Download by Acceleration of Lymphocyte Homing the Number of Circulating

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

T cell wikipedia , lookup

Phagocyte wikipedia , lookup

Polyclonal B cell response wikipedia , lookup

Adaptive immune system wikipedia , lookup

Cancer immunotherapy wikipedia , lookup

Innate immune system wikipedia , lookup

Psychoneuroimmunology wikipedia , lookup

Lymphopoiesis wikipedia , lookup

X-linked severe combined immunodeficiency wikipedia , lookup

Immunomics wikipedia , lookup

Adoptive cell transfer wikipedia , lookup

Immunosuppressive drug wikipedia , lookup

Transcript
This information is current as
of June 12, 2017.
FTY720, a Novel Immunosuppressant, Induces
Sequestration of Circulating Mature
Lymphocytes by Acceleration of Lymphocyte
Homing in Rats. I. FTY720 Selectively Decreases
the Number of Circulating Mature Lymphocytes
by Acceleration of Lymphocyte Homing
Kenji Chiba, Yoshiki Yanagawa, Yumi Masubuchi, Hirotoshi
Kataoka, Takafumi Kawaguchi, Makio Ohtsuki and Yukio
Hoshino
References
Subscription
Permissions
Email Alerts
This article cites 45 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/160/10/5037.full#ref-list-1
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 1998 by The American Association of
Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
J Immunol 1998; 160:5037-5044; ;
http://www.jimmunol.org/content/160/10/5037
FTY720, a Novel Immunosuppressant, Induces Sequestration
of Circulating Mature Lymphocytes by Acceleration of
Lymphocyte Homing in Rats. I. FTY720 Selectively Decreases
the Number of Circulating Mature Lymphocytes by
Acceleration of Lymphocyte Homing
Kenji Chiba,1 Yoshiki Yanagawa, Yumi Masubuchi, Hirotoshi Kataoka, Takafumi Kawaguchi,
Makio Ohtsuki, and Yukio Hoshino
C
yclosporin A (CsA)2 and tacrolimus (FK506) have made
great contributions to the prevention of acute rejection in
human organ transplantations (1, 2). Both of these two
immunosuppressants are known to exert their immunosuppressive
activity by inhibiting the production of Th1-associated cytokines
in Ag-stimulated helper T cells (3–5). Although CsA and FK506
bind to different proteins, cyclophilin and FK506 binding protein
(FKBP), respectively, both cyclophilin/CsA and FKBP/FK506
complexes inhibit the phosphatase activity of calcineurin, which
activates NF-AT involved in the promotion of IL-2 gene transcription (6). Because CsA and FK506 affect the same process of T cell
activation, they show quite similar side effects, such as renal and
liver toxicities (1, 2). Thus, CsA- or FK506-based multiple drug
therapy with steroids or other immunosuppressants has been
Research Laboratories, Yoshitomi Pharmaceutical Industries, Limited,Iruma,
Saitama, Japan
Received for publication October 17, 1997. Accepted for publication January
12, 1998.
The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.
1
Address correspondence and reprint requests to Dr. Kenji Chiba, Research Laboratories, Yoshitomi Pharmaceutical Industries, Ltd. 3–7–25, Koyata, Iruma, Saitama,
358-0026 Japan. E-mail address: [email protected]
2
Abbreviations used in this paper: CsA, cyclosporin A; FK506, tacrolimus; TDL,
thoracic duct lymph; PLN, peripheral lymph nodes; MLN, mesenteric lymph nodes;
PP, Peyer’s patches; HEV, high endothelial venules; FTY720, 2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol hydrochloride; p.o., by mouth; PE, phycoerythrin.
Copyright © 1998 by The American Association of Immunologists
widely used to reduce the side effects of individual immunosuppressants in clinical organ transplantation (7, 8).
We previously reported that a potent immunosuppressive compound, ISP-I, and its derivatives, mycestericins, were isolated from
the culture broth of Isaria sinclairii, a species of vegetative wasp
(9, 10). Chemical modification of ISP-I led to a novel synthetic
immunosuppressant, 2-amino-2-[2-(4-octylphenyl)ethyl]propane1,3-diol hydrochloride (FTY720), which has more potent immunosuppressive activity and less toxicity than ISP-I (11–14).
FTY720, at 0.1 mg/kg or more, significantly prolonged skin or
cardiac allograft survival and host survival in lethal graft-vs-host
reaction in rats (15–17). In addition, combination treatment with
FTY720 and a subtherapeutic dose of CsA resulted in a synergistic
effect on canine renal allografts as well as rat skin or cardiac allografts (15, 16, 18, 19). A striking feature of FTY720 is induction
of a marked decrease in the number of PBL, especially T cells, at
doses that prolong allograft survival (15, 16). It has been hypothesized that the decrease in lymphocyte number is caused by apoptotic cell death of lymphocytes, because FTY720 at 4 mM (1.4
mg/ml) or more induces apoptosis of rat spleen cells and human
peripheral blood cells in vitro (20, 21). However, the trough level
of the blood concentration of FTY720 in dogs given 5 mg/kg is
less than 200 ng/ml (21). In addition, the blood concentration
range of FTY720 is 0.2 to 20 ng/ml when given to rats at 0.1
mg/kg to 1 mg/kg (unpublished data from our laboratories). Thus,
the hypothesis concerning FTY720-induced apoptosis is insufficient to explain the intrinsic mechanism of the decreasing effect on
0022-1767/98/$02.00
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
FTY720, given i.v. or orally at 0.03 mg/kg or more, significantly prolonged skin allograft survival in a dose-dependent manner and
showed more potent immunosuppressive activity than cyclosporin A (CsA) or tacrolimus (FK506) in MHC-incompatible rat
strains of WKAH donors and F344 recipients. However, unlike CsA or FK506, FTY720 up to 1000 nM did not affect IL-2
production in allogeneic MLC. Within 3 to 24 h after a single oral administration of FTY720 at 0.1 to 1 mg/kg, the number of
lymphocytes in the rats was markedly decreased in the peripheral blood and thoracic duct lymph and partially in spleen. By
contrast, the number of lymphocytes in peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN), and Peyer’s patches (PP)
was significantly increased at the same time. Intravenous transfusion of calcein-labeled rat lymphocytes into rats revealed that
FTY720 significantly accelerated lymphocyte homing to PLN, MLN, and PP, dose dependently. Since FTY720-induced lymphocyte
homing was completely blocked by simultaneous treatment of the calcein-labeled lymphocytes with mAbs against CD62L, CD49d,
and CD11a before the transfusion, the acceleration of lymphocyte homing by FTY720 appears to be mediated by lymphocytehoming receptors. These findings indicate that FTY720 sequesters circulating mature lymphocytes into PLN, MLN, and PP by
acceleration of lymphocyte homing and thereby decreases the number of lymphocytes in peripheral blood, thoracic duct lymph,
and spleen. Based on these observations, sequestration of circulating mature-lymphocytes is presumed to be a main mechanism
of the immunosuppressive activity of FTY720. The Journal of Immunology, 1998, 160: 5037–5044.
