D=c System Short=circuit Current Calculations
... The calculation of the maximum short -circuit current can also be performed by using a superposition method instead of resolving the resistance diagram to one equivalent resistance as described above. -The superposition method normally requires more calculating than would be involved in obtaining on ...
... The calculation of the maximum short -circuit current can also be performed by using a superposition method instead of resolving the resistance diagram to one equivalent resistance as described above. -The superposition method normally requires more calculating than would be involved in obtaining on ...
NTF3055L108 - Power MOSFET 3.0 Amps, 60 Volts
... Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided ...
... Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided ...
LMG5200 80V, 10A GaN Half-Bridge Power Stage
... Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absol ...
... Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absol ...
Bipolar Junction Transistor
... electrostatic field b/w base and collector. The field immediately collects the diffused electrons which enter the collector junction. Flow of electrons into the base region when confronted with hole, a few electrons [1 to 5%] combine and neutralize, rest of the electrons[95 to 99%] of the inject ...
... electrostatic field b/w base and collector. The field immediately collects the diffused electrons which enter the collector junction. Flow of electrons into the base region when confronted with hole, a few electrons [1 to 5%] combine and neutralize, rest of the electrons[95 to 99%] of the inject ...
LM3670 - Texas Instruments
... either a single Li-Ion or three-cell NiMH/NiCd battery to portable devices such as cell phones and PDAs. Using a voltage mode architecture with synchronous rectification, the LM3670 can deliver up to 350 mA depending on the input voltage and output voltage (voltage head room), and the inductor chose ...
... either a single Li-Ion or three-cell NiMH/NiCd battery to portable devices such as cell phones and PDAs. Using a voltage mode architecture with synchronous rectification, the LM3670 can deliver up to 350 mA depending on the input voltage and output voltage (voltage head room), and the inductor chose ...
The Field Effect Transistor
... depletion region is in between the Gate and the Drain, while the least-depleted area is between the Gate and the Source. Then the JFET's channel conducts with zero bias voltage applied (i.e. the depletion region has near zero width). With no external Gate voltage ( VG = 0 ), and a small voltage ( VD ...
... depletion region is in between the Gate and the Drain, while the least-depleted area is between the Gate and the Source. Then the JFET's channel conducts with zero bias voltage applied (i.e. the depletion region has near zero width). With no external Gate voltage ( VG = 0 ), and a small voltage ( VD ...
Superjunction MOSFET for charger applications
... “The SJ principle gives us the opportunity to create best-in-class types, which have not been possible before such as a 100 mΩ/600 V part in a TO-220 package. Furthermore it allows making parts with very low capacitances for a given RDS(on) as the silicon chip is much smaller than for a conventional ...
... “The SJ principle gives us the opportunity to create best-in-class types, which have not been possible before such as a 100 mΩ/600 V part in a TO-220 package. Furthermore it allows making parts with very low capacitances for a given RDS(on) as the silicon chip is much smaller than for a conventional ...
Memristor
The memristor (/ˈmɛmrɨstər/; a portmanteau of memory resistor) was a term coined in 1971 by circuit theorist Leon Chua as a missing non-linear passive two-terminal electrical component relating electric charge and magnetic flux linkage. The operation of RRAM devices was recently connected to the memristor concept According to the characterizing mathematical relations, the memristor would hypothetically operate in the following way: The memristor's electrical resistance is not constant but depends on the history of current that had previously flowed through the device, i.e., its present resistance depends on how much electric charge has flowed in what direction through it in the past. The device remembers its history - the so-called non-volatility property: When the electric power supply is turned off, the memristor remembers its most recent resistance until it is turned on again.Leon Chua has more recently argued that the definition could be generalized to cover all forms of two-terminal non-volatile memory devices based on resistance switching effects although some experimental evidence contradicts this claim, since a non-passive nanobattery effect is observable in resistance switching memory. Chua also argued that the memristor is the oldest known circuit element, with its effects predating the resistor, capacitor and inductor.In 2008, a team at HP Labs claimed to have found Chua's missing memristor based on an analysis of a thin film of titanium dioxide; the HP result was published in Nature. The memristor is currently under development by various teams including Hewlett-Packard, SK Hynix and HRL Laboratories.These devices are intended for applications in nanoelectronic memories, computer logic and neuromorphic/neuromemristive computer architectures. In October 2011, the HP team announced the commercial availability of memristor technology within 18 months, as a replacement for Flash, SSD, DRAM and SRAM. Commercial availability of new memory was more recently estimated as 2018. In March 2012, a team of researchers from HRL Laboratories and the University of Michigan announced the first functioning memristor array built on a CMOS chip.