* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Viral Infections: an overview
Swine influenza wikipedia , lookup
Avian influenza wikipedia , lookup
Elsayed Elsayed Wagih wikipedia , lookup
Herpes simplex wikipedia , lookup
Taura syndrome wikipedia , lookup
Neonatal infection wikipedia , lookup
Hepatitis C wikipedia , lookup
Orthohantavirus wikipedia , lookup
Human cytomegalovirus wikipedia , lookup
Marburg virus disease wikipedia , lookup
Influenza A virus wikipedia , lookup
Canine distemper wikipedia , lookup
Canine parvovirus wikipedia , lookup
Lymphocytic choriomeningitis wikipedia , lookup
Viral Infections: an overview Dr. Meg-angela Christi Amores Defining a Virus • Viruses consist of a nucleic acid surrounded by one or more proteins • obligate intracellular parasites: they can replicate only within cells • Many human viruses are simply composed of a core and a capsid • Genes: contain either DNA or RNA RNA Viruses DNA Viruses Picornaviruses Poliovirus Coxsackievirus Echovirus Enterovirus Rhinovirus Hepatitis A virus Herpesviridae Herpes simplex virus types 1 and 2b Varicella-zoster virusc Epstein-Barr virusd Cytomegaloviruse Human herpesvirus 6 Human herpesvirus 7 Calciviridae Norwalk agent Hepatitis E virus Hepadnaviridae Hepatitis B virus Togaviridae Rubella virus Eastern equine encephalitis virus Western equine encephalitis virus Papovaviridae Human papillomaviruses JC virus BK virus Flaviviridae Yellow fever virus Dengue virus St. Louis encephalitis virus West Nile virus Hepatitis C virus Hepatitis G virus Poxviridae Variola (smallpox) virus Orf virus Molluscum contagiosum virus RNA Viruses DNA Viruses Coronaviridae Coronaviruses Adenoviridae Human adenoviruses Rhabdoviridae Rabies virus Vesicular stomatitis virus Parvoviridae Parvovirus B19 Filoviridae Marburg virus Ebola virus Paramyxoviridae Parainfluenza virus Respiratory syncytial virus Newcastle disease virus Mumps virus Rubeola (measles) virus Orthomyxoviridae Influenza A, B, and C viruses Bunyaviridae Hantavirus California encephalitis virus Sandfly fever virus • Transmission Viral Infection – capsid and envelope of a virus protect its genome – Most common viral infections are spread by • direct contact • by ingestion of contaminated water or food • by inhalation of aerosolized particles – Animals are important reservoirs and vectors for transmission of viruses causing human disease Viral Infection • Primary Infection – usually lasts from several days to several weeks • enterovirus, mumps virus, measles virus, rubella virus, rotavirus, influenza virus, AAV, adenovirus, HSV, and VZV are cleared from almost all sites within 3–4 weeks • AAV, EBV, or cytomegalovirus (CMV) can last for several months • HBV, HCV, hepatitis D virus (HDV), HIV, HPV, and molluscum contagiosum virus extend beyond several weeks Viral Infection • Primary Infection – Disease manifestations usually arise as a consequence of viral replication and the resultant inflammatory response – are cleared by nonspecific innate and specific adaptive immune responses – host is usually immune to the disease manifestations of reinfection by the same virus Persistent and Latent Infections – HCV RNA polymerase and HIV reverse transcriptase have high mutation rates – generation of variant genomes that evade the host immune response facilitates persistent infection – DNA viruses: lower mutation rates • ability to establish latent infection and to reactivate from latency Persistent and Latent Infections • latency is defined as a state of infection in which the virus is not replicating • HPVs establish latent infection in basal epithelial cells Persistent and Latent Infections • Herpesviruses: latent infection is established – in nonreplicating neural cells (HSV and VZV) – in replicating cells of hematopoietic lineages [EBV and probably CMV, HHV-6, HHV-7, and Kaposi's sarcoma–associated herpesvirus (KSHV, also known as HHV-8)]. Persistent Viral infections and Cancer – estimated to be the root cause of as many as 20% of human malignancies – Most hepatocellular carcinoma is now believed to be caused by chronic inflammatory, immune, and regenerative responses to HBV or HCV infection – Almost all cervical carcinoma is caused by persistent infection with "high-risk" genital HPV strains – EBV infection also plays a role in the long-term development of certain B lymphocyte and epithelial cell malignancies Resistance to Viral Infections • Initial response is not virus-specific • Physical – cornified layers of the skin and by mucous secretions that continuously sweep over mucosal surfaces • Cellular – IFNs are induced and confer resistance – cytokines may be chemotactic to inflammatory and immune cells Resistance to Viral Infections • By 7–10 days after infection, virus-specific antibody responses develop • virus-specific HLA class II–restricted CD4+ helper T lymphocyte responses, and virus-specific HLA class I– restricted CD8+ cytotoxic T lymphocyte responses • Antibody and complement can also lyse virus-infected cells that express viral proteins on their surface • host inflammatory and immune response contributes to the symptoms, signs, and other pathophysiologic manifestations of viral infection Diagnostic Virology • Serology • Viral Isolation • Acute- and convalescent-phase sera with rising titers of antibody to virus-specific antigens • shift from IgM to IgG antibodies Diagnostic Virology • ELISA (Enyme-Linked Immunosorbent Assay) – generally use specific viral proteins that are most frequently targeted by the antibody response – amount of antibody can then be quantitated by the intensity of a color reaction mediated by the linked enzyme • Virus isolation – depends on the collection of specimens from the appropriate site – the rapid transport of these specimens in the appropriate medium to the virology laboratory – Rapid transport maintains viral viability and limits bacterial and fungal overgrowth. Treatment • Multiple steps in the viral life cycle can be effectively targeted by antiviral drugs – synthesis of the HIV provirus – block maturation of the HIV polyprotein – preventing a conformational change required for virus fusion – preventing release of viral RNA early during infection – Prevent efficient release of mature virions Immunization • • • • • • • Smallpox Poliovirus Measles Influenza Chickenpox HBV Mumps, rubella