Download Hvorfor er så kolesterol farlig?

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Therapeutic gene modulation wikipedia , lookup

Gene prediction wikipedia , lookup

Genetically modified food wikipedia , lookup

Genetic code wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

History of biotechnology wikipedia , lookup

Molecular ecology wikipedia , lookup

Gene therapy wikipedia , lookup

Biotechnology wikipedia , lookup

History of genetic engineering wikipedia , lookup

Designer baby wikipedia , lookup

Genetic engineering wikipedia , lookup

Genetic engineering in science fiction wikipedia , lookup

Transcript
HMED1101
271103
Litt diverse om screening
Av
Rona I.M. Balbing
Monica Nomussa Mbanga
Bjørg Johanne Vestre
Veronica Gundersen
Martin Fjordholm
Krever noe forkunnskaper i engelsk
Screening
Screening betyr masseundersøkelse av symptomfrie mennesker. Dette går ut på at man ofte
innkaller mennesker til forskjellige undersøkelser. Alle mennesker blir ikke innkalt, men man
avgrenser etter forskjellige risikogrupper. Ofte i samarbeid med primærhelsetjenesten. Som
kan være med på å plukke ut personer som i større grad kan være utsatt for forskjellige
sykdommer. Eksempler på grupper kan være: Asiatiske førstegangsfødende (smale bekken),
mennesker med slektninger som har genetisk betingede sykdommer, kvinner i alderen 50-69
år (mammografiscreening etter brystkreft). Slike undersøkelser kan bidra til at sykdommer
oppdages på et tidlig tidspunkt, og behandling kan starte tidlig. Dette kan muligens gjøre at
dødsfall kan unngås og store skader kan forebygges. Kreft for eksempel er en sykdom som
ofte er detekterbar på tidlige stadier, og om den oppdages og behandles tidlig kan skader
minimeres.
Nyfødtscreening
Det tas en blodprøve 4. eller 5. dag ( kommer tilbake for kontroll, fult ammet) i hælen som
sendes til pediatrisk forsknings institutt på rikshospitalet for analyse det tar 1-2 uker. De
undersøkes på to ting, det er medfødt hypothyerose og føllings sykdom som div. har vært inne
på.
Medfødt hypothyreose er det ca. 15 barn som blir født med hvert år i Norge.
Det er en forstyrrelse i stoffskiftet. Stoffskifte hormonet (altså thyroxin) produseres i
skjodlbukskjertelen som har blitt utviklet feil, enten ved at den mangler (vanligst) eller at den
ligger på feil sted og er underutviklet.
Stoffskiftehormonet er helt essensielt for utvikling og vekst av sentralnervesystemet altså
hjernen, så de som ikke får behandling vil bli veldig psykisk utviklingshemmet. Dessuten er
det livsviktig.
De har ikke funnet noen årsak. Men det finnes en veldig sjelden form som er arvelig.
Siden barnet fremdeles har stoffskiftehormoner fra mor, har ikke barnet noen symptomer.
Behandling er da hormoner i tablettform, ”thyroxin”, som man må ta hver dag hele livet. ( kan
en sjelden gang være forbigående.)
Følingssykdom, PKU phenylketonuria, er det bare omtrent 4 som får verdt år i Norge.
Enzymer bryter ned næringstoffer fra maten for eksempel proteiner til aminosyrer.
Man har manglende funksjon av et enzymet fenylalanin hydrolase, som skal danne
fenylalanin til tyrosin. I mangelen på enzymet omdannes fenylananinet til fenylketoner som
skader hjernen.
Behandlingen er altså en livslang diett, med så lite fenylananin som mulig. Mat må veies på
grammet osv.
Denne sykdommen er arvelig, både mor og far ( autosomal recessiv sykodom) må ha den
samme kromosonfeilen som for øvrig sitter på kromosom 12. Må sitte på begge parene av
kromosom 12. 25% sjanse på at barnet rammes. Men det er altså enklere å måle fenylalanin i
en blodprøve enn genetiske analyser.
Symptomene på et ubehandlet barn kan være lys hud og hår, redusert kontaktevne,
brekninger, kramper, vond lukt. Hjerneskade.
Kolesterol som risikofaktor
Hva er egentlig kolesterol?
Kolesterol er et stoff ingen mennesker kan klare seg uten. Kolesterol er et spesielt fettstoff, og kan
derfor ikke være fritt i blodbanen, siden fett og vann ikke blander seg. Derfor er kolesterolpartiklene
koblet til proteiner, de viktigste kalles HDL (high-density lipoprotein), LDL (low-density lipoprotein)
og VLDL (very low density lipoprotein). Det er nivået av kolesterol i blodbanen legen måler for å
vurdere om ditt kolesterol er forhøyet eller ikke.
På denne måten blir kolesterolet vannløselig og kan fraktes rundt i blodbanen til de stedene hvor
