* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Unit 4: Complex Numbers
Foundations of mathematics wikipedia , lookup
Ethnomathematics wikipedia , lookup
Infinitesimal wikipedia , lookup
Georg Cantor's first set theory article wikipedia , lookup
Location arithmetic wikipedia , lookup
Large numbers wikipedia , lookup
Real number wikipedia , lookup
Fundamental theorem of algebra wikipedia , lookup
Unit 4: Complex Numbers Imaginary and Complex Numbers Objectives: D.1 To define and illustrate complex numbers. D.2 To express complex numbers in the form a + bi. D.3 To add and subtract complex numbers. D.4 To multiply and divide complex numbers. D.5 To divide complex numbers using conjugates. Notes: To mathematicians, the idea that “you can’t do that” signals a great new challenge. In many instances we can be faced with a problem such as; x2 = -16. The solution to this equation; x = 16 would be simple except for the fact that one can not find the square root of a negative number. This is clearly a challenge. We can use the properties of radicals the reduce the problem; x 16 16 1 4 1 Clever mathematicians such as the 16th century Italians Gerolamo Cardano and Rafael Bombelli found ways to us the square of numbers such as ( 16 )2 = -16 to get around this problem. Although they were dismayed by the idea that the square of an impossible number could be a real number. René Descartes (of Cartesian plane fame) finally formalized the idea of an imaginary number whose square is -1. Today we symbolize it as i 1 Once we have the idea of an imaginary number equal to the square root of -1, we can determine some of its properties: If i = 1 , then i2 = ( 1 )2 = -1 i3 = ( 1 )2× 1 = -1× 1 = - 1 i4 = ( 1 )2( 1 )2 = (-1)(-1) = 1 etc. Also; 81 = or; 96 = 81 1 = 9i 96 1 = 16 6 1 = 4 6i Unit 4: Complex Numbers Often enough to be embarrassing, we find that the solution to an equation (such as a quadratic) ends up having an imaginary component. These numbers, usually written z = a + bi where a, and b are real numbers, are known collectively as Complex Numbers. The mathematics of complex numbers are an extension of the mathematics of radicals: 1.-Any square root of any negative number can be reduced to x 1 or xi 2.-Addition and subtraction of complex numbers is carried out by adding “like” to “like”. For example; (2 + 3i) + (7 - 5i) = 9 - 2i. 3.-Multiplication of complex numbers uses the distributive property. For example; 3(1 - 4i) = 3•1 - 3•4i = 3 - 12i or; (2 + 3i)(1 - 5i) = 2•1 - 2•5i + 3i•1 - 3i•5i = 2 - 10i + 3i - 15i2 = 2 - 7i - 15i2 Except: i2 = -1 Therefore: 2 - 7i - 15i2 = 2 - 7i -15(-1) = 17 - 7i 4.