5038
FTY720 ACCELERATES LYMPHOCYTE HOMING IN RATS
Rat skin allograft
FIGURE 1. The chemical structure of FTY720.
IL-2 production in allogeneic MLC in rats
Materials and Methods
Effects on IL-2 production in rat allogeneic MLC were evaluated according
to the method previously reported (28). Allogeneic MLC was performed by
using nylon nonadherent splenic lymphocytes from F344 rats as responder
cells and mitomycin C (Kyowa Hakko, Tokyo, Japan)-pretreated spleen
cells from WKAH rats as stimulator cells. Responder cells at 5 3 106
cells/well were cocultured with an equal number of stimulator cells in 2.0
ml of RPMI 1640 medium containing 50 mM 2-ME and 10% FCS. After
culturing for 48 h at 37°C in 5% CO2, the culture supernatants were collected, and their IL-2 activities were determined by CTLL-2 proliferation
assay (27). Briefly, CTLL-2 cells (104 cells/well) were cultured in the
presence of serial twofold dilution of culture supernatants for 20 h at 37°C,
pulsed with 0.5 mCi of [3H]thymidine (TdR) (Amersham, Tokyo, Japan)
for 4 h at 37°C in 5% CO2 and then harvested onto glass fiber filters using
an automatic cell harvester. The radioactivity incorporated into the cells
was determined by a scintillation counter (1450 MicroBeta; Pharmacia
Biotech, Uppsala, Sweden). IL-2 activity in the supernatants is expressed
as U/ml in comparison with recombinant rat IL-2 (Genzyme, Cambridge
MA) as a standard (27).
Animals
Flow cytometry
Inbred male F344 rats (RT1lv1 ) and WKAH rats (RT1k ) were purchased from Japan Charles River (Atsugi, Kanagawa, Japan) and
Japan SLC (Hamamatsu, Shizuoka, Japan), respectively. All rats
were used at 4 to 12 wk of age.
Cell lines
A mouse IL-2-dependent cytotoxic T cell line, CTLL-2 (27), was obtained
from the American Type Culture Collection (ATCC, Rockville, MD) and
maintained in RPMI 1640 medium supplemented with 2 mM L-glutamine,
10 mM HEPES, 100 U/ml penicillin, 60 mg/ml kanamycin sulfonate, 50
mM 2-ME, 10% FCS (Boehringer Mannheim, Mannheim, Germany) and
20% Con A-stimulated rat spleen cell culture supernatant prepared by the
method previously described (28).
Peripheral blood was collected from the tail veins of F344 rats. Spleen,
PLN (axillary lymph nodes were used as PLN in this study), MLN, and PP
were removed from rats, and single cell suspensions were prepared by
mincing and passing through stainless mesh. Lymphocytes in TDL were
collected by cannulation of thoracic duct under anesthesia according to the
method described previously (37). Flow cytometry analysis was performed
by using EPICS XL-MCL (Coulter, Miami, FL). Lymphocytes from rat
peripheral blood, TDL, spleen, PLN, MLN, or PP were stained with FITCanti-rat CD3 mAb (1F4) and PE-anti-rat CD45RA or A/B mAb (OX-33),
which is reported to bind B cells only (31). The number of total lymphocytes was determined by the lymphocyte gating method. The numbers of T
Reagents
FTY720 was synthesized according to the method previously described
(13). The chemical structure of FTY720 is shown in Figure 1. For i.v.
injection, FTY720 was dissolved in 1% a-cyclodextrin and 5% mannitol
solution. CsA (Sandimmun, for i.v. injection; Sandoz, Basel, Switzerland)
and FK506 (Prograf, for i.v. injection, Fujisawa Pharmaceutical, Osaka,
Japan) was diluted with saline. For oral administration, FTY720 was dissolved in distilled water. CsA (Sandimmun, for oral solution) and FK506
(Prograf, for i.v. injection) were diluted with olive oil (Sigma Chemicals,
St. Louis, MO) and with distilled water, respectively. Control animals received the vehicle only. For in vitro treatments, FTY720, CsA (Sandimmun, for i.v. injection) and FK506 (Prograf, for i.v. injection) were dissolved in saline and diluted to the appropriate concentrations with RPMI
1640 medium containing 10% FCS.
Monoclonal Abs
FITC-conjugated anti-rat CD3 mAb (1F4; Ref. 29) was obtained from
Caltag Laboratories (South San Francisco, CA). Biotinylated anti-rat CD3
mAb (G4.18; Ref. 30) and phycoerythrin (PE)-conjugated anti-rat
CD45RA or A/B mAb (OX-33; Ref. 31), FITC-conjugated anti-rat CD4
mAb (OX-38; Ref. 32), PE-conjugated anti rat CD8 mAb (OX-8; Ref. 33)
and streptavidin-Cy-chrome conjugate were obtained from PharMingen
(La Jolla, CA). Hamster anti-rat CD62L mAb (HRL3; Ref. 34), mouse
anti-rat CD49d mAb (TA-2; Ref. 35), mouse anti-rat CD11a mAb (clone
WT.1; Ref. 36), and biotinylated TA-2 were purchased from Seikagakukogyo (Tokyo, Japan). PE-conjugated HRL-3, PE-conjugated WT.1, and
isotype-matched control IgGs were obtained from PharMingen.