kroppen trenger slike byggesteiner. HDL er såkalt ”godt” og LDL såkalt ”dårlig” kolesterol. VLDL
blir til LDL i blodstrømmen.
Kolesterol er nødvendig for dannelsen av gallesyrer (som hjelper til med fordøyelsen av fett), vitamin
D, kjønnshormoner og kortison.
Alle celler har en cellevegg (cellemembran). Denne celleveggen består av et dobbelt lag med
fettstoffer, deriblant kolesterol. Leveren danner kolesterol, men kan også fjerne det fra kroppen.
2 hovedkilder til kolesterol
Kolesterolet i blodet kommer fra to kilder; enten er det tilført via maten eller det er laget (syntetisert) i
leveren.
Leveren skiller ut kolesterol, men har også evnen til å fjerne kolesterol fra blodbanen igjen. Når du
spiser suges kolesterol opp fra maten via tarmveggen, kobles til et annet protein og fraktes via blodet
til leveren.
LDL kan suges opp igjen fra blodet til leveren. Dette skjer fordi levercellene har spesielle
mottagermolekyler på overflaten, LDL-reseptorer, som fanger opp LDL i blodstrømmen og frakter
dem inn i leveren. Har man mange slike mottagere på levercellenes overflate suges mye LDL opp og
blodnivået av kolesterol, som legen måler, synker.
Motsatt har personer med lavt antall slike mottagermolekyler på overflaten, lett for å få høyt
kolesterol. Personer med arvelig høyt kolesterol mangler oftest ca. halvparten av mottagermolekylene.
Har du forhøyet kolesterol?
Ikke alle har målt kolesterolverdiene sine hos legen, men det er mer og mer vanlig at slike prøver tas
ved rutinekontroller, bedriftskontroller og ved andre anledninger hos legen.
For lavt kolesterolnivå er sjelden et medisinsk problem. Hyperlipidemi er en samlebetegnelse på
tilstander med forhøyede verdier av fettstoffer i blodet.
Det finnes godt og dårlig kolesterol, forholdet mellom disse og de nøyaktige verdiene avgjør om en
bør behandles eller ikke.
Hvorfor er så kolesterol farlig?
Grunnen til at legene ønsker å senke kolesterolverdiene til en pasient er at et forhøyet kolesterol
medfører økt risiko for hjertesykdom, spesielt sykdommer som hjerneslag, hjerteinfarkt og
hjertekrampe (angina). Pasienter med forhøyet kolesterol kan få plager med tette årer i beina
(røykeben) og ereksjonsproblemer.
Hjerte-karsykdommer er den vanligste årsak til død i den vestlige verden, og i Norge har minst
250.000 personer helseskadelig forhøyete kolesterolverdier.
LDL-partiklene kan avleires på innsiden av blodårer og danner harde, fortykkede skorper som kalles
plakk eller åreforkalkninger. Etter hvert som denne skorpen blir tykkere, blir selvfølgelig passasjen i
blodkaret mindre og mindre og blodåreveggen blir tykkere. Kalles aterosklerose.
Blodårene som forsyner hjertets muskulatur er små og tynne, og hvis det i tillegg kommer
kolesterolavleiringer på innsiden av disse blir det svært dårlig gjennomstrømning , og muskulaturen i
hjertet kan få for dårlig forsyning av blod og oksygen.
Når hjertemuskelen får for lite oksygen gir det brystsmerter (hjertekrampe, eller angina).
Hvis blodårene lukkes helt igjen av kolesterolavleiringer og blodprodukter kan muskelen som
blodåren forsyner dø, og vi kaller det da et hjerteinfarkt.
Svært lave verdier av HDL øker også risikoen for hjerteinfarkt fordi kroppen mister evnen til å fjerne
kolesterol fra plakkene i blodårene.
Kolesterolavleiringer kan på samme måte påvirke blodstrømmen i blodkar til hjernen, til beina og til
penis, og derved kan pasienten lide av hjerneslag, røykeben og ereksjonsproblemer.
Ønskelige kolesterolverdier:
Totalkolesterol under 5 mmol/l
Forholdet mellom Totalkolesterol/HDL under 4
LDL-kolesterol under 3 mmol/l
Triglyserider under 2 mmol/l
HDL-kolesterol over 1 mmol/l
Fakta:
600.000 mennesker dør av hjertesykdom med åreforkalkning i USA hvert år.
I Norge regner man med at minst 250.000 mennesker har helseskadelig forhøyet kolesterolverdier.
Fettverdiene øker gjennomsnittlig med 2-3 mmol/l fra 20-30 årsalderen til 60-70-årsalderen.
Mammografi
Hvert år oppdages det rundt 2000 tilfeller av brystkreft i Norge. Dette er en
røntgenundersøkelse av bryster hos kvinner som befinner seg i fasen rundt overgangsalderen.
Mammografiscreeningprogrammet er et opplegg som ble startet i 1996 av Kreftregisteret. I
begynnelsen omfattet Akershus, Oslo, Hordaland og Rogaland. Utenom disse er det