-When dividing by complex numbers it is a requirement that i does not remain in the denominator. (Recall “rationalizing the denominator” in earlier classes.) For Example:Simplify; a. 12 c. 18 8 Solution: a. 12 12 1 4 3 i 2i 3 36 72 36 1 72 1 6i 36 2 i b. 6i 6i 2 (1 2)6i 18 8 18 1 8 1 144 i 2 c. 12 (1) 12 d. 15 15 3 i i 3 i 3 2 i 3 i i i 1 5 i 5 -96- b. 36 72 d. 15 5 Unit 4: Complex Numbers Notice that the first step in the simplification is to remove the factor of 1 i from the radical. In question d. this was done in one step. It is convenient to start most questions this way: x i x In questions c. and d. we made use of the property that i2 = -1. i In question d. we rationalized the denominator by multiplying by . i For Example: Complete the following operations; a. 5 + 25 c. 3i(8 - 6i) e. (12 + 15i) ÷ 3i Solutions: a. 5 + b. 3(5 + 2i) d. (4 - 2i) - (5 - 3i) 25 = 5 + i 25 = 5 + 5i Note: 5 and 5i are not “like terms”. b. 3(5 + 2i) = 3×5 + 3×2i = 15 + 6i Distributive property. c. 3i(8 - 6i) = 24i - 18i2 = 24i - 18(-1) = 24i + 18 = 18 + 24i a + bi = standard form d. (4 - 2i) - (5 - 3i) = 4 - 2i - 5 + 3i = -1 + i e. (12 + 15i) ÷ 3i Simplify and rationalize the denominator. 2 12 15i 4 5i i 4i 5i 4i 5 5 4i 2 3i i i i 1 Practice Questions 1: Imaginary and Complex Numbers 1. Evaluate: a. 64 c. i5 e. 4i9 b. i3 d. 12 3 f. 3 27 2. What is the rule for simplifying powers of i? Hint: try i2, i3, i4, i5, i6, i7, i8, etc 3. Simplify: a. 125 c. 5 36 b. 3 72 d. (i 5) 2 e. 36 9 f. 3 72 98 g. i 2 i 18 h. 3i 2 i. 32 2 j. -97- 9 27 2 Unit 4: Complex Numbers 23 i 24 6i m. 36 o. 4(5 - 3i) q. (3 + 2i) + (5 - 4i) k. l. 50 5i n. 32 8 p. (2 + 6i) - (1 + 7i) r. 3i(2 - 5i) + (-3 + 4i) 4. Solve; a. x2 + 36 = 0 c. 5x2 = -180 b. y2 + 400 = 0 d. (x + 3)2 = -4 Multiplication of Complex Numbers The standard form for a complex number is a + bi, where a & b are real numbers. This is very similar in form to binomials. Consequently, many operations with complex numbers are the same as for binomials with the exception that powers of it can be further simplified. For Example: Simplify the following; a. (3 - i)2 c. (2 + i)(3 - 2i)(2 - 2i) b. (2 + 3i)(4 - 2i) Solutions: a. (3 - i)2 = (3 - i)(3 - i) = 9 - 3i - 3i + i2 = 9 -6i - 1 = 8 - 6i Using F.O.I.L. i2 = -1 b. (2 + 3i)(4 - 2i) = 8 - 4i + 12i - 6i2 = 8 + 8i -(-6) = 14 + 8i c. (2 + i)(3 - 2i)(2 - 2i) = (6 - 4i + 3i - 2i2)(2 - 2i) = (6 + i - (-2))(2 - 2i) = (8 + i)(2 - 2i) = 16 - 16i + 2i - 2i2 = 16 - 14i + 2 = 18 - 14i Practice Questions 2: Multiplying Complex Numbers 1. Simplify; a. (2 + 3i)(4 - 2i) c. 2 3i 1 4i b. (-5 + 3i)(2 - 7i) d. 2i(3 + 2i)(3 + 3i) e. 3 i 3 4 i f. 2(1 - 6i) + 3(2 - 4i) g. (-3 + i)2 h. (2 + 4i)3 i. (3 + 2i)(3 - 2i) j. 3 i 3 -98- 2 2 3i 2 3i m. 1 i 3 k. Unit 4: Complex Numbers l. (2 - i)3(2 + i)3 3 2 i 2 o. 2 2 n. 3 5 3 5 2 Division of Complex Numbers In the previous set of practice questions, you may have noticed that in