FIGURE 2. Dose-response relationship between FTY720, CsA, and
FK506 and skin allograft survival in an MHC-incompatible rat strain system. A, i.v. administration; B, oral administration. MHC-incompatible rat
skin allograft was performed using WKAH rats (RT1k ) as donors and F344
rats (RT1lv1 ) as recipients. Full-thickness skin grafts (2.0 3 2.0 cm2) from
donor rats were transplanted to the lateral thorax of recipient rats. The
grafts were inspected daily until rejection, which was defined as more than
90% necrosis of the graft epithelium. FTY720, CsA, or FK506 was administered to the allografted recipients for 14 days after the transplantation.
Each symbol represents the mean 6 SE of eight animals. The statistical
differences in allograft survival time compared with vehicle-treated control
group were calculated by the generalized Wilcoxon test with Hommel’s
multiple comparison test (* p , 0.05).
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
PBL number by FTY720, because it is clearly impossible for
FTY720 to induce apoptotic cell death of lymphocytes at a dose
range of 0.1 to 1 mg/kg in vivo.
The immunologically mature lymphocytes are known to continuously recirculate in the peripheral blood, spleen, lymphatic vessels, TDL, PLN, MLN, and PP (22). It has also been reported that
lymphocyte recirculation is regulated by lymphocyte trafficking
via lymphocyte-homing receptors, including CD62L, CD49d/b7
integrin, and CD11a/CD18 (22–26). We focused on lymphocyte
recirculation in vivo and hypothesized that, if lymphocyte homing
is modulated by FTY720, the number of PBL would decrease
without death of lymphocytes. In this paper, we will describe that
the marked decrease in the number of PBL induced by FTY720 is
due to acceleration of lymphocyte homing to PLN, MLN, and PP
via lymphocyte-homing receptors.
MHC-incompatible rat skin allograft was performed by the method described previously, with WKAH rats (RT1k ) as donors and F344 rats
(RT1lv1 ) as recipients (15). Briefly, full-thickness skin grafts (2.0 3 2.0
cm2 pieces) from donor rats were transplanted to the lateral thorax of the
recipient rats and covered with sterile bactericidal gauze. The entire chest
was then wrapped with an elastic bandage. The dressings were removed on
day 5 and the grafts were inspected daily until rejection, which was defined
as more than 90% necrosis of the graft epithelium. FTY720, CsA, or
FK506 was administered daily to the allografted recipients for 14 days
from the day of transplantation.
The Journal of Immunology
5039
Results
Effects of FTY720, CsA, and FK506 on skin allograft survival in
MHC-incompatible strain combination in rats
Effects of FTY720, CsA, and FK506 on IL-2 production in rat
allogeneic MLC
The effect of FTY720 on IL-2 production in allogeneic MLC in
rats was examined in comparison with that of CsA and FK506. The
results are shown in Figure 3. CsA and FK506 dose-dependently
inhibited IL-2 production in rat allogeneic MLC, consistent with
the results of previous studies in mice and humans (3–5). The IC50
values (concentrations that inhibit 50%) of CsA and FK506 for
IL-2 production were 3.5 nM and 0.043 nM, respectively. By contrast, FTY720 up to 1000 nM did not affect IL-2 production in rat
allogeneic MLC (Fig. 3) and failed to inhibit T cell proliferation by
cells and B cells were determined by two-color flow cytometry. The proportions of CD41 T cells and CD81 T cells were determined by three-color
flow cytometry using biotinylated-anti-rat CD3 mAb (G4.18), FITC-antirat CD4 (OX-38), PE-anti-rat CD8 (OX-8), and streptavidin-Cy-chrome
conjugate. Expression of lymphocyte-homing receptors on rat T cells was
determined by two-color flow cytometry using FITC-anti-rat CD3 (IF4),
PE-anti-rat CD62L mAb (HRL3), biotinylated-anti-rat CD49d mAb (TA2), PE-anti-rat CD11a mAb (WT.1), and streptavidin-Cy-Chrome
conjugate.
Analysis of lymphocyte homing with calcein-labeled lymphocytes
Lymphocytes (1 3 108 cells) from PLN and MLN of F344 rats were
labeled by incubation for 30 min on ice in 10 ml of RPMI 1640 medium
containing 0.2 mM calcein-AM (Molecular Probes, Eugene, OR) (38). After labeling with calcein, the viability of lymphocytes was more than 94%
by trypan blue dye exclusion test. The calcein-labeled lymphocytes (5 3
107 cells/0.5 ml) were i.v. transfused at 2.5 h after FTY720 administration
to F344 rats. Then, the rats were sacrificed 30 min after the transfusion, and
the peripheral blood, spleen, PLN, MLN, and PP were collected. The number of calcein-labeled lymphocytes in these tissues was determined by flow
cytometry. To examine the effect of mAbs against lymphocyte-homing
receptors, the calcein-labeled lymphocytes were treated with 60 mg/ml of
hamster anti-rat CD62L mAb (HRL3), mouse anti-rat CD49d mAb (TA-2),
mouse anti-rat CD11a mAb (WT.1), or all three mAbs at 4°C for 30 min.
As a control, isotype-matched irrelevant IgGs were used under the same
conditions. After the treatment of mAbs, the calcein-labeled lymphocytes
were transfused i.v. to the rats, and their tissue distribution was determined
as described above.
Statistical analysis
The statistical differences in allograft survival time compared with vehicletreated control group were calculated by the generalized Wilcoxon test
with Hommel’s multiple comparison test. In other experiments, statistical
differences compared with the vehicle-treated control were calculated by
Dunnett’s test. Differences between groups were considered significant at
p , 0.05.
FIGURE 4. Time course of numbers of lymphocytes, T cells, and B
cells in blood, TDL, and spleen in rats following a single oral administration of FTY720. FTY720 was administered orally to F344 rats, and peripheral blood, TDL, and spleen were periodically collected. Lymphocytes
of blood, TDL, and spleen were stained with FITC-anti-rat CD3 mAb
(1F4) and PE-anti-rat CD45RA or A/B mAb (OX-33). The numbers of
total lymphocytes, T cells, and B cells were determined by two-color flow
cytometry. v, FTY720 at 0.1 mg/kg p.o.; Œ, FTY720 at 1 mg/kg p.o. Each
symbol represents the mean 6 SE of four animals. Statistical significance
was calculated by Dunnett’s test (*: p , 0.05, **: p , 0.01 vs vehicletreated control group).
