* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Solution
Classical mechanics wikipedia , lookup
Coriolis force wikipedia , lookup
Center of mass wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Centrifugal force wikipedia , lookup
Fictitious force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Jerk (physics) wikipedia , lookup
Equations of motion wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Specific impulse wikipedia , lookup
Mass versus weight wikipedia , lookup
Hunting oscillation wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Seismometer wikipedia , lookup
Spring2016Physics7ALec001(Yildiz)MidtermII 1. (15points)AnobjectisreleasedfromrestatanaltitudehabovethesurfaceoftheEarth.his comparabletotheradiusofEarth(RE),sogravitationalacceleration(g)isnotconstant. a) WhatisthevelocityoftheobjectwhenithitsthesurfaceofEarth? b) WhatisthegravitationalaccelerationoftheobjectatdistancerfromtheEarthβscenter,where π ! < π < π ! + β? c) Whatistherateofchangeofthegravitationalaccelerationπ π asafunctionofthedistancerfrom theEarthβscenter,whereπ ! < π < π ! + β? Solution: a) ββπ = βπΎ πΊππ π! (π) = β π 1 1 1 ππ£ ! = βπΊππ β 2 π ! + β π ! ! π£ = 2πΊπ !! β ! !! !! b)πΉ! π = β π π =β c) !" !" = !"# !! = π. π(π) πΊπ π! !!" !! 2.(20 points) Assume a cyclist of weight mg can exert a force on the pedals equal to 0.80 mg on the average. The pedals rotate in a circle of radius 18 cm, the wheels have a radius of 34 cm, and the front and back sprockets on which the chain runs have 42 and 19 teeth respectively. The mass of the bike is 14 kg and that of the rider is 63 kg. Assume there is no slipping between the ground and the wheel. Use 2 g = 10 m/s for calculations. a)Howistheangularvelocityoftherearwheelofabicycle relatedtotheangularvelocityofthefrontsprocketandpedals?Theteetharespacedthesameonboth sprocketsandtherearsprocketisfirmlyattachedtotherearwheel. b)Determinethemaximumsteepnessofhillthecyclistcanclimbatconstantspeed.Assumethecyclist's averageforceisalwaystangentialtopedalmotion. c)Determinethemaximumsteepnessofhillthecyclistcanclimbatconstantspeed.Assumethecyclist's averageforceisalwaysdownward. Iftheriderisridingataconstantspeed,thenthepositiveworkinputbytheridertothe(bicycle+ rider)combinationmustbeequaltothenegativeworkdonebygravityashemovesuptheincline. Thenetworkmustbe0ifthereisnochangeinkineticenergy. (a) Iftheriderβsforceisdirecteddownwards,thentheriderwilldoanamountofworkequalto theforcetimesthedistanceparalleltotheforce.Thedistanceparalleltothedownwardforce wouldbethediameterofthecircleinwhichthepedalsmove.Thenconsiderthatbyusing2 feet,theriderdoestwicethatamountofworkwhenthepedalsmakeonecomplete revolution.Soinonerevolutionofthepedals,theriderdoestheworkcalculatedbelow. Wrider = 2 ( 0.90mrider g ) d pedal motion Inonerevolutionofthefrontsprocket,therearsprocketwillmake 42 19 revolutions,andso thebackwheel(andtheentirebicycleandrideraswell)willmoveadistanceof ( 42 19) (2Ο r ) .Thatisadistancealongtheplane,andsotheheightthatthebicycleand wheel riderwillmoveis h = ( 42 19 )( 2Ο rwheel ) sin ΞΈ . Finally,theworkdonebygravityinmovingthat heightiscalculated. WG = ( mrider + mbike ) gh cos180° = β ( mrider + mbike ) gh = β ( mrider + mbike ) g ( 42 19 )( 2Ο rwheel ) sin ΞΈ Setthetotalworkequalto0,andsolvefortheangleoftheincline. Wrider + WG = 0 β 2 [0.90mrider g ] d pedal β ( mrider + mbike ) g ( 42 19 )( 2Ο rwheel ) sin ΞΈ = 0 β motion ( 0.90mrider ) d pedal ΞΈ = sin motion β1 ( mrider + mbike )( 42 19 )(Ο rwheel ) = sin β1 0.90 ( 65 kg )( 0.36 m ) ( 77 kg )( 42 19 ) Ο ( 0.34 m ) = 6.7° (b)Iftheforceistangentialtothepedalmotion,thenthedistancethatonefootmoveswhile exertingaforceisnowhalfofthecircumferenceofthecircleinwhichthepedalsmove.The restoftheanalysisisthesame. β β Wrider = 2 ( 0.90mrider g ) β Ο rpedal β ; Wrider + WG = 0 β β motion β ( 0.90mrider ) Ο rpedal ΞΈ = sin β1 motion ( mrider + mbike )( 42 19 )(Ο rwheel ) = sin β1 0.90 ( 65 kg )( 0.18 m ) ( 77 kg )( 42 19 )( 0.34 m ) 3.