* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Study Guide Chap. 11
Copenhagen interpretation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Tight binding wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Perturbation theory (quantum mechanics) wikipedia , lookup
Franck–Condon principle wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Quantum state wikipedia , lookup
Double-slit experiment wikipedia , lookup
Renormalization wikipedia , lookup
Atomic orbital wikipedia , lookup
Coherent states wikipedia , lookup
Atomic theory wikipedia , lookup
Density matrix wikipedia , lookup
X-ray photoelectron spectroscopy wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Renormalization group wikipedia , lookup
Path integral formulation wikipedia , lookup
Electron scattering wikipedia , lookup
Probability amplitude wikipedia , lookup
Dirac equation wikipedia , lookup
Wave function wikipedia , lookup
Canonical quantization wikipedia , lookup
Schrödinger equation wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Hydrogen atom wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Wave–particle duality wikipedia , lookup
Matter wave wikipedia , lookup
Particle in a box wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Study Guide for chapter 11 1. Blackbodyradiation. a. Whatisblackbodyradiation?Whatquantitydoesthe totalenergyorenergydensity oftheradiationdepend on?Dotheydependentonthetypeofobjects? b. c. Wediscussedseveraltheories:Stefan-Boltzmannlaw, Wienequation,Planckequation,andRayleigh-Jeans equation.Whichonesgivetheexactdescriptionofthe energyofblackbodyradiation?Youneedtoknowthe approximateformoftherelationships.Drawthecurvesof radiationenergydensityvs.wavelengthorfrequency overtemperatureatdifferenttemperaturesusing Planck’sequation.HowdoesitchangeifWienequationor Rayleigh-Jeansequationisused?Whatisultra-violet catastrophe?Howdoyouconvertwavelengthto frequency? OriginofPlanck’sequation.Whatarethetwotheoretical considerationsforderivingthePlanckequation?Under whatassumptionsdoesPlanck’sequationreduceto Rayleigh-Jeansequation? 2. Photoelectriceffect.Whataretheobservations?Howdoesthe theorydevelopedbyEinsteinexplainthem? 3. Theparticlenatureoflightcanbeexplainedusingtheconcept ofaphoton.Remembertherelationshipbetweenwavelength (waveproperty)andlinearmomentum(particleproperty). 4. Electrondiffraction.WhatisthedeBrogliewavelengthof particles?Whichparticleismorewave-like,a)electron;b) neutron;orc)atom? 5. Wave-particleduality.Whatistherelationshipthatreconciles thewaveandparticlenatureofmatter? 6. Heisenberg’suncertaintyprinciple.Intheelectrondiffraction experiment,narrowingtheslitresultsinanincreasedaccuracy inourknowledgeofthepositionofelectrons,butadecreased accuracyintheknowledgeofthemomentuminthesame direction. 7. Time-dependentSchrödingerequation.Writedownthe equationinthegeneralform(inthreedimensions)andthe equationforafreeelectron.Whatisthevariable?Whatarethe operators?Whatistheunknown?Whatinformationdoesthe solutionoffer? 8. Time-independentSchrödingerequation. a. Derivethetime-independentSchrödingerequationfrom thetime-dependentform assumingthattheexternal field(orpotential)istimeinvariant.Hint:expressthe time-dependentwavefunctionasaproductofthetimeindependentwavefunctionandanexponentialfunction (Eq.11.83). b. Writedowntheequationinthreedimensionandpoint outthevariable,operator.Whataretheunknowns? c. Writedowntheprobabilitydensityandtheprobabilityof findingaparticleinaspaceelementdxdydzandinthe entirespace.Whatis|f|2forarealfunctionfanda complexfunctionf=af1+ibf2? 9. Eigenvalueequation.Givenanexampleofeigenvalue equationandpointouttheoperator,eigenfunctionand eigenvalue. 10. PostulatesIII.Quantummechanicaloperatorsperform twotypesofoperations.Whatarethey?Remember:position operator,linearmomentumoperator,kineticenergyoperator andpotentialenergyoperator. 11. Generalunderstandingof“particleinaonedimensionalbox”.WritedownthetwoSchrödingerequations fordescribingtheparticleinaone-dimensionalbox(forboth insideandoutsideofthebox)?Whatisthetotalenergyand wavefunctionobtainedfromsolvingthesetwoequations? 