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
FIGURE 3. Effect of FTY720, CsA, and FK506 on IL-2 production in
rat allogeneic MLC. Allogeneic MLC was performed by using nylon nonadherent splenic lymphocytes from F344 rats (RT1lv1 ) as responder cells
and mitomycin C-pretreated spleen cells from WKAH rats (RT1k ) as stimulator cells. Responder cells (5 3 106 cells/well) were cocultured with an
equal number of stimulator cells in 2.0 ml of RPMI 1640 medium containing 50 mM 2-ME and 10% FCS. After culturing for 48 h, the supernatants were collected and were assessed for IL-2 activity by CTLL-2
proliferation assay. IL-2 activity is expressed as U/ml (mean 6 SE of
triplicate determinations), with recombinant rat IL-2 as a standard. Statistical differences were calculated by Dunnett’s test (**: p , 0.01 vs culture
with medium alone).
To clarify the efficacy and potency of the immunosuppressive activity of FTY720, the prolonging effect of FTY720, CsA, and
FK506 on rat skin allograft survival was examined in MHC-incompatible rat strains of WKAH donors and F344 recipients. The
immunosuppressants were administered i.v. or orally for 14 days
from the day of the transplantation. In this skin allograft models,
all grafts in the control (vehicle-treated) group were rejected 6 to
7 days after transplantation. As shown in Figure 2, FTY720 at 0.03
mg/kg or higher doses significantly prolonged allograft survival in
a dose-dependent manner by either i.v. or oral administration. CsA
and FK506 were also effective at doses of 3 mg/kg or more and 0.3
mg/kg or more, respectively, in this model. These results indicate
that FTY720 possesses more potent immunosuppressive activity
than CsA or FK506 on allograft rejection in an MHC-incompatible
combination.
5040
FTY720 ACCELERATES LYMPHOCYTE HOMING IN RATS
plete recovery within 2 wk (data not shown). By contrast, the numbers of lymphocytes in PLN, MLN, and PP were significantly increased in a dose-dependent manner after administration of
FTY720 (Fig. 5). The number of PLN lymphocytes reached a maximum at 12 h after FTY720 administration and returned to the
control level by 24 h. Lymphocytes in MLN and PP also increased
to 180% and 300%, respectively, of the controls at 24 h after
FTY720 administration and then returned to the control level
within 5 days. The time courses of the numbers of T cells and B
cells in PLN, MLN, and PP were similar to that of the total lymphocyte number. The increase in numbers of T cells was especially
marked in PLN, MLN, and PP. These findings indicate that
FTY720 modulates the tissue distribution of lymphocytes in blood,
TDL, spleen, PLN, MLN, and PP in rats. Figure 6, A and B, shows
the proportions of T cells, B cells, or T cell subsets (CD41 or
CD81 T cells) in these lymphoid tissues 12 h after administration
of FTY720. The numbers of T cells, B cells, CD41 T cells or
CD81 T cells showed changes similar to the total numbers of
lymphocytes in all tissues tested. By contrast, FTY720 did not
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
FIGURE 5. Time course of numbers of lymphocytes, T cells, and B
cells in PLN, MLN, and PP in rats following a single oral administration
of FTY720. FTY720 was administered orally to F344 rats, and PLN, MLN,
and PP were periodically collected. Lymphocytes of PLN, MLN, and PP
were stained with FITC-anti-rat CD3 mAb (1F4) and PE-anti-rat CD45RA
or A/B mAb (OX-33). The numbers of total lymphocytes, T cells, and B
cells were determined by two-color flow cytometry. v, FTY720 at 0.1
mg/kg ; Œ, FTY720 at 1 mg/kg. Each symbol represents the mean 6 SE of
four animals. Statistical significance was calculated by Dunnett’s test (*:
p , 0.05, **: p , 0.01 vs vehicle-treated control group).
alloantigen stimulation or IL-2-dependent proliferation of CTLL-2
cells (data not shown). These findings suggest that FTY720 exerts
a potent immunosuppressive effect by a mechanism distinct from
that of CsA and FK506.
Lymphocytes were selectively decreased by FTY720 in blood,
TDL, and spleen, but increased in PLN, MLN, and PP
As described in our previous papers, FTY720 significantly decreases the number of PBLs in allografted rats, especially the number of T cells (15, 16). To clarify the mechanism of the decrease
in the number of lymphocytes by FTY720, the tissue distribution
of lymphocytes was analyzed in the peripheral blood, TDL, spleen,
PLN, MLN, and PP of F344 rats, following a single oral administration of FTY720 (0.1 and 1 mg/kg). The proportions of lymphocytes, T cells, T cell subsets (CD41 or CD81 T cells), and B
cells were determined by flow cytometry. Figure 4 shows the time
course of lymphocyte, T cell, and B cell numbers in blood, TDL,
and spleen after a single oral administration of FTY720. The numbers of total lymphocytes, T cells, and B cells in blood and TDL
dramatically decreased to less than 10% of the control values
within 3 to 24 h after administration. The decrease in the number
of lymphocytes by FTY720 was more marked in TDL than in
peripheral blood. The numbers of splenic lymphocytes, T cells,
and B cells were also significantly decreased by FTY720 treatment
to 40% to 80% of the control with a time course similar to that of
the PBLs. Lymphocyte numbers in blood and spleen had recovered
to the control level on day 7 after administration. Although the
number of lymphocytes in TDL was still decreased to 20% to 40%
of the control by FTY720 administration, there was almost com-
FIGURE 6. Effect of FTY720 on the numbers of various cells in
blood and lymphoid tissues in rats 12 h after a single oral administration
of FTY720. A, T cells and B cells in blood, TDL, spleen, PLN, MLN,
and PP; B, CD41 T cells and CD81 T cells in blood, spleen, PLN,
MLN, and PP; C, red blood cells (RBC) in blood, thymocyte subpopulations, and bone marrow (BM) cells. Each column represents the mean
of four animals.