certain situations a product of complex numbers can be a real number. Specifically, any product of the form; (a + bi)(a - bi) These numbers are called conjugates. For example: the conjugate of 3 + 7i is 3 - 7i. We can use conjugates to rationalize the denominator of complex quotients; For Example: Divide; 3 a. 2 4i 2 i 3 c. 2 i 3 b. 2 3i 3 2i 3 3 2 4i 6 12i 6 12i 6 12i 3 3i 2 4i 2 4i 2 4i 4 16i 2 4 16 20 10 5 2 2 2 3i 2 3i 3 2i 6 13i 6i 6 13i 6 13i b. i 2 3 2i 3 2i 3 2i 9 4i 94 13 Solution: a. c. 2 i 3 2 i 3 2 i 3 4 4i 3 3i 2 1 4i 3 1 4i 3 4 3i 2 7 7 7 2 i 3 2 i 3 2 i 3 Notice that the answer is always put into the form a + bi. The conjugate is also useful in determining the absolute value of a complex number: |a + bi|2 = (a + bi)(a - bi) or |a + bi| = a bi a bi For Example: Find |2 - 3i| Solution: |2 - 3i| = 2 3i 2 3i 4 9i 2 13 = -99- 4 9 i 2 = 13 Unit 4: Complex Numbers Practice Questions 3: Division of Complex Numbers. 1. Simplify the following: (rationalize the denominators.) a. 7 ÷ i b. 12 ÷ 3i 16 8i (3 2i )(5 3i) c. d. 4i 7i 36 12 e. f. 2 3i 2i 1 1 g. h. a bi 5 i i. 3 i 2 3 i 2 j. 2. Calculate the absolute value; a. |3 - 4i| c. 6 i 5 2i 3 2 i 3 2 5– 5 1 2 3 4 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 b. |12 + 5i| d. |9 - 5i| The Complex Coordinate Plane i 5 It is sometimes useful to represent complex numbers on the Argand-Gauss coordinate plane, a coordinate system similar to the Cartesian plane. 4 3 2 1 For Example: The complex number 5 + 3i can 1– 1 2 3 4 5 6 7 8 be represented. Using the diagram87654321to – 1the right. – 5– 4– 3– 2– 1 – 1 1 2 3 4 5 x – 2 – 3 – 4 – 5 When represented this way, several features of the complex number are readily apparent; i 1. The number has two components, the real component represented on the horizontal 8 axis, and the imaginary component on the 7 vertical axis. Result = 8 + 6i 6 4i 5 3+ When complex numbers are added, the real components are added together and the imaginary components are added together; 4 3 2 Example: (5 + 3i) + (3 + 4i) = (5 + 3) + (2i + 4i) = 8 + 6i 5+ 1 – 1 – 1 -100- 1 2 2I 3 4 5 6 7 8 x 8– 1 1 2 3 4 5 6 7 1– 1 2 3 4 5 6 7 8 6i Unit 4: Complex Numbers 2. The Absolute Value or Magnitude of the complex number is the distance from the origin to the location of the point on the coordinate plane. We can use Pythagoras’ theorem to calculate the absolute value. i In the diagram to the right, we can see that |z| is the hypotenuse of a right triangle. Using 8 Pythagoras we can calculate; 7 6 5 4 |8 + = 6i| |z|2 = 62 + 82 = 36 + 64 = 100 |z| = 100 10 0 = 10 | |z 3 In general for a complex number of the form; 6i 2 1 z = a + bi, 8 – 1 – 1 1 2 3 4 5 6 7 |z| = a 2 b2 x 8 Practice Questions 4: The Complex Plane 1. Illustrate the following on the Complex