12. Moreon“particleinaone-dimensionalbox”. a. Writedowntheprobabilitydensityoffindingthe particleinsidethebox. b. Drawaplotshowingthewavefunctionandprobability densityforthestaten=2? c. Whatisthetotalenergyoftheparticleinstaten=4?On howmanypositionscanthe particlevanishinsidethe boxinthisstate? d. Istheenergygapbetweentwoadjacentenergylevels,n andn+1thesame?Givethe expressionforthisenergy gap. e. Whatisprobabilityoffindingtheparticlebetween positionxandx+dx? f. Whatisthetotalprobabilityoffindingtheparticleinthe box? 13. Contrast“particleinaone-dimensionalbox”with “tennisballinaone-dimensionalbox”.Supposewegivethe tennisballaninitialvelocityinthexdirection.Nofrictionor otherforcesarepresent.Pointouttwomajordifferences.Hint: energylevelsandprobabilityoffindingtheparticleorball. 14. Particleinabox–threedimensionalform. a. Writedownthewavefunctionandenergyoftheparticle. Thereisonequantum numberforeachdimension. b. Whatisthedegreeofdegeneracyfortheenergylevel E2,3,4?Whatisthenumberof wavefunctionsforthis energylevel? 15. HarmonicOscillator–classicalenergyandquantum description. a. Writedowntheclassicalexpressionforthetotalenergy ofasystemconsistingoftwo ballsconnectedbya masslessspring.Pointoutthekineticenergyand potential energy. b. WhatisthecorrespondingHamiltonian? c. WhatistheSchrodingerequationthatdescribesthe system? d. Whatisthequantummechanicalenergyofaharmonic oscillator?Explainallterms. Whatisthelowestenergy? Aretheenergylevelsdegenerate? e. Pointouttwodifferencesbetweentheclassicaland quantumdescriptionof harmonicoscillator.Hint:energy andprobabilitydensity. 16. Vibrationalspectroscopy. a. Whichenergylevelismostpopulatedatroom temperature?Whatisthemost probabletransition betweenvibrationalenergylevels?Writedownthe transition energyandexplainallterms.Whatisthe frequencyofemittedorabsorbedlight? b. Nameoneusefulquantityonecanobtainfrommeasuring thevibrationalspectrumof amolecule. c. Inwhichwavelengthregioncanavibrationaltransition beobserved?a)Infrared;b) Ultra-violet;c)X-ray;ord) visible? 17. Commutator. a. Usethecommutationrelation(commutator)betweenthe twooperators𝑧and𝑝!to provethatzandpzcannotbe simultaneouslydetermined,e.g.,∆𝑧∆𝑝!≠0. b. Usethecommutationrelationtoprovethatenergyand timecannotbe simultaneouslydetermined,e.g.,∆𝑡∆𝐸≠ 0. c. Canwesimultaneouslydeterminezandpzoftwo particles? d. Bonus.Canxandkineticenergybesimultaneously determined? 18. Requirementsforanacceptablewavefunction. a. Givethedefinitionforwavefunction. b. Namethreerequirementsforanacceptablewave function. c. Whichofthefollowingfunctionscannotbeawave function?a)kx;b)sin(ax);c)eax; d)sin2(ax) 19. Quantumdescriptionofhydrogen-likeatoms a. WritedowntheHamiltonianforasystemconsistingof oneelectronandonenucleus. Pointoutthekinetic energyoperatorandpotentialenergyoperator. b. WhatistheelectronicenergyofHatom?Whichquantum numberdoesitdependon? Whatthedegreeof degeneracy? c. Whatisthespacingbetweentwoadjacentlevels?Does thespacingincrease, decreaseorremainthesamewith thequantumnumber? 20. Orbitals a. Theelectronicwavefunctionisalsoknownasorbital.An orbitalisspecifiedbywhat quantumnumbers? b. Writedownthequantumnumbersforthefollowing orbitals:3s,4py,4dx2-y2,5dz2. c. Howmanynodesdotheaboveorbitalshave? d. DrawtheseorbitalsinCartesiancoordinate. 21. Radialfunction. a. Whatisaradialfunction?Whatisaradialdistribution function? b. Fortheorbital5dz2,writedowntheexpressionforthe radialdistributionfunction. 22. Angularmomentum–classicalformandquantum mechanicaloperator. a. Writedowntheclassicalequationfortheangular momentum(Lz)ofamassrotating aboutzaxis.Explain theterms. b. Whatisthecorrespondingquantummechanical operator? 23. Rigidrotor–classicalenergyandquantumdescription. a. Writedowntheclassicalexpressionforthekineticenergy ofarigidrotor. b. WhatisthecorrespondingHamiltonian? c. WhatistheSchrodingerequationthatdescribesarigid rotor?Whatarethequantum numbers? d. Writedownthequantummechanicalenergyofarigid rotor.Aretheenergylevels degenerate?Ifyes,whatis thedegreeofdegeneracy? 24. Rotationalspectroscopy. a. Whataretheallowedtransitionsbetweenrotational energylevels?Writedownthe transitionenergyand explainallterms.Whatisthefrequencyofemittedor absorbed light? b. Nameoneusefulquantityonecanobtainfrommeasuring therotationalspectrumof amolecule. c. Whatisthewavelengthrangeofrotationalspectra? 25. Orbitalangularmomentumoperators a. Writedowntheclassicalformandquantummechanical operatorofangular momentuminCartesiancoordinate. b. Whatistheadvantageoftransformingtoaspherical coordinate? c. Whataretheeigenvaluesandeigenfunctionsof𝐿zand𝐿2 operators?Pointoutthe quantumnumbersandthe valuestheycantakeon. d. WhatvaluescanLhave? 26. Spinangularmomentumoperators a. Noclassicalcounterpart. b. Whataretheeigenvaluesandeigenfunctionsforof𝑆zand 𝑆2operators? c. Whatisthespinforphotons,neutronsandelectrons?