sannsynlig at kvinner selv måtte be om mammografiundersøkelse dersom de skulle komme til
å oppdage kuler i brystene. Fra 2002 ble programmet utvidet til at alle kvinner rundt 45 blir
invitert til mammografi hvert annet år.
Om mammografi reduserer dødeligheten av brystkreft finnes det motstridende undersøkelser
om. Noen studier hevder at dødeligheten reduseres med 50-60% (Sverige-aldersgruppe 50-74
år), 30% (Norge-aldersgruppe 50-69 år, dette tallet er også målet i det norske programmet).
En undersøkelse fra National Cancer Institute i USA, konkluderer imidlertid i en undersøkelse
foretatt 24 januar 2003, med at det ikke foreligger tilstrekkelig bevis for at mammografi
faktisk reduserer dødeligheten av brystkreft.
Mammografi fører også til at flere får diagnosen brystkreft. Insidensraten for brystkreft har i
flere randomiserte studier økt med ca 30%. I Finland har raten økt med 50%. På 90-tallet har
tallet i prøvefylkene (Oslo, Akershus, Rogaland og Hordaland) økt med 45% (alle inviterte).
Siden bare 74% av de inviterte møtte opp, blir økningen faktisk til 61% av de oppmøtte.
Klinisk mammografi er en viderekommen måte for mammografiscreening. Dette utføres ofte
dersom man er usikker på resultatet av de radiografiske funnene. Denne utføres ved at man
henter ut celler fra mistenkelige områder og utfører laboratorieundersøkelser av vevsprøvene.
Siden ikke alle kreftsvulster er synlige er det anbefalt av kreftforeninger at man undersøker
brystene på egen hånd, og evt. små kuler hos lege. Ca 5% av brystkrefttilfellene er arvelige,
dette fører til at døtre og søstre av brystkreftpasienter bør følges ekstra opp.
Cervixundersøkelse
Livmorhalsundersøkelse, man foretar en utskraping av celler fra livmorhalsen for å se etter
livmorhalskreft. Rettes mot kvinner i alderen 25-69 år. Det oppdages ca 281 nye tilfeller hvert
år. 70% av alle kvinner tar nå denne prøven omtrent hvert 3. år.
gene therapy
the use of genes and the techniques of genetic engineering in the treatment of a genetic
1
disorder or chronic disease. There are many techniques of gene therapy, all of them still
in experimental stages. The two basic methods are called in vivo and ex vivo gene
therapy. The in vivo method inserts genetically altered genes directly into the patient; the
ex vivo method removes tissue from the patient, extracts the cells in question, and
genetically alters them before returning them to the patient.
The challenge of gene therapy lies in development of a means to deliver the genetic
2
material into the nuclei of the appropriate cells, so that it will be reproduced in the normal
course of cell division and have a lasting effect. One technique involves removing cells
from a patient, fortifying them with healthy copies of the defective gene, and reinjecting
them into the patient. Another involves inserting a gene into an inactivated or nonvirulent
virus and using the virus’s infective capabilities to carry the desired gene into the
patient’s cells. A liposome, a tiny fat-encased pouch that can traverse cell membranes, is
also sometimes used to transport a gene into a body cell. Another approach employing
liposomes, called chimeraplasty, involves the insertion of manufactured nucleic acid
molecules (chimeraplasts) instead of entire genes to correct disease-causing gene
mutations. Once inserted, the gene may produce an essential chemical that the patient’s
body cannot, remove or render harmless a substance or gene causing disease, or expose
certain cells, especially cancerous cells, to attack by conventional drugs.
Gene therapy was first used in humans in 1990 to treat a child with adenosine deaminase
deficiency (ADA), a rare hereditary immune disorder (see immunity). It is hoped that
gene therapy can be used to treat cancer, genetic diseases, and AIDS, but there are
concerns that the immune system may attack cells treated by gene therapy, that the viral
vectors could mutate and become virulent, or that altered genes might be passed to
succeeding generations.
In the United States, gene therapy techniques must be approved by the federal
government. The Recombinant DNA Advisory Committee of the National Institutes of
Health oversees gene therapy experiments. Like drugs, products must pass the
3
requirements of the Food and Drug Administration. Gene therapy is a competitive and