Coordinate Plane; a. 3 + 4i c. 5 - 6i e. |4 - 3i| b. -2 + 3i d. (3 + 2i) + (2 - 4i) f. (-2 + 5i) - (-4 + 3i) hint:add the opposite 2. Given the general form of a complex number, prove that our two formulae for the absolute value are equivalent: If z = a + bi, then (a bi )(a bi ) a 2 b 2 Unit 4: Solutions Practice Questions 1: page 91 1. a. 8i b. -i c. i d. 6i e. 4i f. -9 2. One can divide powers of i into groups of i4 = 1, i2 = -1, and i. For example i45 = (i4)11•i = (1)11•i = 1i = i 3. a. 5i 5 b. 18i 2 c.-30i d. -5 e. 3i f. 25i 2 g. -6i h. 54 2 j. i 3 k. -23i l. 2 m. -1 + 4i n. 84i 2 o. 20 - 12i p. 1 - i q. 8 - 2i r. 12 + 10i 4. a. x = ±6i b. y = ±20i c. x = ±6i d. x = -3 ± 2i Practice Questions 2: Page 92 -101- i. 4i Unit 4: Complex Numbers 1. a. 14 + 8i b. 11 + 41i c. 107i 2 d. -30 + 6i e. 12 3i 4i 3 3 f. 10 - 24i g. 8 - 6i h. -88 - 16i i. 13 j. 6 6i 3 k. 11 l. 125 m. 8 n. 2 o. i Practice Questions 3: Page 93 1. a. -7i g. b. -4i 5 i 6 6 c. 2 - 4i a bi h. a 2 b2 d. 1/7 - 3i e. 24 12i 24 12 i 5 5 5 (a bi) a 2 b2 a 2 b2 8– 1 1 2 3 4 5 6 7 1– 1 2 3 4 5 6 7 8 1 2i 6 i. 5 5 f. j. 12 2 3 18i 3i 3 11 10 5i 3 13 13 5– 5 1 2 3 4 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 2. a. 5 b. 13 c. 11 d. 106 Practice Questions 4: Page 95 1. i a. i b. 5 8 4 7 -2 3 6 5– 5 1 2 3 4 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 3+ 4i 3 2 – 5– 4– 3– 2– 1 – 1 1 2 3 4 5 6 7 x 8 3 4 2 3 4 5 x – 4 – 5 i c. i d. 3 5 2 4 1 3 1 2 4 5 6 7 2 x 2i 3+ 1 i – 5 5– 1 2 3 4 12 + 5i– ( – 4 + 3i –= 54––43i– 3 – 2 – 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 – 1 5 – 2 – 3i 1– 1 2 3 4 5 1z– 1= 42 + ( – 3)2 = 25 = 5 – 3 2 3 4 5 3 2-4 – 3– 2– 1 – 1 i -6 – 4 – 2 – 5 – 3 – 6 – 4 – 7 1 5 x Final = 5 - 2i – 5 i i f. 1 5 4 2 1 4- – 1 3 4 5 x – 2 + 5i – ( 4– 4 + 3i = 4 – 3i 3 2 3i – 3i – 5– 4– 3– 2– 1 – 1 2 Result= 2 + 2i 1 – 2 – 3 2 – 3 – 1 – 1 – 1 1 – 2 1 e. 3i 1 4 3– 7 1 2 1 2 3 4 5 6 1– 3 2 3 4 5 6 7 1 2 + 2 5 – 2 2 z = 4 + ( – 3) = 25 = 5 – 3 – 4 – 4 – 5 – 5 -102- 1 2 3 4 5 x Unit 4: Complex Numbers 2. Proof as follows. ? The statement to be proven ? Multiplication of (a + bi)(a - bi) (a bi )(a bi ) a 2 b 2 a 2 b 2i 2 a 2 b 2 ? a 2 b 2 (1) a 2 b 2 a 2 b2 a 2 b2 i2 = -1 Proof complete. -103- Unit 4: Complex Numbers Unit 4 Review 1. In a response to equations such as x 2 25 or x 25 , mathematicians have created the idea of imaginary numbers based on the number i = 1 . 2. Imaginary numbers can be used to simplify expressions containing the square root of a negative number by first rewriting the expression using i: 25 i 25 5i 3. A complex number is a number if the form a + bi where a and b are real numbers. “a” is the real part and “bi” is the imaginary part of the complex number. 4. The mathematics of complex and imaginary numbers is and extension of the mathematics of radicals: i.