The Journal of Immunology
5041
anti-CD49d or CD11a mAb. Unlike normal lymphocyte homing, CD62L mAb inhibited the FTY720-induced lymphocyte
homing by 85% in PP, 70% in MLN, and 50% in PLN. In
addition, FTY720-induced lymphocyte homing is almost completely blocked (.90% inhibition) by simultaneous treatment
with mAbs against CD49d, CD62L, and CD11a in PLN, MLN,
and PP. These results suggest that FTY720-induced acceleration of lymphocyte homing, as well as normal lymphocyte homing, is mediated by lymphocyte-homing receptors, including
CD62L, CD49d/b7 integrin, and CD11a/CD18.
Effect of FTY720 on expression of CD62L, CD49d, and CD11a
on lymphocytes in rats following single oral administration
Since the acceleration of lymphocyte homing by FTY720 appears
to be mediated by lymphocyte-homing receptors, there is a possibility that FTY720 up-regulates the expression of lymphocytehoming receptors on lymphocytes. To determine whether FTY720
induces up-regulation, the expression of CD62L, CD49d, and
CD11a on T cells was analyzed in rats at 1 h in blood and at 3 h
in MLN after single oral administration of FTY720. The expression of these receptors could not be determined in blood at 3 h after
cause any clear changes in the number of red blood cells, thymocytes (CD41, CD81 or CD41CD81 subpopulation), or bone marrow cells 12 h after administration of FTY720 (Fig. 6C). Thus, the
changes in lymphocyte distribution induced by FTY720 appear to
be specific for mature lymphocytes but do lack selectivity for T
cells, B cells, or T cell subsets.
FTY720 accelerates lymphocyte homing to PLN, MLN, and PP
To determine the effect of FTY720 on lymphocyte trafficking
between blood to various lymphoid tissues in rats, calcein-labeled lymphocytes were i.v. transfused to the strain- and sexmatched F344 rats 2.5 h after administration of FTY720. The
rats were sacrificed 30 min later, and the tissue distribution of
calcein-labeled lymphocytes was determined by flow cytometry. Figure 7 shows the number of calcein-labeled lymphocytes
found in the PLN, MLN, PP, spleen, and blood of rats given
FTY720 (0.1 and 1 mg/kg) orally as compared with vehicletreated control rats. FTY720 significantly increased the number
of calcein-labeled lymphocytes in PLN, MLN, and PP in a dosedependent manner but decreased in spleen and blood. These
results indicate that FTY720 accelerates lymphocyte homing
from blood or spleen to PLN, MLN, and PP. In addition, the
involvement of lymphocyte-homing receptors in FTY720-induced acceleration of lymphocyte homing was assessed by pretreatment with mAb against CD62L, CD49d, or CD11a with
calcein-labeled lymphocytes. With a similarity to the results in
previous studies (39, 40), anti-CD62L mAb and CD49d mAb
prevented normal lymphocyte homing to PLN and MLN,
whereas CD11a mAb partially inhibited homing to PLN, MLN,
and PP (Fig. 8A). Anti-CD62 mAb inhibited normal lymphocyte homing by 90% in PLN, 70% in MLN, and 50% in PP.
Treatment with CD49d mAb, on the other hand, resulted in
inhibition of normal lymphocyte homing by 20% in PLN, 60%
in MLN, and 80% in PP. Treatment with anti-CD11a mAb displayed a partial inhibition of normal lymphocyte homing by
35% to 60% in these lymphoid tissues. Simultaneous treatment
with these mAbs resulted in marked inhibition (.90%) of normal lymphocyte homing in these lymphoid tissues. As shown in
Figure 8B, FTY720-induced lymphocyte homing, as well as
normal lymphocyte homing, was prevented by treatment with
FIGURE 8. The influence of anti-lymphocyte homing-receptor mAbs
on FTY720-induced lymphocyte homing in rats. The calcein-labeled
lymphocytes were treated with 60 mg/ml of hamster anti-rat CD62L
mAb (HRL3), mouse anti-rat CD49d mAb (TA-2), mouse anti-rat
CD11a mAb (WT.1), or all three mAbs at 4°C for 30 min. As a control,
isotype-matched irrelevant IgGs were used under the same conditions.
After treatment with mAbs, calcein-labeled lymphocytes were transfused i.v. into the rats, and tissue distribution of lymphocytes was determined by flow cytometry. A, normal lymphocyte homing; B, FTY720
(1 mg/kg p.o.)-induced lymphocyte homing. Each column represents
the mean 6 SE of four animals.
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
FIGURE 7. Effect of FTY720 on lymphocyte homing of calcein-labeled
lymphocytes in rats. The calcein-labeled lymphocytes (5 3 107 cells/0.5
ml) were transfused i.v. into F344 rats 2.5 h after oral administration of
FTY720. The rats were sacrificed 30 min later, and peripheral blood,
spleen, PLN, MLN, and PP were collected. The number of calcein-labeled
lymphocytes in these tissues was determined by flow cytometry. Each column represents the mean 6 SE of four animals. Statistical significance was
calculated by Dunnett’s test (*: p , 0.05, **: p , 0.01 vs vehicle-treated
control group).
5042
administration, because of the disappearance of T cells from the
peripheral blood. Figure 9 shows the typical CD62L, CD49d, and
CD11a levels on T cells of rats given FTY720 at 1 mg/kg orally.
FTY720 did not have any up-regulating effect on CD62L, CD49d,
or CD11a expression on T cells in blood or MLN.
Discussion
In this present study, we documented that FTY720 shows a
powerful immunosuppressive effect in MHC-incompatible rat
skin allografts and has more potent immunosuppressive activity
than CsA and FK506, whether administered i.v. or orally (Fig.
2). CsA and FK506 are known to exert immunosuppressive activity by inhibiting the production of Th1 cell-associated cytokines in Ag-stimulated helper T cells (3, 4). As reported previously, FTY720, unlike CsA, did not inhibit IL-2 production
by Con A-stimulated T cells in rats (15). Consistent with the
results of mitogen-stimulated IL-2 production, FTY720 did not
affect IL-2 production by alloantigen stimulation in rats (Fig.
3). Since FTY720 did not affect the process of T cell activation,
including IL-2 production or IL-2-dependent T cell proliferation, FTY720 presumably possesses a unique immunosuppressive mechanism of action distinct from that of CsA and FK506
and thus shows a synergistic effect on allograft survival when
combined with CsA (15, 16).
