* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Conservation of Energy in chemical reactions, Hess`s Law
Debye–Hückel equation wikipedia , lookup
Acid–base reaction wikipedia , lookup
Multi-state modeling of biomolecules wikipedia , lookup
Process chemistry wikipedia , lookup
Spinodal decomposition wikipedia , lookup
Hydrogen-bond catalysis wikipedia , lookup
Marcus theory wikipedia , lookup
Physical organic chemistry wikipedia , lookup
Double layer forces wikipedia , lookup
Electrochemistry wikipedia , lookup
Cnoidal wave wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Chemical equilibrium wikipedia , lookup
George S. Hammond wikipedia , lookup
Strychnine total synthesis wikipedia , lookup
Chemical thermodynamics wikipedia , lookup
Chemical reaction wikipedia , lookup
Rate equation wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Click chemistry wikipedia , lookup
Bioorthogonal chemistry wikipedia , lookup
Lewis acid catalysis wikipedia , lookup
Conservation of Energy in chemical reactions, Hess’s Law (Text reference 17.4) Consider the following reaction: C (s, graphite) + O2(g) ---> CO2(g) H° = -394 kJ What kind of change is occurring, and what elements are involved? (By the way, notice the presence of the sign, °, on the enthalpy. This indicates that the reaction is happening under standard conditions.) Now consider this reaction: CO2(g) ---> C (s, graphite) + O2(g) H° = ???kJ What kind of change is occurring this time, and what elements are involved? What is the critical difference? What would H be in the second reaction? _____ Why does this make sense? **************************************************************** There are many chemical reactions that are difficult to study directly because the energy produced is very high, or because the reactants are difficult to obtain or handle. Hess’s Law (named after the scientist who proposed it) helps us to calculate H for a reaction by using data from other reactions that are related to it. Hess’s Law states: If a chemical equation can be written as the ‘sum’ of several other chemical equations, the enthalpy change of the first chemical equation equals the sum of the enthalpy changes of the other chemical equations. Here is an example of how Hess’s Law can be used to figure out the H for a nearly impossible reaction to do in the lab… forming diamonds from ordinary graphite ! Here is the equation: C (s, graphite) ---> C (s, diamond) H° = ??? kJ Hess' Law offers a way out. If we could show this reaction as the sum of a sequence of other reactions, then we can add their enthalpies to get what we want. Here are two known reactions we can “add”: C (s, graphite) + O2(g) ---> CO2(g) H° = -394 kJ C (s, diamond) + O2(g) ---> CO2(g) H° = -396 kJ Look at each one of them and see that their reactants and products have the parts we are interested in combining into a new equation. Notice that both reactions are exothermic. And notice that both equations have some of the same formulas. Now look at what happens when you ‘reverse’ the second equation. This puts C(s, diamond) on the product side. C (s, graphite) + O2(g) ---> CO2(g) H° = -394 kJ CO2(g) ---> C (s, diamond) + O2(g) H° = +396 kJ Notice the other change that occurs. The H° value changes from positive to negative. This is an absolute requirement when using Hess' Law. Reversing an equation means reversing the sign on the enthalpy value. If a reaction is exothermic in the forward direction, it must be endothermic in the reverse direction. Now combine these two equations, including the enthalpies. Here is the combined equation: CO2(g) + C (s, graphite) + O2(g) ---> CO2(g) + C (s, diamond) + O2(g) H° = (-394 kJ) + (+396 kJ) Can you find formulas that are the same on both sides? If so, cancel them. (This is similar to cancelling out spectator ions when you write net ionic equations): CO2(g) + C (s, graphite) + O2(g) ---> CO2(g) + C (s, diamond) + O2(g) H° = (-394 