potentially lucrative field, and patents have been awarded for certain techniques.
genetic engineering
the use of various methods to manipulate the DNA (genetic material) of cells to change
1
hereditary traits or produce biological products. The techniques include the use of
hybridomas (hybrids of rapidly multiplying cancer cells and of cells that make a desired
antibody) to make monoclonal antibodies; gene splicing or recombinant DNA, in which
the DNA of a desired gene is inserted into the DNA of a bacterium, which then
reproduces itself, yielding more of the desired gene; and polymerase chain reaction,
which makes perfect copies of DNA fragments and is used in DNA fingerprinting.
2
Genetic Testing and Genetic Screening
Summarised from an article by: Pat Milmoe McCarrick, The National Reference Centre for
Bioethics Literature, Georgetown University, U.S.A.
There has been an enormous expansion in the knowledge that may be gleaned from the testing
of an individual's genetic material to predict present or future disability or disease either for
oneself or one's offspring. The Human Genome Project, which is currently mapping the entire
human gene system, is identifying progressively more genetic sequencing information.
Information obtained from genetic testing raises ethical and legal questions about its uses by
society. The ethical dilemmas were foreseen two decades ago by bioethicists who asked
whether questionable applications could stop "legitimate pursuits'' and whether genetic
disease might come to be viewed as "transmissible'' in the sense of being contagious.
The practice of genetic testing and screening has increased greatly as knowledge has
expanded. In the case of testing for cystic fibrosis (CF), the U.S. Congress' Office of
Technology Assessment (OTA) estimates that instances of screening jumped from 9310 tests
in 1991 to 63,000 tests in 1992 .OTA's prediction that CF carrier tests would be offered
routinely to the six million women who become pregnant each year (6, OTA 1992) was
realized when the National Institute of Health's consensus statement on the topic
recommended CF testing for adults with a positive family history of the disease, for partners
of people with CF, for couples currently planning a pregnancy, and for couples seeking
prenatal care .
Following the identification of a gene linked to breast cancer, Dr. Francis Sellers Collins,
director of the National Center for Human Genome Research, said that "it is not inconceivable
that every woman in America may want to be screened for this gene. The economic, ethical,
and counseling issues will be very daunting.'' Dr. Collins opines that in the near future
physical examinations for 18-year-olds will include DNA testing for diseases with genetic
components and that physicians, in the interests of preventive medicine, will make risk-based
recommendations for a healthy life-style (6, Breo 1993). The U.S. President's Commission for
the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research
predicted as early as 1983 that before the end of the century genetic screening and counseling
would become major components of both public health and individual medical care (1, U.S.
President's Commission 1983).
The OTA defines genetic testing as "the use of specific assays to determine the genetic status
of individuals already suspected to be at high risk for a particular inherited condition. The
terms genetic test, genetic assay, and genetic analysis are used interchangeably to mean the
actual laboratory examination of samples.'' In contrast, genetic screening usually uses the
same assays employed for genetic testing but is distinguished from genetic testing by its target
population .The National Academy of Sciences (NAS) defines screening as the systematic
search of populations for persons with latent, early, or asymptomatic disease (1, NAS 1975).
Some of the literature annotated for this Scope Note appears to use the terms "testing'' and
"screening'' interchangeably.
Philip Boyle points out that the language used to describe genetic variation is important and
asks what words should be used: "Defects, flaws, deleterious genes, disorders, or the more
neutral conditions? Using words such as normal--and its corollary, abnormal--is likely to
