Download The electric field

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Superconductivity wikipedia , lookup

Speed of gravity wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

History of quantum field theory wikipedia , lookup

Electromagnet wikipedia , lookup

T-symmetry wikipedia , lookup

Electric charge wikipedia , lookup

Lorentz force wikipedia , lookup

Field (physics) wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
The electric field
Submitted by: I.D. 040460479
The problem:
An isolated electrical wire is charged uniformly with charge q and bent into a circular shape (radius
R) with a small hole b R (where b is the arc length).
What is the electrical field in the middle of the circle?
The solution:
The simple solution is to use superposition.
The electric field in the middle of a complete ring is, of course, zero.
Now we’ll sum up the field of a complete ring with the field of a very small wire of the same size
and shape as the hole but with a negative charge.
~ = kλb
x̂
Because b R the wire can be taken as a negative point charge and, therefore, the field is E
R2
q
(when we take the hole to be on the X axis and λ = 2πR ).
It is also possible to calculate the field directly. Taking ~r = (0, 0, 0) and ~r0 = (R cos θ, R sin θ, 0) we
have
kdq
(−R cos θ, −R sin θ, 0)
R3
dq = λRdθ
Z −α
kλ
kλRdθ0
~
(−R cos θ0 , −R sin θ0 , 0) =
(2 sin α, 0, 0)
E =
3
R
R
α
~ =
dE
(1)
(2)
(3)
where ±α are the angles of the edges of the bent wire (or, the upper and lower limits of the hole).
Since b R we can approximate tan α ' sin α = b/2
R .
Substituting into the expression for the field we obtain
~ = kλb x̂
E
R2
(4)
1
..J2_ 3 t:-
s-
14
0
-- a
I
-Q
/
,..
.a 1711"1(
E ( (2/
tfl
~Ka
L
y'
~
f·
V:c J
Il,
Q.
V
17,,)::
-L
'i/fNtIJ .•