* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Solution
Classical mechanics wikipedia , lookup
Coriolis force wikipedia , lookup
Center of mass wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Centrifugal force wikipedia , lookup
Fictitious force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Jerk (physics) wikipedia , lookup
Equations of motion wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Specific impulse wikipedia , lookup
Mass versus weight wikipedia , lookup
Hunting oscillation wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Seismometer wikipedia , lookup
Spring2016Physics7ALec001(Yildiz)MidtermII 1. (15points)AnobjectisreleasedfromrestatanaltitudehabovethesurfaceoftheEarth.his comparabletotheradiusofEarth(RE),sogravitationalacceleration(g)isnotconstant. a) WhatisthevelocityoftheobjectwhenithitsthesurfaceofEarth? b) WhatisthegravitationalaccelerationoftheobjectatdistancerfromtheEarth’scenter,where 𝑅! < 𝑟 < 𝑅! + ℎ? c) Whatistherateofchangeofthegravitationalacceleration𝑔 𝑟 asafunctionofthedistancerfrom theEarth’scenter,where𝑅! < 𝑟 < 𝑅! + ℎ? Solution: a) −∆𝑈 = ∆𝐾 𝐺𝑀𝑚 𝑈! (𝑟) = − 𝑟 1 1 1 𝑚𝑣 ! = −𝐺𝑀𝑚 − 2 𝑅! + ℎ 𝑅! ! 𝑣 = 2𝐺𝑀 !! − ! !! !! b)𝐹! 𝑟 = − 𝑔 𝑟 =− c) !" !" = !"# !! = 𝑚. 𝑔(𝑟) 𝐺𝑀 𝑟! !!" !! 2.(20 points) Assume a cyclist of weight mg can exert a force on the pedals equal to 0.80 mg on the average. The pedals rotate in a circle of radius 18 cm, the wheels have a radius of 34 cm, and the front and back sprockets on which the chain runs have 42 and 19 teeth respectively. The mass of the bike is 14 kg and that of the rider is 63 kg. Assume there is no slipping between the ground and the wheel. Use 2 g = 10 m/s for calculations. a)Howistheangularvelocityoftherearwheelofabicycle relatedtotheangularvelocityofthefrontsprocketandpedals?Theteetharespacedthesameonboth sprocketsandtherearsprocketisfirmlyattachedtotherearwheel. b)Determinethemaximumsteepnessofhillthecyclistcanclimbatconstantspeed.Assumethecyclist's averageforceisalwaystangentialtopedalmotion. c)Determinethemaximumsteepnessofhillthecyclistcanclimbatconstantspeed.Assumethecyclist's averageforceisalwaysdownward. Iftheriderisridingataconstantspeed,thenthepositiveworkinputbytheridertothe(bicycle+ rider)combinationmustbeequaltothenegativeworkdonebygravityashemovesuptheincline. Thenetworkmustbe0ifthereisnochangeinkineticenergy. (a) Iftherider’sforceisdirecteddownwards,thentheriderwilldoanamountofworkequalto theforcetimesthedistanceparalleltotheforce.Thedistanceparalleltothedownwardforce