foster stigmatization and discrimination'' (1, Boyle 1992).
Areas of focus in genetic testing include: prenatal diagnosis, newborn screening, carrier
screening, forensic screening, and susceptibility screening.
Prenatal diagnosis discerns whether a fetus is at risk for various identifiable genetic diseases
or traits. Prenatal diagnosis is made using amniotic fluid, fetal cells, and fetal or maternal
blood cells obtained during amniocentesis testing; alpha fetoprotein assays or chorionic villus
sampling; or ultrasound tomography, which creates fetal images on a screen. Another method,
known as fetoscopy, uses a camera on a needle inserted in the uterus to view the fetus.
Preimplantation testing of embryos might ensure that only embryos free of genetic disease or
problem traits would be placed in the uterus.
Newborn screening involves the analysis of blood or tissue samples taken in early infancy in
order to detect genetic diseases for which early intervention can avert serious health problems
or death. Newborn screening first came into use in the early 1960s with the ability to test
newborns for a rare metabolic disease, phenylketonuria (PKU), which causes mental
retardation and can be prevented by following a special diet (1, Capron 1990). Two other
examples of newborn screening, in place since the 1970s, are the testing of African-American
infants for sickle cell anemia and Ashkenazic Jews for Tay-Sachs disease (1, Reilly 1991).
Carrier screening identifies individuals with a gene or a chromosome abnormality that may
cause problems either for offspring or the person screened. The testing of blood or tissue
samples can indicate the existence of a particular genetic trait, changes in chromosomes, or
changes in DNA that are associated with inherited diseases in asymptomatic individuals (5,
OTA 1990). Groups tested include persons at risk or a cross-section of the general public for
occurrence statistics. Examples of carrier screening include the previously mentioned tests for
sickle cell anemia and for Tay-Sachs disease. In the last few years, screening tests have also
been developed for cystic fibrosis, Duchenne muscular dystrophy, hemophilia, Huntington's
disease, and neurofibromatosis (1, March of Dimes Birth Defects Foundation 1992; 6, Breo
1993). Recently it also has become possible to identify certain cancer prone individuals
through genetic testing (1, Li, et al., 1992).
Forensic testing, which is the newest area to use information obtained from genetic testing,
seeks to discover a genetic linkage between suspects and evidence discovered in criminal
investigations. Test results have been presented as proof of innocence or guilt in court cases,
and jury verdicts have been based on this type of genetic evidence. Critics note that forensic
laboratories often test just once, unlike research laboratories, which test many times, and that
mistakes can be made (4, Hoeffel 1990). Concern is expressed, too, about the confidentiality
of DNA profiles obtained from criminal investigations and stored in national police databanks
(5, Bereano 1990). Debate now centers on standards and quality control, but it is accepted that
the technologies accurately detect genetic differences between humans and are "new,
powerful tools to clear the innocent and convict the guilty.'' Since DNA is unique, many
people are reluctant to see such information become part of any national database, which
might include information not only about identity but also about proclivity toward disease or
behavior (4, OTA 1990).
Finally, susceptibility screening is used to identify workers who may be susceptible to toxic
substances that are found in their workplace and may cause future disabilities. In 1986,
Morton Hunt wrote in the New York Times Magazine that 390,000 workers become disabled
by occupational illness each year; he thinks these illnesses are precipitated by genetic
hypersusceptibility since co-workers are unaffected (5, Hunt 1986).
In an early classic work, the National Academy of Sciences says screening can be used for
medical intervention and research; for reproductive information; for enumeration, monitoring,
and surveillance; and for registries of genetic disease and disability (1, NAS 1975). Many
factors affect the use of any routine screening: customs of care (including both professional
