Download Graphing_Quadratics in Vertex Form Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Introduction to gauge theory wikipedia , lookup

Cartesian coordinate system wikipedia , lookup

Regular polytope wikipedia , lookup

Line (geometry) wikipedia , lookup

List of regular polytopes and compounds wikipedia , lookup

Mirror symmetry (string theory) wikipedia , lookup

Tessellation wikipedia , lookup

Dessin d'enfant wikipedia , lookup

Euclidean geometry wikipedia , lookup

History of geometry wikipedia , lookup

Complex polytope wikipedia , lookup

T-symmetry wikipedia , lookup

Dual graph wikipedia , lookup

Planar separator theorem wikipedia , lookup

Apollonian network wikipedia , lookup

Event symmetry wikipedia , lookup

Steinitz's theorem wikipedia , lookup

Italo Jose Dejter wikipedia , lookup

Transcript
CCGPS Geometry
Unit 5C – Graphing Quadratics
Notes #14
Name: __________________________________________ Date: _____________________________
Quadratics – Vertex Form
f  x   a  x  h  k
2
This is the easiest form to use to find the vertex.
Vertex: (h, k)
Axis of Symmetry: x = h
Steps to Graphing in VERTEX form:
1. Find the vertex. (Change the sign of h). Plot it.
2. Find the axis of symmetry. Graph this lightly as a dashed vertical line.
3. On your calculator: TABLE, EDIT FUCTION, ENTER, START = <enter your h-value>,
CALC, ENTER. Scroll up and down to get other ordered pairs.
4. Connect in a u-shape with arrows at each end.
Graph & identify the vertex and axis of symmetry.
1. f  x    x  2  1
2
2. f  x  
1
2
 x  4  1
2
CCGPS Geometry
Unit 5C – Graphing Quadratics
Notes #14
Graph & identify the vertex and axis of symmetry.
3. f  x     x  1  2
2
5. f  x   
1
2
 x  4  4
4
4. f  x    x  2  3
2
6. f  x     x  3  3
2
CCGPS Geometry
Unit 2C – Graphing Quadratics
5.13 – Notes
Transformations of Vertex Form
f  x   a  x  h  k
2
What does a do to the parent graph?

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________
What does h do to the parent graph?

____________________________________________________________________________

____________________________________________________________________________
What does k do to the parent graph?

____________________________________________________________________________

____________________________________________________________________________
Determine what transformations are applied in the following functions.
2
7. f(x)  (x  3)2  5
8. f(x)    x  2   7

___________________________

___________________________

___________________________

___________________________

___________________________
9. f(x) 
1
2
 x  3  2
3
10. f(x)  4(x  3)2  8

___________________________

___________________________

___________________________

___________________________

___________________________

___________________________