* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download NUMERIC SEQUENCES
Mathematics of radio engineering wikipedia , lookup
Bra–ket notation wikipedia , lookup
Collatz conjecture wikipedia , lookup
Abuse of notation wikipedia , lookup
History of mathematical notation wikipedia , lookup
Musical notation wikipedia , lookup
Positional notation wikipedia , lookup
Principia Mathematica wikipedia , lookup
Elementary mathematics wikipedia , lookup
Large numbers wikipedia , lookup
NUMERIC SEQUENCES To analyze behavior of functions nearby a point, we need to evaluate the function for values closer and closer to the point. It is normally obtained by producing lists of numbers. Many times we are going to be working with lists of numbers to analyze mathematical concepts. These are some listing of numbers. They can be finite or infinite Finite o {1, 3, 5, 7} First term 1 denoted a1 =1 Second term 3 denoted a2 = 3 Third term 5 denoted a3 = 5 Fourth term 7 denoted a4 = 7 Notice that the terms have the form 2n+1, for n = 0, 1,.., 3. In this case we can represent the sequence in two forms an 4n1 or2n 14n1 Observe that {1, 3, 5, 7} refers to the general listing. The notation a1, a2, a3, a4 indicates that there are four terms, and the sub index specifically indicates the position of the term. EXERCISE: o {-2, 0, 2, 4, 6} Identify the general term. o {9, 12, 15} Identify the form for the general term o {-1, -1, -1, -1, -1, -1 } Constant finite sequence b1= -1, b2 = -1, …, b6 = -1 General term is -1, for any value of k = 1, 2, .., 6 or 6 6 bk k 1 or 1k1 1 1 1 1 o 1, , , , , 2 3 4 20 c1=1, c2=1/2, …, c9= last term is _____ Form of the general term ___________ Notation in braces indicating the general term ________________ o {1, -2, 3, -4, 5, -6} Form for the general term ___________________ Notation in braces 1 2 3 30 o , , , , 2 3 4 31 General term Notation in braces Sequences 1 1 o Sometimes is hard to find a pattern. For example {1, 3, 2, 9, 1, 1} In this case we just list the term as a1 1,a2 3,a3 2,...,etc Infinite Sequences. o Counting numbers {1, 2, 3, 4, 5, 6…} a1=1, a2 = 2, a3 = 3 … The 10th term is _________ General term an n , n=1, 2, 3, … Notation an n1 or nn1 o Consider the sequence 10,11,12,13,... Find the general term Write in braces notation Hilbert Hotel paradox: There is a mountain hotel in Alps, which has infinite number of rooms but all of them are occupied. A tired group of 3 hikers came to the owner asking to stay over. He smiled and said, it’s simple, in no time there will be 3 free rooms. He asked the person from the first room to move to the 4th one, the person from the 2nd to the 5th and the one from the 3rd to the 6th one. Naturally, the occupant from the 4th one had to move to the 7th one, and so on. In no time there were 3 rooms free ready for the hikers. How come this could happen? o Other infinite sequences 1 1 1 o 1, , , , 2 `3 4 Form of general term Braces notation 2 3 4 o , , ,.... 3 4 5 Form for the general term Braces notation o 0.5,0.5,0.5,...... Form for the general term Braces notation 1 1 1 o 1, , , ,.... 2 4 8 General term Braces notation Sequences 1 2 Infinite sequences as functions with discrete domain .As we learned before, any listing of numbers can be represented as a function with discrete domain. For example the sequence defined by an n 1, n 1 , can be thought as the function f n n 1 where the domain is the natural numbers. This would be a graph of this sequence as a function. What happens as n ? Can you explain that? Graph the following sequences on the number line and as functions. Observe what happens to them as n 1 o an , n 1 n 5 o an , n 1 n7 n 2n 1 o an 1 ,n 1 n2 For each of those sequences find the terms a100, an 1, a2k Other examples. o A calculator gives you the following number when asked for the value of 2 : 2 = 1.4121356237309… What’s the meaning of that number? This statement can also be understood as the infinite sequence of better and better decimal approximations to the number 2 : 1, 1.4, 1.41, 1.412, 1.4121… 1 0.333333... can be seen as the sequence of better and better 3 1 decimal approximations 0.3, 0.33, 0.333, 0.3333, … to the number 3 o Similarly HOMEWORK: Sequences 1 3 For each of the sequences 2 o an n ,n 1 1 o bn 2 , n 1 n 1 n o an 1 ,n 1 n2 1 ,n 1 o cn n 1 1n o dn n ,n 1 2 4n 10 o an ,n 1 2n Find o The 10th, 150th, 1000th terms o Generate a table of values to predict the behavior of the sequence when n . o Graph the sequences to verify your observations from the table you created. At this point it is impossible to verify your claims, but at least you can get the feeling for whether or not it is valid. o What can you say about the values of the sequence when n gets larger and larger? o Look at the values of the sequence and compare those values to the end behavior of the sequence as a function. These are observations, which are very important for later on. The familiar paradox If a runner is to reach the end of the track, he must first complete an infinite number of different journeys: getting to the midpoint, then to the point midway between the midpoint and the end, and so on. Hence, the runner cannot complete the race. Sequences 1 4