kJ) + (+396 kJ) Re-write what’s left: C (s, graphite) ---> C (s, diamond) H° = +2 kJ We now have the value H for an experiment by building it from two other relatively easy ‘experiments’. And we avoid performing a tricky, expensive, possibly dangerous experiment. Lab Application: Determine the value for the molar heat of reaction for the combustion of magnesium: Mg(s) + ½ O2(g) ---> MgO(s) (equation # 1) You might remember this reaction – it is highly exothermic, so we really can’t use ordinary calorimetry methods to determine ΔH. So we will determine the heats of reaction for several other reactions that will then be used to “add up” ΔH values. The 3 other reactions are: Mg(s) + 2HCl(aq) ---> MgCl2(aq) + H2(g) (equation #2) MgO(s) + 2HCl(aq) ---> MgCl2(aq) + H2O(l) (equation #3) H2(g) + ½ O2(g) ---> H2O(l) (equation #4) Procedure Reaction for Equation #2: Magnesium metal with Hydrochloric Acid 1) Obtain approx. 0.5 g of magnesium ribbon. Polish the ribbon with steel wool, and then obtain the exact mass. (Coil the ribbon loosely.) 2) Place 100.0-mL of 1.0M HCl into a coffee-cup calorimeter. Measure carefully. Since the density of the acid is nearly the same water, we will accept this as being 100.0g. Record the initial temperature of the acid. 3) While stirring gently with the thermometer, add the Mg ribbon to the acid. 4) Make sure that the contents of the calorimeter are evenly mixed, and that the Mg reacts completely. Record the highest temperature reached in your data table. 5) Discard the solution down the drain with the water running. Rinse the calorimeter and the thermometer. Mass of Mg used: Mass of HCl in the calorimeter: Initial temp. of HCl Final temp. of HCl ______ g ______ g (dilute HCl has the same density as H2O) ______ °C ______ °C Reaction for Equation #3: Magnesium Oxide with Hydrochloric Acid 6) Obtain approximately 1.00-g of magnesium oxide. Use a weighing boat or other appropriate container. Record the exact mass you use. 7) Now, repeat steps 2 - 5 above with the MgO instead of the Mg. Mass of MgO used: Mass of HCl in the calorimeter: Initial temp. of HCl Final temp. of HCl ______ g ______ g (dilute HCl has the same density as H2O) ______ °C ______ °C Equation #4: Hydrogen gas with Oxygen gas 8) For safety reasons, this reaction will not be done in class. The Heat of Formation of water (called Hfo) has been professionally determined, and the value is listed in standard reference sources. You can find this value in your textbook, pg. 530. Be sure to use the value for H2O(l), as seen in the 4th equation above. Analysis: Complete calculations neatly in the spaces provided. 1) Calculate H values. Remember that dilute HCl has the same thermal properties as water. For Reaction #2: Energy transferred in the calorimeter: Moles Mg reacted: H, in kJ/mol (be sure to attach the algebraic sign): Fill-in the equation: Mg(s) + 2HCl(aq) ---> MgCl2(aq) + H2(g) ΔH = ______ kJ/mol For Reaction #3: Energy transferred in the calorimeter: Moles MgO reacted: H, in kJ/mol (be sure to attach the algebraic sign): Fill-in the equation: MgO(s) + 2HCl(aq) ---> MgCl2(aq) + H2O (l) ΔH = ______ kJ/mol 2) Look up the value of H for Reaction #4. It is the Hf for H2O(l) found in your textbook. Fill-in the equation: H2(g) + ½ O2(g) ---> H2O(l) ) ΔH = ______ kJ/mol 3) Look back at equation #1 again. Each of its reactants and products is found somewhere in the other 3 equations. We are looking to have Mg and ½ O2 as the only reactants, and MgO as the only product. All of the other formulas will be cancelled when the equations are written correctly. Re-write the equations for reactions 2, 3, and 4 (along with the H values – watch algebraic signs!) so that they can be ‘added up’ to produce Equation 1. This requires you to think about which equation(s) to reverse. 2) 3) 4) Mg(s) + ½ O2(g) ---> MgO(s) ΔH = ______ kJ/mol 4) Calculate percent of error for your result. The accurate value is 597.7 kJ/mol.