Download The electric field

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The electric field
Submitted by: I.D. 040460479
The problem:
An isolated electrical wire is charged uniformly with charge q and bent into a circular shape (radius
R) with a small hole b R (where b is the arc length).
What is the electrical field in the middle of the circle?
The solution:
The simple solution is to use superposition.
The electric field in the middle of a complete ring is, of course, zero.
Now we’ll sum up the field of a complete ring with the field of a very small wire of the same size
and shape as the hole but with a negative charge.
~ = kλb
x̂
Because b R the wire can be taken as a negative point charge and, therefore, the field is E
R2
q
(when we take the hole to be on the X axis and λ = 2πR ).
It is also possible to calculate the field directly. Taking ~r = (0, 0, 0) and ~r0 = (R cos θ, R sin θ, 0) we
have
kdq
(−R cos θ, −R sin θ, 0)
R3
dq = λRdθ
Z −α
kλ
kλRdθ0
~
(−R cos θ0 , −R sin θ0 , 0) =
(2 sin α, 0, 0)
E =
3
R
R
α
~ =
dE
(1)
(2)
(3)
where ±α are the angles of the edges of the bent wire (or, the upper and lower limits of the hole).
Since b R we can approximate tan α ' sin α = b/2
R .
Substituting into the expression for the field we obtain
~ = kλb x̂
E
R2
(4)
1
:`ed aeyigd .orhnd lr divxbhpi` ici lr dcy aygl epilr
Z
E=
0
L
~ = E î
E
kdq
kλ1 dx
dE = 2 =
r
(P − x)2
L
kλ1 dx
kλ1
kλ1 kλ1
−
=
=
2
(P − x)
P −x 0
P −L
P
jxhvp ,ipyd hend lr lrety gekd z` aygl zpn lr ,
P
mewina dcyd z` mircei epgp`yk eiykr
:divxbhpi` zeyrl
F~ = F î
~
F~ = Eq
kλ1
kλ1
−
λ2 dx
dF = Edq =
x−L
L
Z
3L
F =
2L
kλ1
kλ1
−
x−L
x
λ2 dx = kλ1 λ2 (ln(x − L) − ln(x))3L
2L
F = kλ1 λ2 ln
1
2L · 2L
4
= kλ1 λ2 ln
3L · L
3
2419
:‫פתרון‬
.‫א‬
dq = σ0 sin φrdrdφ
∫2π ∫R
Qtotal =
σ0 sin φrdrdφ = 0
0
0
.‫ב‬
⃗r = z ẑ
⃗r′ = rr̂ = r(cos φ, sin φ, 0)
dq = σ0 sin φrdrdφ
∫2π ∫R
kσ0 sin φrdrdφ
⃗ r) =
E(⃗
· (−r cos φ, −r sin φ, z)
(r2 + z 2 )3/2
0
0
.y ‫ השדה הוא אפס לכן נתעניין רק בכיוון‬z ‫ וציר‬x ‫בציר‬
∫2π ∫R
Ey = −
[
kσ0 sin2 φr2 drdφ
= −πkσ0
(r2 + z 2 )3/2
r]
x=
z
0
0
∫R
(r2 + z 2 − z 2 )dr
(r2 + z 2 )3/2
0
∫R/z
1
1
−
dx
2
1/2
(1 + x )
(1 + x2 )3/2
0
[
]R/z
x
−1
