* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 16 Concept tests - University of Colorado Boulder
Introduction to gauge theory wikipedia , lookup
Electromagnetism wikipedia , lookup
Fundamental interaction wikipedia , lookup
Circular dichroism wikipedia , lookup
Anti-gravity wikipedia , lookup
Magnetic monopole wikipedia , lookup
Speed of gravity wikipedia , lookup
Work (physics) wikipedia , lookup
Maxwell's equations wikipedia , lookup
Weightlessness wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Field (physics) wikipedia , lookup
Centripetal force wikipedia , lookup
Lorentz force wikipedia , lookup
1 of 12 Q21-1. Two uniformly charge spheres are attached to frictionless pucks on an air table. The charge on sphere 2 is three times the charge on sphere 1. Which force diagram correctly shows the magnitude and direction of the electrostatic forces on the two spheres? A) B) C) D) E) Answer: D (By Newton's 3rd Law and by the form of Coulomb's Law) Q21-2. Two protons are near each other. Each feels an electrostatic repulsion of magnitude Felec and a gravitational attraction of magnitude Fgrav, due to the other charge. F As the charges are moved apart, the ratio elec … Fgrav A) increases B) decreases C) remains constant + + Answer: remains constant 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 2 of 12 Q21-3. An electric dipole consists of two equal and opposite charges (+Q and –Q) separated by some fixed distance d . A charge +q is brought near the dipole and is positioned so that the distances to the +Q and the –Q charges are identical as shown below: A +q D +Q B –Q d C E) Some other direction What is the direction of the net electrostatic force on the +q charge? Answer: to the right (Be sure you can draw the vector diagram, showing the forces on +q) Q21-4. What is the correct expression for the y-component of the force on +q due to the other charges +Q and –Q ? y +Q A) B) r C) +q r Answer: k Qq r2 –Q x D) Qq r2 Qq k 2 r k Qq r2 Qq k 2 2 r 2 k E) None of these! (Notice that the y-component of the force is negative) 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 3 of 12 Q21-5. Vector Review: How many of these equation make no sense? A ˆj B 3iˆ ˆj 5jˆ A 3 C A ˆi C C 4 ˆi A) 0 (All make sense) B) 1 C) 2 D) 3 E) 4 Answer: The last one C 4 ˆi makes no sense. You can't add a number and a vector. All the others makes sense. Q21-6. Trig Review: In a tilted xy coordinate system, the weight vector mg is straight down. The coordinates are tilted at an angle as shown. What is Wy , the y-component of the weight mg? A) +mg sin y B) –mg cos C) –mg sin D) +mg E) 0 mg x Answer: –mg cos (careful with the signs!) 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 4 of 12 Q21-7. An electric dipole (+Q and –Q separated by a distance d ) is placed along the x-axis as shown. A positive test charge +q is placed at position A to the right of the dipole. –Q +Q +q x A The positive test charge feels a force that is A) zero. B) to the right. C) to the left. If the test charge +q is removed, electric field at position A is A) zero. B) to the right C) to the left D) There is no electric field at point A, when the test charge is removed. If a negative test charge –q is used to measure the Electric field at A, the electric field at position A is A) zero. B) to the right C) to the left Answers: The force on +q is to the left. The E-field at A points to the left, regardless of whether the test charge is positive (+q) or negative (–q). Q21-8. Two charges +Q and – Q are located on the x-axis as shown, what is the magnitude of the electric field at point A? –Q +Q R A) kQ 1 1 R 2 9 C) Zero Answer: A x R R B) kQ2 1 1 R D) 4 kQ 1 1 R2 9 E) None of these. kQ 1 1 R 2 9 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 5 of 12 Q21-9. Two positive charges, each of size +Q, are equal distances from the origin as shown. What is the direction of the electric field at the point in empty space which forms a square with the two charges and the origin? y Field here? +Q x +Q A B C D E) No Field there Answer: B (upper right) Q21-10. Two vectors A and B are shown. Consider the vector sum C A B . What is Cy, the y-component of C ? A: 3 y B: 2 x A B C: –2 D: –4 E: None of these/don't know. Answer: Cy = Ay + By = +1 – 3 = –2 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 6 of 12 Q21-11. A point in empty space is near 3 charges as shown. The distances from the point to each of the three charges are identical. +Q y C +Q +2Q A x B The direction of the electric field at that point is.. A: Some angle less than 45o below the +x-direction. B: 45o below the +x-direction. C: along the +y directions D: Some other angle. E: The electric field at that point is zero. Answer: 45o below the +x-direction. (Be sure you can draw the E-field diagram.) 