The most striking feature of FTY720 is the induction of a
dramatic decrease in number of lymphocytes in peripheral
blood and TDL. Oral administration of FTY720 at 0.1 mg/kg or
more selectively decreased the number of lymphocytes to extremely low levels in blood and TDL within 3 to 24 h after
administration. Similar lymphopenia is known to be induced by
treatment with steroids or cyclophosphamide (41, 42). How-
ever, steroids and cyclophosphamide markedly decrease the
number of PBLs and immunologically incompetent thymocytes
associating atrophy of thymic cortex. By contrast, FTY720 did
not have any clear effect on the numbers of thymocytes and
bone marrow cells in rats (Fig. 6C). We also confirmed that
FTY720 did not affect the corticosteriod levels in peripheral
blood (our unpublished data). From these findings, we presume
that the decrease in the number of PBLs by FTY720 is not due
to inhibition of intrathymic differentiation of T cells or corticosteriod induction in vivo. Thus, the decrease in the number of
lymphocytes by FTY720 is likely to be selective for immunologically mature lymphocytes, which have a capability of lymphocyte trafficking between blood and lymphoid tissues, recognizing foreign antigens, and inducing both cell-mediated and
humoral immune responses.
The time course studies of lymphocyte number in blood and
lymphoid tissues revealed that lymphocytes decreased in blood,
TDL, and spleen but increased in PLN, MLN, and PP within 3
to 24 h after FTY720 administration to rats (Figs. 4 and 5). In
addition, the results of lymphocyte-trafficking studies by transfusion of calcein-labeled lymphocytes confirmed that the trafficking of circulating lymphocytes to PLN, MLN, and PP in rats
was accelerated at 3 h after FTY720 administration (Fig. 7).
From these findings, we conclude that FTY720 sequesters circulating mature lymphocytes into PLN, MLN, and PP by acceleration of lymphocyte homing and thereby decreases the
number of lymphocytes in blood, TDL, and spleen.
Lymphocyte trafficking between blood and lymphoid tissues,
including PLN, MLN, and PP is known to be regulated and
dependent on the expression of specific cell surface adhesion
molecules (22–26, 39, 40). Recirculation of lymphocytes consists of trafficking from blood to PLN, MLN, and PP and returning to peripheral blood via lymphatic vessels and TDL. The
homing of circulating lymphocytes to PLN, MLN, and PP was
reported to be mediated by the attachment of lymphocytes to
HEV in these lymphoid tissues (22–26). The attachment of lymphocytes to HEV is involved in adhesion between lymphocytehoming receptors, including CD62L (L-selectin), CD49d/b7 integrin (lymphocyte PP adhesion molecule-1 (LPAM-1)), and
CD11a/CD18 (LFA-1), and their ligands mucosal addressin cell
adhesion molecule-1 (MAdCAM-1), glycosylation-dependent
cell adhesion molecule-1 (GlyCAM-1), and ICAM-1 (22–26,
39, 40). In the present study, FTY720-induced lymphocyte
homing to PLN, MLN, and PP was completely blocked by simultaneous treatment with mAbs against CD49d, CD62L, and
CD11a (Fig. 8). These findings indicate that FTY720 accelerates lymphocyte homing mediated by lymphocyte-homing receptors, including CD62L, CD49d/b7 integrin, and CD11a/
CD18. However, anti-CD62L-mAb treatment resulted in
different patterns between normal and FTY720-induced lymphocyte homings to PLN, MLN, and PP in rats. Normal lymphocyte homing to PP is predominantly mediated by CD49d/b7
integrin, and partially by CD62L. In contrast, involvement of
CD62L appeared to be more dominant in FTY720-induced lymphocyte homing than in normal lymphocyte homing to PP. In
other experiments, expression of CD62L, CD49d, and CD11a
was unaffected by FTY720. Based on these results, there is a
possibility that FTY720 promotes adhesion between lymphocytes and HEV by enhancing avidity/affinity between adhesion
molecules and ligands, including activation of integrins. Since
GlyCAM-1 (43) and macrophage inflammatory protein-1 (MIP1b) (44) have been reported to be triggering molecules for integrin activation, FTY720 may promote adhesion between lymphocytes and HEV by induction of these triggering molecules.
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
FIGURE 9. Effect of FTY720 on expression of CD62L, CD49d, and
CD11a on rat T cells. Lymphocytes from blood and MLN were stained
with FITC-anti-rat CD3 (IF4), PE-anti-rat CD62L mAb (HRL3), biotinylated-anti-rat CD49d mAb (TA-2), PE-anti-rat CD11a mAb (WT.1),
and streptavidin-Cy-chrome conjugate. Expression of lymphocyte-homing receptors on T cells was determined by two-color flow cytometry at
1 h in blood or at 3 h in MLN after a single oral administration of
FTY720 to rats.
FTY720 ACCELERATES LYMPHOCYTE HOMING IN RATS
The Journal of Immunology
References
1. Calne, R. Y., D. J. G. White, S. Thiru, D. B. Evans, P. McMaster, D. C. Dunn,
G. N. Craddock, B. D. Pentlow, and K. Rolles. 1978. Cyclosporin A in patients
receiving renal allografts from cadaver donors. Lancet 2:1323.
2. Starzl, T. E., R. Weil, III, S. Iwatsuki. 1980. The use of cyclosporin A and
prednisolone in cadaver kidney transplantation. Surg. Gynecol. Obstet. 151:
17.
3. European FK506 Multicentre Liver Study Group. 1994. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 344:423.
4. Borel, J. F. 1989. Pharmacology of cyclosporine (Sandimmune). IV. Pharmacological properties in vivo. Pharmacol. Rev. 41:283.
5. Kino, T., H. Hatanaka, S. Miyata, N. Inamura, M. Nishiyama, T. Goto,
M. Okuhara, M. Kohsaka, H. Aoki, and T. Ochiai. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of
FK-506 in vitro. J. Antibiot. 40:1256.
6. Liu, J., J. D. Farmer, Jr., W. S. Lane, J. Friedman, I. Weissman, and
S. L. Schreiber. 1991. Calcineurin is a common target of cyclophilin-cyclosporin
A and FKBP-FK506 complexes. Cell 66:807.
7. Slapak, M., T. Geoghegan, N. Digard, K. Ahmed, V. L. Sharman, and
R. Crockett. 1985. The use of low-dose cyclosporine in combination with azathioprine and steroids in renal transplantation. Transplant. Proc. 19:1222.
