• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 12
Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 12

... multiplication X ◦ Y = (XY + YX)/2 is a Euclidean Jordan algebra. It is however a Jordan algebra which is not induced by an associative algebra, and in fact it can be shown that it is isomorphic to no Jordan algebra that is a subalgebra of a Jordan algebra induced by an associative algebra. Therefor ...
1. Let A = 3 2 −1 1 3 2 4 5 1 . The rank of A is (a) 2 (b) 3 (c) 0 (d) 4 (e
1. Let A = 3 2 −1 1 3 2 4 5 1 . The rank of A is (a) 2 (b) 3 (c) 0 (d) 4 (e

... 14. Let P2 = {a0 +a1 t+a2 t2 } where {a0 , a1 , a2 } range over all real numbers, and let T : P2 → P1 be a linear transformation given by T (a0 +a1 t+a2 t2 ) = a1 +2a2 t. Suppose that B = {1, t, t2 } is a basis of P2 and C = {1, t} is a basis of P1 . (1) Find a matrix A such that [T v]C = A[x]B . (2 ...
mathematics 217 notes
mathematics 217 notes

... The characteristic polynomial of an n×n matrix A is the polynomial χA (λ) = det(λI −A), a monic polynomial of degree n; a monic polynomial in the variable λ is just a polynomial with leading term λn . Note that similar matrices have the same characteristic polynomial, since det(λI − C −1 AC) = det C ...
Matrix operations on the TI-82
Matrix operations on the TI-82

PowerPoint
PowerPoint

λ1 [ v1 v2 ] and A [ w1 w2 ] = λ2
λ1 [ v1 v2 ] and A [ w1 w2 ] = λ2

9. Change of basis/coordinates Theorem Let β and β be two ordered
9. Change of basis/coordinates Theorem Let β and β be two ordered

complexification of vector space
complexification of vector space

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Lecture 8
Semidefinite and Second Order Cone Programming Seminar Fall 2012 Lecture 8



Fall 2007 Exam 2
Fall 2007 Exam 2

The Inverse of a matrix
The Inverse of a matrix

... vaguely, from high-school algebra. Recall also that the determinant of a matrix is a scalar. Let’s work a specific example: ...
MatlabTutorial
MatlabTutorial

... functions. To use these tools, the polynomial should be represented as a vector with the leftmost number being the highest power and the rightmost number being the constant. For example, x² + 2x + 1 would be represented as [1 2 1]. • The roots function gives the roots of the polynomial and polyval e ...
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

final.pdf
final.pdf

sequence "``i-lJ-I ioJoilJl``" is in XTexactly when, for every k, the
sequence "``i-lJ-I ioJoilJl``" is in XTexactly when, for every k, the

Review of Linear Algebra - Carnegie Mellon University
Review of Linear Algebra - Carnegie Mellon University

1. Let A = 1 −1 1 1 0 −1 2 1 1 . a) [2 marks] Find the
1. Let A = 1 −1 1 1 0 −1 2 1 1 . a) [2 marks] Find the

Exam 1 solutions
Exam 1 solutions

Chapter 8
Chapter 8

lay_linalg5_05_01
lay_linalg5_05_01

Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors

Solving a Homogeneous Linear Equation System
Solving a Homogeneous Linear Equation System

Matrices and Deformation
Matrices and Deformation

Problem set 3
Problem set 3

< 1 ... 82 83 84 85 86 87 88 89 90 ... 98 >

Jordan normal form



In linear algebra, a Jordan normal form (often called Jordan canonical form)of a linear operator on a finite-dimensional vector space is an upper triangular matrix of a particular form called a Jordan matrix, representing the operator with respect to some basis. Such matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with identical diagonal entries to the left and below them. If the vector space is over a field K, then a basis with respect to which the matrix has the required form exists if and only if all eigenvalues of the matrix lie in K, or equivalently if the characteristic polynomial of the operator splits into linear factors over K. This condition is always satisfied if K is the field of complex numbers. The diagonal entries of the normal form are the eigenvalues of the operator, with the number of times each one occurs being given by its algebraic multiplicity.If the operator is originally given by a square matrix M, then its Jordan normal form is also called the Jordan normal form of M. Any square matrix has a Jordan normal form if the field of coefficients is extended to one containing all the eigenvalues of the matrix. In spite of its name, the normal form for a given M is not entirely unique, as it is a block diagonal matrix formed of Jordan blocks, the order of which is not fixed; it is conventional to group blocks for the same eigenvalue together, but no ordering is imposed among the eigenvalues, nor among the blocks for a given eigenvalue, although the latter could for instance be ordered by weakly decreasing size.The Jordan–Chevalley decomposition is particularly simple with respect to a basis for which the operator takes its Jordan normal form. The diagonal form for diagonalizable matrices, for instance normal matrices, is a special case of the Jordan normal form.The Jordan normal form is named after Camille Jordan.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report