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 7 of 12 Q21-12. Three charges of equal magnitude are arranged as shown. What is the direction of the electric field at point x? BA C B DA C x x E) None of these. An electron is fired into the region of the three charges from the lower right as shown. What is the direction of the acceleration of the electron when it is at point x? B C A D x E) None of these. Answers: The direction of the E-field at point x is straight up (choice A). The direction of the acceleration of an election is the direction of a = F/m = qE/m = –eE/m (vector quantities are in bold here), which is the direction opposite of the E-field. So the direction of the acceleration is straight down (None of these). 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 8 of 12 Ch26-13. A charge Q is on the y-axis at y = d. What is the magnitude of the E-field at position x, on the x-axis? A) B) C) kQ d x y Q 2 kQ x d2 2 x kQ d2 2 2 d kQ D) x2 d2 x E) None of these E What is Ex the x-component of E at position x on the x-axis? d A) E B) E x 2 d2 Answers: E = x x 2 d2 C) E x2 kQ x Ex = +E cos = E 2 , 2 x d x d2 2 Ch26-14. What is the magnitude of the electric field at point x on the x-axis due to the two +Q charges shown on the y-axis? A) B) C) x x x D) None of these x 2 d2 y +Q 2kQx 2 d2 3/ 2 d E=? 2kQd 2 d2 1/ 2 x d 2kQx 2 d 2 1/ 2 D) None of these Answer: x +Q 2kQx 2 d2 3/ 2 (see the previous problem to see why) 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 9 of 12 Q21-15. Two socks are observed to attract each other. Which, if any, of the first 3 statements MUST be true? (emphasis on MUST) A) The socks both have a non-zero net charge of the same sign. B) The socks both have a charge, of opposite signs. C) Only one sock is charged; the other is neutral. D) None of the preceding statements must be true. Answer: D. The socks might be attracting because they have opposite sign charges. Or it could be that only one of them is charged and the other is neutral, in which case the attraction is due to polarization of the neutral sock. Q21-16. A dipole is placed in an external field as shown. In which situation(s) is the net force on the dipole zero? (1) (3) A: B: C: D: E: (2) (4) (1) (2) (1) and (2) (3) and (4) (2) and (4) Answer: The net force is zero in cases (3) and (4). In case 4, there is a torque, so the particle will rotate, but there is not net force. 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado 10 of 12 Q21-17. z The integral E dE means E z x dE x z y dE y z z dE x . Often, from symmetry, one can see that one or more of the three component integrals vanishes. An infinite line of charge with linear charge density is along the x-axis and extends to . At the point A shown, what can you can about the x- and y- components of y E? A ++++++++++++++++++++++++++ x A: Ex = 0, Ey <0 C: Ex = 0, Ey =+ E: Ex > 0, Ey > 0 B: Ex < 0, Ey = 0 D: Ex = 0, Ey >0 Answer: Ex = 0, Ey >0 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado z 11 of 12 Q21-18. A circular ring of radius R, uniformly charged with tot al charge +Q, is in the xy plane centered on the origin. The electric field dE at position z=h on the zaxis, due to a small piece of the ring with charge dQ, is shown. What is the magnitude of the field dE? A: C: kQ h2 B: dE k dQ h2 h R k dQ k dQ R2 h2 D: R h 2 x 2 y dQ E: None of these. What is dEz, the z-component of dE ? A: dE sin B: dE cos C: dE tan D: None of these. What is cos? A: h B: 2 R h2 h C: h R R2 h2 h 1 cos D: E: None of these! 2 2 R h Answers: dE = k dQ , R2 h2 dEz = dE cos , cos = 6/28/2017 PHYS1120 Dubson Fa09 h R h2 2 ©University of Colorado 12 of 12 z Q21-19. A circular ring uniformly charged with charge Q is in the xy plane centered on the origin as shown. On the z-axis, E E z graph accurately represents the electric field Ez on the z-axis? z . Which y Ez Ez x z A z B Ez Ez z z D C E: None of these is an accurate representation of Ez Answer: B Q21-20. A charge +Q is fixed in space. A second charge +q is brought a distance r away. Then +q charge is removed and another charge +2q is brought a distance 2r away. Then the +2q charge is removed and a charge +5q is brought a distance 2r away. +Q Which charge feels the largest force? A) +q B) +2q C) +5q D) Two of the charges feel the same size force. +q r +Q +2q 2r +5q +Q Answer: +5q 2r 6/28/2017 PHYS1120 Dubson Fa09 ©University of Colorado