF, SMB, HML, UMD, TERM, DEF 0.40 0.40 0.37 0.04 0.04 0.03 Fees None 0.37 0.01 Measure Gross alphas Factors in the asset pricing model 58 Table 9: Change in advisor behavior after the end of the career This table reports estimates how advisor behavior changes after the advisor stops advising clients. The measures are defined in Table 2. We include advisors who execute trades suitable for computing the four measures of behavior and the two fee measures both before and after they stop advising clients. Behavior Return chasing Active management Turnover Home bias Fees Percentile within asset class Total MER Active advisors EST SE 63.4 1.2 99.5 0.2 35.0 4.0 48.6 2.4 Post-career advisors EST SE 58.3 1.5 98.6 0.5 53.4 6.4 52.9 2.8 45.8 2.47 46.2 2.33 1.1 0.03 59 1.4 0.04 Difference EST t-value −5.1 −2.64 −0.9 −1.99 18.4 2.74 4.2 1.47 0.4 −0.15 0.26 −2.84 N 168 195 420 171 183 184 Table 10: Hypothetical advisor returns from holding perfect copies of client portfolios This table reports actual and hypothetical annualized net alphas for the advisors’ value-weighted aggregate portfolio. The hypothetical net alphas are computed by assuming that the advisors hold perfect copies of their clients’ portfolios. The return on this portfolio equals the net return earned by the clients, adjusted for the sales commissions that advisors earn on their personal purchases and for the trailing commissions that they earn on their personal holdings. In this computation, advisors pay the same deferred sales charges as those paid by the clients. The net alphas are computed using the three asset pricing models described in Table 3. t-values are reported in parentheses. Factors in the asset pricing model Advisor portfolio Actual MKTRF α̂ −2.92 (−2.79) MKTRF, TERM R2 85.5% MKTRF, SMB, HML, UMD, TERM, DEF α̂ −3.11 (−2.93) R2 85.5% α̂ −3.49 (−3.57) R2 88.3% Hypothetical −1.82 (−1.94) 84.7% −2.07 (−2.19) 84.8% −2.67 (−2.96) 86.9% Hypothetical − actual 1.10 (3.36) 51.2% 1.04 (3.13) 51.2% 0.82 (3.79) 80.5% 60 Pr(Client purchases the same fund) 0:5 0:4 Own advisor Random advisor (same dealer) Random advisor (di,erent dealer) 0:3 0:2 0:1 0 !12 !9 !6 !3 0 3 Month relative to the advisor purchase 6 9 12 Figure A1: Similarity in fund purchases and timing between advisors and their clients: Robustness. This figure repeats the analysis of Figure 3 Panel A in a sample limited to purchases made by advisors who have at most 10 clients at the time of the purchase. The black lines indicate the actual purchase probabilities by the clients and the 95% confidence intervals associated with these probabilities. The blue and red lines indicate purchase probabilities simulated under the null hypothesis that advisors’ purchases are independent of those of their clients. We resample the data 100 times with replacement and randomly match an advisor with another advisor who also purchases a new fund in the same month. The blue line draws the random advisors from the same dealer firm; the red line draws these advisors from the other dealer firm. 61 7 Client idiosyncratic risk, annualized % Average client, six-factor model Aggregate client, two-factor model 6 5 4 3 1 2 3 4 5 6 7 8 9 10 Advisor idiosyncratic risk decile Figure A2: Client idiosyncratic risk conditional on advisor idiosyncratic risk. This figure sorts advisors into deciles based on their idiosyncratic portfolio risk and reports the average portfolio idiosyncratic risks of the clients of these advisors. The black line is drawn by first measuring the idiosyncratic risk for each client and advisor as the volatility of the residual return from the sixfactor model. We then compute the average volatility over each advisor’s clients. This line plots the idiosyncratic volatility of the average client of the average advisor in each decile. The red line computes the value-weighted return earned by the aggregate client portfolio, and measures the volatility of the residual return from the two-factor model with the market and term factors. This line plots the idiosyncratic volatility of the aggregate client of the average advisor in each decile. The bars denote the 95% confidence intervals. 62 Table A1: Estimated probabilities of advisor survival This table reports estimates from linear probability models that examine the relationship between advisor survival and the number of clients. The data are annual. If an advisor serves clients in year y and continues to do so in year y + 1, the dependent variable takes the value of one. If an advisor stops advising clients during the following year, the dependent variable takes the value of zero. The regressors consist of indicator variables that indicate the number of clients the advisor has in year y. Advisors with more than 100 clients are the omitted category. The regressions are estimated with year fixed effects and standard errors are clustered by advisor. Regressor Intercept Number of clients 1–5 6–10 11–15 16–20 21–30 31–40 41–50 50–100 Coefficient 0.989 SE 0.002 −0.177 −0.083 −0.051 −0.034 −0.040 −0.027 −0.019 −0.016 0.010 0.010 0.009 0.008 0.007 0.006 0.006 0.004 Adjusted R2 N 8.28% 98,974 63 Table A2: Investment performance of clients and advisors: Factor loadings and model fit This table reports factor loadings and adjusted R2 statistics for the six-factor model performance regressions reported in Table 3. The six factors consist of the the excess return on the Canadian equity market (MKTRF); North American size (SMB), value (HML), and momentum (UMD) factors; the return difference between the long-term and short-term Canadian government bonds (TERM); and the return difference between high-yield Canadian corporate debt and investment grade debt (DEF). Return series Factor MKTRF SMB HML UMD TERM DEF Adjusted R2 Clients b̂ 0.540 0.074 0.018 −0.036 0.118 0.135 SE 0.019 0.026 0.021 0.013 0.038 0.037 Advisors b̂ SE 0.597 0.021 0.111 0.028 −0.038 0.023 −0.029 0.014 0.098 0.041 0.158 0.040 Clients − Advisors b̂ SE −0.057 0.005 −0.036 0.006 0.057 0.005 −0.007 0.003 0.020 0.009 −0.023 0.009 88.4% 79.3% 87.0% 64 Table A3: Decomposition of the return gap between the client and advisor net returns We measure the difference in net returns between clients and advisors, and decompose this return difference into four components. We compute net returns after management expense ratios but before additional expenses and rebates. “Style gross alpha” is the difference in style gross returns, where style gross returns are computed by replacing every fund with the average fund of the same style. “Within-style gross alpha” is the difference in within-style gross returns, where the withinstyle return is computed as the difference between the actual fund return and the return earned by the average fund of the same style. “Style fee” is the difference in style fees, where style fee is defined as the management expense ratio of the average fund of the same style. “Within-style fee” is the difference in within-style fees, which are computed as the differences between actual fund MER and the MER of the average fund of the same style. These four components add up to the total difference in net returns between clients and advisors shown on the bottom row The first set of columns report time-series averages of these components for value-weighted advisor and client portfolios. The second set of columns reports the six-factor model alphas for these components and for the total difference. The t-values associated with the style fee and within-style fee components are large because these differences are very stable in the time-series. Client-minus-advisor return component Style gross alpha Within-style gross alpha Style fee Within-style fee Total difference Excess returns Estimate t-value 0.33 1.64 0.49 2.36 0.05 42.35 −0.01 −3.71 0.86 2.62 65 Six-factor model Estimate t-value 0.27 1.51 0.28 2.12 0.05 41.92 −0.01 −4.03 0.60 2.74