8. Kokado, Y., M. Ishibashi, H. Jiang, S. Takahara, and T. Sonoda. 1990. Low-dose
cyclosporin, mizoribine, and prednisolone in renal transplantation: a new tripledrug therapy. Clin. Transplant. 4:191.
9. Fujita, T., K. Inoue, S. Yamamoto, T. Ikumoto, S. Sasaki, R. Toyama, K. Chiba,
Y. Hoshino, and T. Okumoto. 1994. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J. Antibiot. 47:
208.
10. Sasaki, S., R. Hashimoto, M. Kiuchi, K. Inoue, T. Ikumoto, R. Hirose, K. Chiba,
Y. Hoshino, T. Okumoto, and T. Fujita. 1994. Fungal metabolites. Part 14. Novel
potent immunosuppressants, mycestericins, produced by Myceria sterilia. J. Antibiot. 47:420.
11. Fujita, T., K. Inoue, S. Yamamoto, T. Ikumoto, S. Sasaki, R. Toyama, M. Yoneta,
K. Chiba, Y. Hoshino, and T. Okumoto. 1994. Fungal metabolites. Part 12. Potent
immunosuppressant, 14-deoxomyriocin, (2S, 3R, 4R)-(E)-2-amino-3,4-dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of
myriocin derivatives. J. Antibiot. 47:216.
12. Fujita, T., M. Yoneta, R. Hirose, S. Sasaki, K. Inoue, M. Kiuchi, S. Hirase,
K. Adachi, M. Arita, and K. Chiba. 1995. Simple compounds, 2-alkyl-2-amino1,3-propanediols have potent immunosuppressive activity. Bioorg. Med. Chem.
Lett. 5:847.
13. Adachi, K., T. Kohara, N. Nakao, M. Arita, K. Chiba, T. Mishina, S. Sasaki, and
T. Fujita. 1995. Design, synthesis, and structure activity relationships of 2-substituted-2-amino-1,3-propanediols : Discovery of a novel immunosuppressant,
FTY720. Bioorg. Med. Chem. Lett. 5:853.
14. Fujita, T., R. Hirose, M. Yoneta, S. Sasaki, K. Inoue, M. Kiuchi, S. Hirase,
K. Chiba, H. Sakamoto, and M. Arita. 1996. Potent immunosuppressants, 2-alkyl2-aminopropane-1,3-diols. J. Med. Chem. 39:4451.
15. Chiba, K., Y. Hoshino, C. Suzuki, Y. Masubuchi, Y. Yanagawa, M. Ohtsuki,
S. Sasaki, and T. Fujita. 1996. FTY720, a novel immunosuppressant possessing unique mechanisms. I. Prolongation of skin allograft survival and synergistic effect in combination with cyclosporine in rat. Transplant. Proc. 28:
1056.
16. Hoshino, Y., C. Suzuki, M. Ohtsuki, Y. Masubuchi, Y. Amano, and K. Chiba.
1996. FTY720, a novel immunosuppressant possessing unique mechanisms. II.
Long-term graft survival induction in rat heterotopic cardiac allograft and synergistic effect in combination with cyclosporine A. Transplant. Proc. 28:1060.
17. Masubuchi, Y., T. Kawaguchi, M. Ohtsuki, C. Suzuki, Y. Amano, Y. Hoshino,
and K. Chiba. 1996. FTY720, a novel immunosuppressant possessing unique
mechanisms. IV. Prevention of graft versus host reactions in rats. Transplant.
Proc. 28:1064.
18. Kawaguchi, T., Y. Hoshino, F. Rahman, Y. Amano, H. Higashi, H. Kataoka,
M. Ohtsuki, K. Teshima, K. Chiba, T. Kakefuda, and S. Suzuki. 1996. FTY720,
a novel immunosuppressant possessing unique mechanisms. III. Synergistic prolongation of canine renal allograft survival in combination with cyclosporine A.
Transplant. Proc. 28:1062.
19. Suzuki, S., S. Enosawa, T. Kakefuda, H. Amemiya, Y. Hoshino, and K. Chiba.
1996. Long-term graft acceptance in allografted rats and dogs by treatment with
a novel immunosuppressant, FTY720. Transplant. Proc. 28:1375.
20. Suzuki, S., S. Enosawa, T. Kakefuda, T. Shinomiya, M. Amari, S. Naoe,
Y. Hoshino, and K. Chiba. 1996. A novel immunosuppressant, FTY720, having
a unique mechanism of action induces long-term graft acceptance in rat and dog
allotransplantation. Transplantation 61:200.
21. Suzuki S., X.-K. Li, S. Enosawa, and T. Shinomiya. 1996. A new immunosuppressant, FTY720 induces bcl-2-associated apoptotic cell death in human lymphocytes. Immunology 89:518.
22. Butcher E. C., and L. J. Picker. 1996. Lymphocyte homing and homeostasis.
Science 272:60.
23. Arbones, M. L., D. C. Ord, K. Ley, H. Ratech, C. M. Curry, G. Otten,
D. J. Capon, and T. F. Tedder. 1994. Lymphocyte homing and leukocyte
rolling and migration are impaired in L-selectin-deficient mice. Immunity
1:247.
24. Hamann, A., D. P. Andrew, D. J. Westrich, B. Holzmann, and E. C. Butcher.
1994. Role of a4 integrins in lymphocyte homing to mucosal tissue in vivo.
J. Immunol. 152:3282.
25. Imai, Y., L. A. Lasky, and S. D. Rosen,. 1993. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361:555.
26. Berlin, C., E. L. Berg, M. J. Briskin, D. P. Andrew, P. J. Kilshaw,
B. Holzmann, I. L. Weissman, A. Hamann, and E. C. Butcher. 1993. a4b7
integrin mediates lymphocyte binding to the mucosal vascular addressin
MAdCAM-1. Cell 74:185.
27. Gillis, S, M. M. Ferm, W. Ou, and K. A. Smith. 1978. T cell growth factor:
parameters of production and a quantitative microassay for activity. J. Immunol.
120:2027.
28. Chiba, K., T. Nishimura, and Y. Hashimoto. 1985. Stimulated rat T cell-derived
inhibitory factor for cellular DNA synthesis (STIF) III. Effect on cell proliferation
and immune responses. J. Immunol. 134:3172.
