* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Honors Algebra 2 Summer Worksheet # 1. Due the first day
Survey
Document related concepts
Transcript
Honors Algebra 2 Summer Worksheet # 1. # = # Due the first day of class. = . Always reduce fractions!!!! Adding/Subtracting Fractions: The denominators have to be the same. Then add/subtract the top. 2 10 12 2 1 2 2 4 1 5 1 1 12 1 13 + → → 42. + + → = .3 + → + → 3 3 3 5 10 5 2 10 10 10 2 4 4 4 4 +1 5 3( + 1) 5 3 +3 8 +3 −3 4(3 ) −3 12 + − 3 → + → + → $.3 + → + → . + 3 5 5(3) 3(5) 15 15 15 4 4(1) 4 4 13 − 3 → 4 ' $' ' .' .' $' /' .' &' .' &' 0' &. + (()*+ ,- ) → + = /. + .'(()*+.',- ) → + → & & & & & Be careful of the “-“ in front of the second fraction. It implies to multiply everything by -1 5 +1 5 − −1 4 −1 3 4 −1 9 −2(4 − 1) 9 − 8 + 2 +2 − → + → 1. − → + → → 0. 3 3 3 3 3 2 3 6 6 6 6 1. Multiplying Fractions: Multiply the numerators; Multiply the denominators. Reduce any numerator with any denominator. Add exponents when multiplying monomials. Subtract exponents when dividing… 4 7 47; :<; 47 7 :< 4 7;∗4; 9; F ∗ :9 =>?@A? :9 B 5 CD@ :8 B 5E → 5∗5 → G :8 (;H:) : 4(;H:) 5; 8; J 5; ; J 5; 5; K ∗ → I 13.5 7 ∗ → ∗ → = 5 4 :< : :< : 4 4 9 10. 5 ∗ 8 = :8 11. 7; :<(;H:) 9; 12. :8 ∗ → Dividing Fractions: Find the reciprocal of the second fraction (flip it) and then multiply. 8 8< 8 7; :∗: : 9; 9; 14. 9; ÷ 7; → 9; ∗ 8< → 4∗:< = 4< 15. 48 ÷ 16 → 48 ÷ Multi-tiered Fractions: 16. 17. JU V FW X 4 X K = = 7; Y F Z X K ÷ 4< 5 4∗8 :∗5 = M N O P Q S Q T = R÷T = R∗S = → = 7; Y 5 ;5 QT RS so a shortcut is 5; M N O P 9; : ; : ; → 48 ∗ :I = 48 ∗ 4 = 8< QT = RS ∗ 4< → Y(8) = 58 Or use the shortcut :< 5 :I : JU V FW X 7;∗5 5; = Y∗4< = 58 Substituting in fractions. Just plug them in and simplify carefully. 18. f(x) = 2x2 – 3x – 4. Find f(-1/2) 2(-1/2)2 – 3(-1/2) – 4 2(-1/2)(-1/2) – 3(-1/2) – 4 2(1/4) +3/2 – 4 ½ + 3/2 + 8/2 12/2 6 Factoring Fractions: Sometimes in Algebra, the number in front of x2 needs to be 1 so the number in front of x2 is factored 19. 2x2 – 11x 2(x2 – 11x/2) 20. 1/2x2 – 8x ½ (x2 – 16x) (8 divided by ½ is 16!) Simplifying Radicals.Look for the radicand sets of the coefficients. Bring one number out and discard the others. Multiply anything that comes out together; multiply anything left inside together. For exponents, divide the exponent by the radicand. The quotient comes out and the remainder stays in. \ √#n is the radicand. X 21. √54 :5 (>C@ACD@]3): X√3 Answer: a √.a 22. 5b96 J If ‘n’ isn’t there then the radicand is a ‘2’ Y9 ∗ 3 ∗ 3 ∗ 23AB?]B&2]C]D. :5 ]4`1]Bx4 5 Y J 9 comes out; x1 stays in → 5√2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 32AB?]B&(2 ∗ 3)]C]D. 7 ]1`3; 7 ]2`0]BDB]C]D. J Answer: 5 ∗ 2 4 √6 5 → dae. √&a : Y 23. 5b72 Y (>C@ACD@]2) → √2 ∗ 2 ∗ 2 ∗ 3 ∗ 3(2 ∗ 3)AB?]B2]C]D. 4 ]0`1; 4 ]3`1 Answer: 5 ∗ 2 ∗ 3 5 b2 = e b.ae Adding Radicals: Simplify the inside of the radicals. Add the outsides if the insides are the same. 24.5√3 − 2√5 − √5 + 3√3 → 0√ − √$ 25. 8√12 − 5√75 → 8√2 ∗ 2 ∗ 3 − 5√3 ∗ 5 ∗ 5 → 16√3 − 25√3 → −1√ Multiplying Radicals: Multipliy the outside numbers.Mulitply the inside numbers. Simplify the inside. 26. 5√6 ∗ 3√2 = 5 ∗ 3√6 ∗ 2 = 15√2 ∗ 3 ∗ 2 = √ X X X X 27.14√20 ∗ √2 = 14√2 ∗ 2 ∗ 5 ∗ 2 = 28√5 Dividing Radicals: Divide/Reduce outside numbers. Divide reduce inside numbers. If there is a radical in the denominator then multiply top and bottom by the bottom radical. √Y √5 √4: √4: ∗ → → 5 √5 √5 √G :8 5 5 √5 √5 → ∗ = 29. :<√5 4 √5 √5 4 √5 √5 28. = 5 √5 4√5∗5 → 5 √5 4∗5 = √5 4 You are also expected to be able to add, multiply, and divide up to 3-digit numbers without a calculator. Simplify the following on separate paper without using your calculator. Show work. Use your calculator to check your answers. Some of the answers will be on-line for you to check your answers also. 1. 5/3 + 7/3 6. 11. x 4 − 4 x 8x 8g 9 ∗ :9< g 16. 4b120 2. ¾ - 2 7. 5g 7 − 8 3. 1/5 – 4/7 + 13/35 8g I 12. I; ÷ IG 20. (4√5)(√10) 4<; :8 8. 21. (3√10)4 8 − 2h 9. I ∗ 8 13. 9 ÷ 100 17. b−250 :I X 5g 7 x x +1 − 4 4 4. 18. 5√8 − 3√2 9 √5 √4 22. 7 14. 4<; :8 KU ZF ZW iUF 23. 4 √5 8 √I 28. F(x) = -2x2 + 4x + 1. Find f(3/2) 29-30. Multiply without a calculator. Show work: 29. 29(345) 30. (-123)(.00014) 31-32. Perform the long division without a calculator. Leave answers with remainders: 31. 165 divide by 12 32. 14567/15 Recall that the distance formula is: b(a. − ad ). + (e. − ed ). 33. Find the distance between (-2,3) and (-1,4) 34. Find the radius of the circle that has the endpoints (-3,5) and (-1,3) 10. 15. 19. 5√18 − √50 + √240 24-26. Factor out the number so that x2 is by itself. (See examples 19 & 20) 24. -3x2 – 16x 25. ½ x2 – 7x 26. ¾ x2 – 21x 27-28. Simplify: 27. f(x) = 3x2 – 2x – 10. Find f(-1/2) 5. x x +1 − 4 3 8 9 ∗6 4< K jU