wouldbethediameterofthecircleinwhichthepedalsmove.Thenconsiderthatbyusing2 feet,theriderdoestwicethatamountofworkwhenthepedalsmakeonecomplete revolution.Soinonerevolutionofthepedals,theriderdoestheworkcalculatedbelow. Wrider = 2 ( 0.90mrider g ) d pedal motion Inonerevolutionofthefrontsprocket,therearsprocketwillmake 42 19 revolutions,andso thebackwheel(andtheentirebicycleandrideraswell)willmoveadistanceof ( 42 19) (2π r ) .Thatisadistancealongtheplane,andsotheheightthatthebicycleand wheel riderwillmoveis h = ( 42 19 )( 2π rwheel ) sin θ . Finally,theworkdonebygravityinmovingthat heightiscalculated. WG = ( mrider + mbike ) gh cos180° = − ( mrider + mbike ) gh = − ( mrider + mbike ) g ( 42 19 )( 2π rwheel ) sin θ Setthetotalworkequalto0,andsolvefortheangleoftheincline. Wrider + WG = 0 → 2 [0.90mrider g ] d pedal − ( mrider + mbike ) g ( 42 19 )( 2π rwheel ) sin θ = 0 → motion ( 0.90mrider ) d pedal θ = sin motion −1 ( mrider + mbike )( 42 19 )(π rwheel ) = sin −1 0.90 ( 65 kg )( 0.36 m ) ( 77 kg )( 42 19 ) π ( 0.34 m ) = 6.7° (b)Iftheforceistangentialtothepedalmotion,thenthedistancethatonefootmoveswhile exertingaforceisnowhalfofthecircumferenceofthecircleinwhichthepedalsmove.The restoftheanalysisisthesame. ⎛ ⎞ Wrider = 2 ( 0.90mrider g ) ⎜ π rpedal ⎟ ; Wrider + WG = 0 → ⎝ motion ⎠ ( 0.90mrider ) π rpedal θ = sin −1 motion ( mrider + mbike )( 42 19 )(π rwheel ) = sin −1 0.90 ( 65 kg )( 0.18 m ) ( 77 kg )( 42 19 )( 0.34 m ) 3.(20points)TwoblockofmassesMand2Mareconnectedtoaspringof springconstantkthathasoneendfixed,asshown.Thehorizontalsurface = 10.5° ≈ 10° andthepulleyarefrictionlessandthepulleyhasnegligiblemass.Theblocksarereleasedfromrestwith thespringrelaxed. a) Whatisthevelocityoftheblockswhenthehangingblockhasfallenadistanceh? b) Whatmaximumdistancehmaxdoesthehangingblockfallbeforemomentarilystopping? c) Intheabsenceoffriction,thesystemisexpectedtooscillatebackandforthinfinitely.However,if thereiskineticfrictionbetweenblockandthehorizontalsurface(coefficientofkineticfrictionisµk),the systemwilleventuallycometoacompletestop.Whatistheequilibriumpositionofthespring’s extensionwhenthesystemcomestoacompletestop?Whatisthetotaldistancetraveledbythe hangingblockbeforethesystemcomestoacompletestop?(Assumethatthefrictionalforceonthe massMonthehorizontalsurfaceisnegligiblewhenthesystemcomestoacompletestop.) Solution a) 𝑈! + 𝐾! = 𝑈! + 𝐾! 0= 1 ! 1 1 𝑘ℎ − 2𝑀𝑔ℎ + 𝑀𝑣 ! + 2𝑀𝑣 ! 2 2 2 𝑣= b) 𝑈! + 𝐾! = 𝑈! + 𝐾! and 4𝑀𝑔ℎ − 𝑘ℎ! 3𝑀 𝑣! = 0 𝑤ℎ𝑒𝑛 ℎ = ℎ!"# 0= 1 ! 𝑘ℎ − 2𝑀𝑔ℎ!"# + 0 2 !"# ℎ!"# = 4𝑀𝑔 𝑘 c) Inthepresenceofanon-conservativeforce,𝑈! + 𝐾! + 𝑊!" = 𝑈! + 𝐾! 