29. Tanaka, T., T. Masuko, H. Yagita, T. Tamura, and Y. Hashimoto. 1989. Characterization of a CD3-like rat cell surface antigen recognized by a monoclonal
antibody. J. Immunol. 142:2791.
30. Nicolls, M. R., G. G. Aversa, N. W. Pearce, A. Spinelli, M. F. Berger,
K. E. Gurley, and B. M. Hall. 1993. Induction of long-term specific tolerance to
allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation 55:459.
31. Woollett, G. R., A. N. Barclay, M. Puklavec, and A. F. Williams. 1985. Molecular and antigenic heterogeneity of the rat leukocyte-common antigen from thymocytes and T and B lymphocytes. Eur. J. Immunol. 15:168.
32. Jefferies, W. A., J. R. Green, and A. F. Williams. 1985. Authentic T helper
CD4 (W3/25) antigen on rat peritoneal macrophages. J. Exp. Med. 162:117.
33. Nagel, N. T., E. Kraus, M. H. Brown, G. Tiefenthaler, R. Mitnacht,
A. F. Williams, and T. Hünig. 1992. Differential thymus dependence of rat CD8
isoform expression. Eur. J. Immunol. 22:2841.
34. Tamatani, T., F. Kitamura, K. Kuida, M. Shirao, M. Mochizuki, M. Suematsu, W.
Schmid-Schönbein, K. Watanabe, S. Tsurufuji, and M. Miyasaka. 1993. Characterization of rat LECAM-1 (L-selectin) by the use of monoclonal antibodies
and evidence for the presence of soluble LECAM-1 in rat sera. Eur. J. Immunol.
23:2181.
35. Issekutz, T. B. 1991. Inhibition of in vivo lymphocyte migration to inflammation
and homing to lymphoid tissues by the TA-2 monoclonal antibody. J. Immunol.
147:4178.
36. Tamatani, T., M. Kotani, and M. Miyasaka. 1991. Characterization of the rat
leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies. Eur. J. Immunol. 21:627.
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017
We are currently investigating the effect of FTY720 on activation of integrins and expression of ligands for lymphocyte-homing receptors. We are also studying the direct effect of FTY720
on lymphocyte-HEV interaction, by using an established rat
HEV cell line and the Stamper-Woodruff assay (45) in vitro.
From the results of the analysis of lymphocyte distribution in
rats, it is likely that FTY720-induced reduction of mature-lymphocytes in peripheral blood, TDL, and spleen is predominantly
caused by sequestration of lymphocytes in PLN, MLN, and PP,
and not by cytotoxicity. Lymphocyte trafficking appears to play an
important role in the initiation of both cell-mediated and humoral
immune responses to foreign antigens (22, 39, 40). Recently,
CD62L (L-selectin)-deficient mice were established and analyzed
for lymphocyte distribution (46, 47). In contrast to the altered distribution of lymphocytes in FTY720-treated rats, L-selectin-deficient mice were reported to show 70% to 90% reduction in the
number of PLN lymphocytes and 30% to 55% increase in spleen
cellularity. L-selectin-deficient mice also display impaired delayed-type hypersensitivity and contact hypersensitivity response
due to decreased recruitment of leukocytes into sites of inflammation, but immune response in spleen was augmented (47). From
these results, it is suggested that systemic immune responses depend on lymphocyte recruitment and localization. Accordingly, if
most of the circulating mature lymphocytes rapidly are sequestered
in PLN, MLN, and PP, the systemic immune responses would be
markedly suppressed. Based on these aspects, the sequestration of
circulating mature lymphocytes is presumably a main mechanism
of the immunosuppressive activity of FTY720. In our succeeding
paper, we will report that FTY720-induced sequestration of circulating mature lymphocytes causes inhibition of intragraft immune
responses, including T cell recruitment, and that FTY720 shows a
striking synergistic effect when combined with CsA in a rat allograft model.
5043
5044
FTY720 ACCELERATES LYMPHOCYTE HOMING IN RATS
37. Westermann, J. G., S. Persin, J. Matyas, P. van der Meide, and R. Pabst. 1993.
Interferon-gamma influences the migration of thoracic duct B and T lymphocyte
subsets in vivo: random increase in disappearance from the blood and differential
decrease in reappearance in the lymph. J. Immunol. 150:3843.
38. Martin, D. R., and R. G. Miller. 1989. In vivo administration of histoincompatible
lymphocytes leads to rapid functional deletion of cytotoxic T lymphocyte precursors. J. Exp. Med. 170:679.
39. Westermann, J., and R. Pabst. 1996. How organ-specific is the migration of
“naı̈ve” and “memory” T lymphocytes? Immunol. Today 17:278.
40. Gallatin, W. M., I. L. Weissman, and E. C. Butcher. 1983. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30.
41. H. Blomgren and B. Anderson. 1971. Characteristics of the immunocompetent
cells in the mouse thymus: cell changes during cortisone-induced atrophy and
subsequent regeneration. Cell. Immunol. 1:545.
42. Bergar, J. 1980. Leukokinetic study: morphology of the bone marrow and blood
after experimental induction of marrow hypoplasia by cyclophosphamide in laboratory rats. Folia Haematol. 107:862.
43. Hwang, S. T., M. S. Singer, P. A. Giblin, T. A. Yednock, K. B. Bacon,
S. I. Simon, and S. D. Rosen. 1996. GlyCAM-1, a physiologic ligand for Lselectin, activates b2 integrins on naive peripheral lymphocytes. J. Exp. Med.
184:1343.
44. Tanaka, Y., D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw.
1993. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1b.
Nature 361:79.
45. Stamper, H. B., Jr, and J. J. Woodruff. 1977. An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high endothelial venules of lymph nodes. J. Immunol.
119:772.
46. Steeber, D. A., N. E. Green, S. Sato, and T. F. Tedder. 1996. Lymphocytemigration in L-selectin-deficient mice: altered subset migration and aging of the
immune system. J. Immunol. 157:1096.
47. Steeber, D. A, N. E. Green, S. Sato, and T. F. Tedder. 1996. Humoral immune
responses in L-selectin-deficient mice. J. Immunol. 157:4899.
Downloaded from http://www.jimmunol.org/ by guest on June 12, 2017