guidelines and possible malpractice); education of the public about the results and limitations
of genetic testing; availability, training, and education of personnel to perform testing;
financing of such screening (particularly third-party payor responsibilities); stigmatization and
discrimination issues; quality assurance of laboratories and DNA test kits; and costs and cost
effectiveness (6, OTA 1992).
The Committee of Ministers of the Council of Europe thinks that the public generally
recognizes the benefits and the potential usefulness of genetic testing and screening for
individuals, for families, and for the population as a whole, but it says that there is an
accompanying anxiety that genetic testing and screening arouses. Its recommendations to
allay any future unease include: informing the public in advance; educating professionals to
provide quality services (genetic tests would only be carried out by physicians); offering
appropriate, non-directive, counseling; providing equality of access; respecting the selfdetermination of those tested; making testing or screening non-compulsory; and denying
insurers the right to require testing or to seek the results of previous tests (1, Council of
Europe 1992).
The Danish Council of Ethics views genetic information as different from other private
information since it reveals knowledge not only about an individual, but also the individual's
relatives, and because analyses will provide comprehensive information about both
individuals and population groups. The Council says that screening provides information
useful either to the individual or to public health officials, but this information is not
concerned with treatment. From a public health point of view, testing may prevent costly
treatment of a disease, protect third parties, and give the person the option of treatment.
However, from the individual's point of view, there may be ambivalence about the possibility
of a relative's potential disease (1, Danish Council of Ethics 1993).
Not everyone thinks that the growing field of genetic testing and screening is beneficial. The
potential problems raised both by those who favor testing and screening and those who
oppose it are similar, but one faction thinks that regulatory or legislative solutions to the
problems can be found while concerned opponents find the knowledge itself less valuable and
the problems unsolvable. Opponents of widespread genetic testing and screening regard the
acceptance of eugenic theories and scientists' inability to control outcomes of their genetic
research as dangerous. They foresee a need to outlaw technologies that threaten privacy or
civil rights and a need to protect against genetic discrimination. "We need to engage in active
debates about the practical consequences of genetic forecasts for our self-image, our health,
our work lives, our social relationships, and our privacy'' (1, Hubbard and Wald 1993).
Disability advocates and feminists have criticized genetic screening because they think it
fosters intolerance for less than perfect people (7, Kristol 1993).
Another possible negative effect is the pressure that might be placed on individuals, as a result
of cost-benefit analysis, to test or to be tested. Individuals might thereby be forced to know
their genetic predispositions, to tell others, or to act to save society long-term costs resulting
in a "new eugenics based, not on undesirable characteristics, but rather on cost-saving'' (1,
Knoppers 1991). Now that British insurers have government approval to use the results of
screening for Huntington's disease to assess insurance premiums, consumer groups say that
individuals will be reluctant to have such tests and risk denial of coverage (3, Dickson 2000).
On the other hand, Lowe (3, 1991) points out that genetic testing will not create more illness
than presently exists, and it could lead to a reduction in costs due to early treatment. Lippman
(6, 1992) suggests that control over genetics would create an elite who could control the
general populace, particularly if mandatory testing or intervention were viewed as a
community good. Other potential adverse effects of such screening include the development
of prejudice against those tested and found at risk and the feeling of tested persons that they