= −πkσ0 sign(z) sinh (x) − √
1 + x2 0
[
]
R/z
= −πkσ0 sign(z) sinh−1 (R/z) − √
1 + R2 /z 2
= −πkσ0 sign(z)
‫ הדרך הקשה נפתח לפי טיילור את התוצאה הסופית בסעיף‬,‫ אפשר לפתור בשני דרכים‬.‫ג‬
:‫הקודם‬
x << 1
x3
sinh (x) ≈ x −
6
x3
x
√
≈x−
2
1 + x2
−1
]
R3
R
R3
R3
R3
R
− 3 − + 3 = −πkσ0 sign(z) 3 = −πkσ0
⇒ Ey ≈ −πkσ0 sign(z)
z
6z
z
2z
3z
3|z|3
[
‫א‬
‫‪2419‬‬
‫הדרך היותר פשוטה להתחיל חזרה באינטגרל ולפתח את האינטגרנט ולקבל את התשובה‬
‫בקלות‪:‬‬
‫‪kσ0 sin2 φr2 drdφ‬‬
‫‪R3‬‬
‫=‬
‫‪−πkσ‬‬
‫‪0‬‬
‫‪|z|3‬‬
‫‪3|z|3‬‬
‫‪∫2π ∫R‬‬
‫‪0‬‬
‫‪kσ0 sin2 φr2 drdφ‬‬
‫‪≈−‬‬
‫‪(r2 + z 2 )3/2‬‬
‫‪0‬‬
‫‪∫2π ∫R‬‬
‫‪Ey = −‬‬
‫‪0‬‬
‫‪0‬‬
‫יש לציין כי המטען מתפלג לשנים כאשר חצי חיובי וחצי שלילי לפי פונקציית הסינוס‪,‬‬
‫שזה אנלוג לדיפול‪ ,‬וכמו בדיפול כאשר אנחנו רחוקים מאוד אנחנו מקבלים התנהגות של‬
‫חזקה שלישית מהמרחק מהדיפול‪ .‬וכך גם קיבלנו‪.‬‬
‫ב‬
‫‪2414‬‬
‫נתונה דיסקה מלאה ודקה הנמצאת במישור ‪ x − y‬ומרכזה בראשית‪.‬‬
‫רדיוס הדיסקה ‪ R‬ונתון כי צפיפות המטען עליה היא ‪.σ(ϕ) = σ0 cos2 ϕ‬‬
‫‪ .1‬מצאו את השדה לאורך ציר ‪z‬‬
‫‪ .2‬איך יראה השדה בגבול ‪?z R‬‬
‫פתרון‬
‫סעיף ‪1‬‬
‫השדה החשמלי מוגדר לפי‪:‬‬
‫ˆ‬
‫‪kdq‬‬
‫= )‪~ r‬‬
‫~(‪E‬‬
‫) ‪· (~r − ~r0‬‬
‫‪|~r − ~r0 |3‬‬
‫̂‪~r = z z‬‬
‫)‪~r0 = rr̂ = r(cos ϕ, sin ϕ, 0‬‬
‫‪dq = σ(ϕ)rdrdϕ = σ0 cos2 ϕrdrdϕ‬‬
‫‪kσ0 cos2 ϕrdrdϕ‬‬
‫)̂‪· (z ẑ − rr‬‬
‫‪(r2 + z 2 )3/2‬‬
‫ˆ‬
‫‪R‬‬
‫‪2π‬‬
‫ˆ‬
‫= )‪~ z‬‬
‫~(‪E‬‬
‫‪0‬‬
‫‪0‬‬
‫נחשב את האינטגרל על הזויות‬
‫ˆ‬
‫‪2π‬‬
‫‪cos2 ϕdϕ = π‬‬
‫‪0‬‬
‫‪2π‬‬
‫ˆ‬
‫‪cos3 ϕdϕ = 0‬‬
‫‪0‬‬
‫‪2π‬‬
‫ˆ‬
‫‪cos2 ϕ sin ϕdϕ = 0‬‬
‫‪0‬‬
‫קיבלנו כי התרומה תיהיה רק בכיוון ‪z‬‬
‫‪rdr‬‬
‫ˆ‬
‫)‪· (z‬‬
‫‪(r2 + z 2 )3/2‬‬
‫החלפת משתנים‬
‫‪r‬‬
‫‪z‬‬
‫‪R‬‬
‫ˆ‬
‫‪~ z ) = πkσ0 z‬‬
‫~(‪E‬‬
‫‪0‬‬
‫=‪x‬‬
‫‬
‫‪R/z‬‬
‫‪xdx‬‬
‫‪ˆ = πkσ0 sign(z) − √ 1‬‬
‫·‬
‫(‬
‫)‪z‬‬
‫̂‪z‬‬
‫‪(1 + x2 )3/2‬‬
‫‪1 + x2 0‬‬
‫‪1‬‬
‫‪R/z‬‬
‫ˆ‬
‫)‪~ z ) = πkσ0 sign(z‬‬
‫~(‪E‬‬
‫‪0‬‬
‫‪#‬‬
‫"‬
‫‪1‬‬
‫‪~ z ) = πkσ0 sign(z) 1 − p‬‬
‫~(‪E‬‬
‫̂‪z‬‬
‫‪1 + R2 /z 2‬‬
‫סעיף ‪2‬‬
‫ניקח את ‪ z R‬ונשתמש בפיתוח טיילור‬
‫)‪πkσ0 R2 sign(z‬‬
‫̂‪z‬‬
‫‪2z 2‬‬
‫‪#‬‬
‫≈ ̂‪z‬‬
‫‪x‬‬
‫‪2‬‬
‫‪1‬‬
‫‪1 + R2 /z 2‬‬
‫‪≈1−‬‬
‫‪√1‬‬
‫‪1+x‬‬
‫"‬
‫~‬
‫‪E(~z) = πkσ0 sign(z) 1 − p‬‬
‫קיבלנו תלות לפי המרחק מציר ‪ z‬בריבוע הדומה למטען נקודתי וכך באינסוף הדיסקה‬
‫הינה נקודתית‬
‫‪2‬‬