Download LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Coupled cluster wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Instanton wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Measurement in quantum mechanics wikipedia , lookup

Quantum state wikipedia , lookup

Tight binding wikipedia , lookup

Path integral formulation wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Perturbation theory (quantum mechanics) wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

T-symmetry wikipedia , lookup

Density matrix wikipedia , lookup

Canonical quantization wikipedia , lookup

Hydrogen atom wikipedia , lookup

Renormalization group wikipedia , lookup

Molecular Hamiltonian wikipedia , lookup

Matter wave wikipedia , lookup

Schrödinger equation wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Double-slit experiment wikipedia , lookup

Dirac equation wikipedia , lookup

Hidden variable theory wikipedia , lookup

Atomic theory wikipedia , lookup

Wave function wikipedia , lookup

Perturbation theory wikipedia , lookup

Wave–particle duality wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Probability amplitude wikipedia , lookup

Coherent states wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
M.Sc. DEGREE EXAMINATION - PHYSICS
SECOND SEMESTER – APRIL 2008
FG 47
PH 2806 / 2801 - QUANTUM MECHANICS - I
Date : 03/05/2008
Time : 1:00 - 4:00
Dept. No.
Max. : 100 Marks
PART A ( 10 X 2 = 20 MARKS )
ANSWER ALL QUESTIONS. EACH QUESTION CARRIES 2 MARKS.
1. What is meant by classical approximation in wave mechanics ?
2. Can classical concepts explain the Compton effect ?
3. Define probability density and probability current density.
4. What are stationary states ?
5. What is an observable ? Give an example.
6. State the expansion postulate.
7. Sketch the first two wave functions of the stationary states of a simple harmonic oscillator.
8. What are coherent states ?
9. What is the effect of an electric field on the energy levels of an atom ?
10. What is the origin of the exchange interaction ?
PART B ( 4 X 7.5 = 30 MARKS )
ANSWER ANY FOUR QUESTIONS. EACH QUESTION CARRIES 7.5 MARKS.
11. State and explain the uncertainity principle.
12. (a) Explain Born’s interpretation of the wave function.
(b) Explain the significance of the equation of continuity.
13. (a) Explain the principle of superposition.
(b) Explain the property of closure.
14. Solve the eigenvalue equation for L 2 by the method of separation of variables.
15. Explain the use of perturbation theory for the case of a 2-d harmonic oscillator.
PART C ( 4 X 12.5 = 50 MARKS )
ANSWER ANY FOUR QUESTIONS. EACH QUESTION CARRIES 12.5 MARKS.
16. Describe Compton effect and derive an expression for the shift in wavelength of the scattered beam.
17.Consider a square potential barrier on which is incident a beam of particles of energy E. Calculate the
reflected intensity and transmitted intensity, if the barrier height is V and width is a.
18. (a) Discuss the eigenvalue problem for the momentum operator.
(b) Discuss the postulate regarding evolution of a system with time.
19. Obtain the Schrodinger equation for a linear harmonic oscillator and find its eigenvalues and
eigenfunctions.
20. Discuss the WKB approximation method of solving eigenvalue problems. Consider the 1-d case and
find the solution near a turning point.
**************
1