(20points)TwoblockofmassesMand2Mareconnectedtoaspringof springconstantkthathasoneendfixed,asshown.Thehorizontalsurface = 10.5° β 10° andthepulleyarefrictionlessandthepulleyhasnegligiblemass.Theblocksarereleasedfromrestwith thespringrelaxed. a) Whatisthevelocityoftheblockswhenthehangingblockhasfallenadistanceh? b) Whatmaximumdistancehmaxdoesthehangingblockfallbeforemomentarilystopping? c) Intheabsenceoffriction,thesystemisexpectedtooscillatebackandforthinfinitely.However,if thereiskineticfrictionbetweenblockandthehorizontalsurface(coefficientofkineticfrictionisµk),the systemwilleventuallycometoacompletestop.Whatistheequilibriumpositionofthespringβs extensionwhenthesystemcomestoacompletestop?Whatisthetotaldistancetraveledbythe hangingblockbeforethesystemcomestoacompletestop?(Assumethatthefrictionalforceonthe massMonthehorizontalsurfaceisnegligiblewhenthesystemcomestoacompletestop.) Solution a) π! + πΎ! = π! + πΎ! 0= 1 ! 1 1 πβ β 2ππβ + ππ£ ! + 2ππ£ ! 2 2 2 π£= b) π! + πΎ! = π! + πΎ! and 4ππβ β πβ! 3π π£! = 0 π€βππ β = β!"# 0= 1 ! πβ β 2ππβ!"# + 0 2 !"# β!"# = 4ππ π c) Inthepresenceofanon-conservativeforce,π! + πΎ! + π!" = π! + πΎ! π!" = βπΉ!" π!"! πΉ!" = π! . π = π! ππ πΎ! = 0 π π¦π π‘ππ ππ π π‘ππ‘ππππππ¦ , π‘π ππππ π! , π€π ππππ π‘π ππππ π‘βπ πππ’πππππππ’π πππ ππ‘πππ. π΄π‘ πππ’πππππππ’π, πΉ! = 0, π‘βπππππππ π β ππ₯!" = 0 π΅ππππ’π π π‘βπ βππππππ πππ π ππ πππ π π π‘ππ‘ππππππ¦, π ππ π‘βπ π‘πππ πππ ππ π‘βπ ππππ πΉ! = 0, π‘βπππππππ π β 2ππ = 0 2ππ = ππ₯!" π! + πΎ! + π!" = π! + πΎ! 0 β π! πππ!"! = 1 ππ₯ ! β 2πππ₯!" + 0 2 !" βπ! πππ!"! 1 2ππ = π 2 π π!"! = ! !!" !!! β 2ππ 2ππ π 4.(25points)Supposea spacecraftwithinitialmassof mi.Withoutitspropellant,the spacecrafthasamassofmf= mi/3.Therocketthatpowers thespacecraftisdesignedto ejectthepropellantwitha speedofurelativetothe rocketataconstantrateofR.Thespacecraftisinitiallyatrestinspaceandtravelsinastraightline. a) Howlongwouldittaketherockettoreleaseallofitspropellant? b) Whatism(t),themassoftherocketasafunctionoftime? c) Whatisv(t),thespeedoftherocketasafunctionoftime? d) Howfarwillthespacecrafttravelbeforeitsrocketusesallthepropellantandshutsdown? Hint: ln 1 β ππ₯ ππ₯ = !"!! ! ln 1 β ππ₯ β π₯ Solution: a) π‘! = !! !!! ! = ! !! ! ! ! ! ! !! =! ! b) π π‘ = π! β π π‘ c) Because π!"# = 0 !" !" π !" !" = π£!"# !! !" = βπ π£!"# = βπ’ (πππππππππ π ππ π‘βπ π ππππ ππ π‘βπ ππππππ‘) π! β π π‘ ! π£= ! π’π ππ‘ π! β π π‘ π£ = π’ππ d) π₯! = π‘π ! π£ππ‘ = βπ’ π‘π ! ππ 1 β !" ππ ππ£ = π’π ππ‘ ππ π! β π π‘ ππ‘ UsingtheHintgiveninthequestion,π₯! = βπ’ π‘β ππ ! ππ 1 β !" ππ βπ‘ π‘π ! andπ‘! = ! !! ! ! π₯! = βπ’ 2 ππ ππ π 2 ππ 2 ππ ππ π . 0 β ππ 1 β β β β ππ 1 β β0 3π π ππ 3 π 3π π ππ π₯! = βπ’ 1 ππ 2 2 ππ ππ 1 β β 3π 3 3π π₯! = π’ ππ 2 π 3 β 1 ππ3 3 5.(20points)Acylindricallysymmetricspoolofmassm andradiusRsitsatrestonahorizontaltablewith friction.Withyourhandonamasslessstringwrapped aroundtheaxleofradiusr,youpullonthespoolwitha constanthorizontalforceofmagnitudeTtotheright.As aresult,thespoolrollswithoutslippingadistanceL alongthetable.Assumethatthespoolisasoliduniform cylinder. a)Whatisthedistancethatyourhandtravelsasthe spoolmovesadistanceL? b)Findthefinaltranslationalspeedofthecenterofmassofthespoolusingthework-energyprinciple? c)Findthevalueofthefrictionforcefandaccelerationofthespoolusingtheequationsfordynamicsof themotion(e.g.forceandtorque)? c.Inlectures,weusedF=maandΟ=IΞ±tofindfrictionalforceandacceleration.Hereisanalternative solutionusingImpulse-momentumtheorem.