-Any square root of any negative number can be reduced to x 1 or x i ii.-Addition and subtraction of complex numbers is carried out by adding “like” to “like”. For example; (2 + 3i) + (7 - 5i) = 9 - 2i. iii.-Multiplication of complex numbers uses the distributive property. For example; 3(1 - 4i) = 3×1 - 3×4i = 3 - 12i Or: (2 + 3i)(3 - 2i) = 6 - 4i + 9i - 6i2 = 6 + 5i - 6(-1) = 12 + 5i iv.- As with radicals, the denominator of any rational must be rationalized. (No i’s allowed on the bottom of a fraction.) This is achieved by multiplying both numerator and denominator by the conjugate of 321the – 7 1 complex number: For a + bi, the conjugate is a - bi. 2 3 4 5 6 1– 3 2 3 4 5 6 7 1 2 5. The absolute value of a complex number can be found in two ways; For z = a + bi, |z| = (a bi )(a bi ) a 2 b 2 6. Complex numbers may be represented on the Complex or Argand-Gauss Plane. The real part is represented on the horizontal axis and the imaginary part is represented on the vertical axis i 3 2 1 – 3– 2– 1 – 1 – 5 – 6 – 7 -104- 4 i – 4 3 -6 – 3 2 5 – 2 1 5 6 7 x Unit 4: Complex Numbers Unit 4 Review Questions 1. Evaluate the following; a. 121 c. i3 b. 36 9 d. 7i7 144 f. 400 e. (-5i)3 2. Simplify each of the following; a. 450 c. 3i•5i e. 3 6 b. 50 18 d. -i(2i)3 2 f. 4(3 - 2i) 3 g. (2 - 5i)(7 + 2i) h. 1 i 3 i. (2 - 7i) - (3 + 4i) j. 2(3 - i) - 5(-2 + 3i) 3. Find the conjugate of each of the following; a. 2 - 3i c. 3 2i b. -2i d. 7 + 3i 4. Simplify each of the following; a. 12 ÷ 3i 9 3i c. 3i 6 e. 2i 2 g. 2 3i b. 15 ÷ 6i 45 25i d. 15i 2 3i f. 2 3i 6 3 h. 6 3 5. Calculate the following; a. |3 - 2i| c. |11 - 7i| b. |8 + 6i| d. 17 i 8 6. Graph each of the following on the complex plane; a. -3 + 5i b. 7 - 6i c. (3 + 2i) + (5 - 7i) d. |12 + 9i| 7. Solve each of the following; a. x2 + 36 = 0 c. (x - 3)2 + 121 =0 b. y2 = - 625 -105- Unit 4: Complex Numbers Unit 4 Review Questions Solutions 1. a. 11i b. -18 c. -i d. -7i 2. a. 15i 2 b. 2i 2 3. a. 2 + 3i 4. a. -4i h. 5– 5 1 2 3 4 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 c.-15 d.-8 c. 3 2i b. i b. -3i/2 c. -1 - 3i e. 125i e.-54 f.12 - 8i g. 24 - 31i h.-8 i. -1 - 3i j. 16 -17i d. 7 - 3i d. -5/3 - 3i 1 2i 2 3 3 5. a. 13 f. 3i/5 e. 12/5 + 6i/5 f. -5/13 + 12i/13 g. 2 3i 2 11 11 1– 8 1 2 3 4 5 6 7 1– 2 2 3 4 5 6 7 1 c. 170 b. 10 d. 5 6. a. b. i i 5 1 -3 4 – 2– 1 – 1 2 – 2 1 – 3 i +5 3 3– 7 1 2 1 2 3 4 5 6 1– 1 2 3 4 5 6 7 8 – 5– 4– 3– 2– 1 – 1 1 2 3 4 5 2 3 4 7 5 6 7 x 14 x -6 i – 4 9i 2 4 6 8 10 12 14 2 4 6 8 10 12 14 x 1 – 5 – 2 – 6 – 3 – 7 – 4 – 8 – 5 i c. i d. 3 2 1 1 2 12 3 4 5 6 5- 7 8 10 x 7i – 1 – 1 14 2i 3+ 8 – 2 – 4 Result: 8 - 5i + 12 z= 9 9i 4 – 5 2 – 6 – 7 7. a. x = 6i |z| = 15i 6 – 3 2 b. y = 25i c. x = 3 ± 11i -106- 4 12 6 8 10 12