are predetermined victims of fate or are being branded as "abnormal'' (1, Danish Council on
Ethics 1993).
Wertz and Fletcher (6, 1989), who have surveyed geneticists throughout the world, say that
"the dangers of isolation, loss of insurance, educational, and job opportunities for persons
diagnosed with incurable and costly disorders known from early childhood are real to many
who are concerned about potential clinical uses and abuses of the `new genetics.'''
Guidelines and suggestions for ways to avoid negative effects that may arise from genetic
testing are prominent in the literature. Significant proposals include the duty of authorities to
help those persons identified to be at risk, the need for respect in personal areas, the right of
autonomy, and the realization that a newly diagnosed genetic problem may create difficulties
in an individual's relationships with others. In any genetic screening, guidelines should be
established governing its aim, limitations, scope, and ethical aspects, as well as the storage
and registration of data or material, the need for followup (including social consequences),
and the risk of side effects (1, Danish Council on Ethics 1993). Genetic screening should
always be voluntary, not mandatory, according to 99 percent of those surveyed by the OTA
with reference to cystic fibrosis screening (6, OTA 1992).
Issues of confidentiality loom large in discussions of genetic testing and screening. According
to the Privacy Commission of Canada, genetic privacy has two dimensions: protection from
the intrusions of others and protection from one's own secrets. It concludes that privacy is an
explicit constitutional right that includes respect for genetic privacy and is protected by
legislation. Consequently, employers, in general, should be prohibited from collecting genetic
information; services and benefits should not be denied on the basis of genetic testing; and
information should be used only to inform a person's own decisions (2, Privacy Commission
of Canada 1992).
The President's Commission, in a 1983 study, concluded that genetic information "should not
be given to unrelated third parties, such as insurers or employers, without the explicit and
informed consent of the person screened or a surrogate for that person.'' The Commission
recommended that information stored in computers should be coded and that compulsory
genetic screening cannot be justified to create a health gene pool or to reduce health costs (1,
U.S. President's Commission 1983). More recently, the NIH/DOE Working Group on the
Ethical, Legal and Social Implications of Human Genome Research recommended that health
insurers should consider a moratorium on the use of genetic tests in underwriting (3,
NIH/DOE 1993).
In the area of data protection and professional secrecy, genetic information for health care, the
diagnosis or prevention of disease, and for research should be stored separately from other
personal records. In addition, those handling the information should be bound by professional
rules of confidentiality and legislative rules, and any unexpected findings should be given
only to the person tested (1, Council of Europe 1992).
The literature on genetic discrimination suggests several areas of sensitivity: (1) the
workplace, where employers may choose to test job applicants, or those already employed, for
susceptibility to toxic substances or for genetic variations that could lead to future disabilities,
thereby raising health or workmen's compensation costs; (2) the insurers (either life or health
insurance companies) who might use genetic information or tests as criteria for denying
coverage or require reproductive testing to be done for cost containment purposes; and (3) law
enforcement officials, who may test and/or use information without informed consent (5,
American Medical Association 1991). Thomas H. Murray thinks that "genetic testing in the
workplace was a putative public health measure in its old form and now is used as a means of
saving money or promoting health.'' He opines that access to genetic testing involves
considerations of justice since genetic testing competes with other scarce resources and it may
emphasize racial and ethnic differences (1, AAAS/ABA 1992).