𝑊!" = −𝐹!" 𝑑!"! 𝐹!" = 𝜇! . 𝑁 = 𝜇! 𝑚𝑔 𝐾! = 0 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑈! , 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝐴𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚, 𝐹! = 0, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑇 − 𝑘𝑥!" = 0 𝐵𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑚𝑎𝑠𝑠 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦, 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑜𝑝𝑒 𝐹! = 0, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑇 − 2𝑀𝑔 = 0 2𝑀𝑔 = 𝑘𝑥!" 𝑈! + 𝐾! + 𝑊!" = 𝑈! + 𝐾! 0 − 𝜇! 𝑚𝑔𝑑!"! = 1 𝑘𝑥 ! − 2𝑀𝑔𝑥!" + 0 2 !" −𝜇! 𝑚𝑔𝑑!"! 1 2𝑀𝑔 = 𝑘 2 𝑘 𝑑!"! = ! !!" !!! − 2𝑀𝑔 2𝑀𝑔 𝑘 4.(25points)Supposea spacecraftwithinitialmassof mi.Withoutitspropellant,the spacecrafthasamassofmf= mi/3.Therocketthatpowers thespacecraftisdesignedto ejectthepropellantwitha speedofurelativetothe rocketataconstantrateofR.Thespacecraftisinitiallyatrestinspaceandtravelsinastraightline. a) Howlongwouldittaketherockettoreleaseallofitspropellant? b) Whatism(t),themassoftherocketasafunctionoftime? c) Whatisv(t),thespeedoftherocketasafunctionoftime? d) Howfarwillthespacecrafttravelbeforeitsrocketusesallthepropellantandshutsdown? Hint: ln 1 − 𝑎𝑥 𝑑𝑥 = !"!! ! ln 1 − 𝑎𝑥 − 𝑥 Solution: a) 𝑡! = !! !!! ! = ! !! ! ! ! ! ! !! =! ! b) 𝑚 𝑡 = 𝑚! − 𝑅𝑡 c) Because 𝑭!"# = 0 !" !" 𝑚 !" !" = 𝑣!"# !! !" = −𝑅𝑣!"# = −𝑢 (𝑟𝑒𝑔𝑎𝑟𝑑𝑙𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑐𝑘𝑒𝑡) 𝑚! − 𝑅𝑡 ! 𝑣= ! 𝑢𝑅 𝑑𝑡 𝑚! − 𝑅𝑡 𝑣 = 𝑢𝑙𝑛 d) 𝑥! = 𝑡𝑓 ! 𝑣𝑑𝑡 = −𝑢 𝑡𝑓 ! 𝑙𝑛 1 − !" 𝑚𝑖 𝑑𝑣 = 𝑢𝑅 𝑑𝑡 𝑚𝑖 𝑚! − 𝑅𝑡 𝑑𝑡 UsingtheHintgiveninthequestion,𝑥! = −𝑢 𝑡− 𝑚𝑖 ! 𝑙𝑛 1 − !" 𝑚𝑖 −𝑡 𝑡𝑓 ! and𝑡! = ! !! ! ! 𝑥! = −𝑢 2 𝑚𝑖 𝑚𝑖 𝑅 2 𝑚𝑖 2 𝑚𝑖 𝑚𝑖 𝑅. 0 − 𝑙𝑛 1 − − − − 𝑙𝑛 1 − −0 3𝑅 𝑅 𝑚𝑖 3 𝑅 3𝑅 𝑅 𝑚𝑖 𝑥! = −𝑢 1 𝑚𝑖 2 2 𝑚𝑖 𝑙𝑛 1 − − 3𝑅 3 3𝑅 𝑥! = 𝑢 𝑚𝑖 2 𝑅 3 − 1 𝑙𝑛3 3 5.(20points)Acylindricallysymmetricspoolofmassm andradiusRsitsatrestonahorizontaltablewith friction.Withyourhandonamasslessstringwrapped aroundtheaxleofradiusr,youpullonthespoolwitha constanthorizontalforceofmagnitudeTtotheright.As aresult,thespoolrollswithoutslippingadistanceL alongthetable.Assumethatthespoolisasoliduniform cylinder. a)Whatisthedistancethatyourhandtravelsasthe spoolmovesadistanceL? b)Findthefinaltranslationalspeedofthecenterofmassofthespoolusingthework-energyprinciple? c)Findthevalueofthefrictionforcefandaccelerationofthespoolusingtheequationsfordynamicsof themotion(e.g.forceandtorque)? c.Inlectures,weusedF=maandτ=Iαtofindfrictionalforceandacceleration.Hereisanalternative solutionusingImpulse-momentumtheorem.