* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 2
History of telecommunication wikipedia , lookup
Telecommunications in Russia wikipedia , lookup
PSTN network topology wikipedia , lookup
Telecommunications engineering wikipedia , lookup
Computer security wikipedia , lookup
Communication protocol wikipedia , lookup
Windows Vista networking technologies wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Zero-configuration networking wikipedia , lookup
Quality of service wikipedia , lookup
Deep packet inspection wikipedia , lookup
Computer network wikipedia , lookup
Packet switching wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Telecommunication wikipedia , lookup
Internet protocol suite wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
FIREWALLS & NETWORK SECURITY with Intrusion Detection and VPNs, 2nd ed. 2 An Introduction to Networking By Whitman, Mattord, & Austin © 2008 Course Technology Learning Objectives Upon completion of this chapter, you should be able to:  Describe the basic elements of computer-based data communication  Know the key entities and organizations behind current networking standards, as well as the purpose of and intent behind the more widely used standards  Explain the nature and intent of the OSI reference model and list and describe each of the model’s seven layers  Describe the nature of the Internet and the relationship between the TCP/IP protocol and the Internet Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 2 Networking Fundamentals  Fundamental exchange of information: sender communicates message to receiver over some medium  Communication only occurs when recipient is able to receive, process, and comprehend message  One-way flow of information is called a channel  When recipient becomes a sender, for example by responding to original sender’s message, this two-way flow is called a circuit Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 3 Networking Fundamentals (continued)  Any medium may be subject to interference, called noise, which occurs in variety of forms – Attenuation: loss of signal strength as signal moves across media – Crosstalk: occurs when one transmission “bleeds” over to another – Distortion: unintentional variation of communication over media Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 4 Networking Fundamentals (continued)  Any medium may be subject to interference, called noise, which occurs in variety of forms (continued) – Echo: reflection of a signal due to equipment malfunction or poor design – Impulse: sudden, short-lived increase in signal frequency or amplitude, also known as a spike – Jitter: signal modification caused by malfunctioning equipment – White noise: unwanted noise due to signal coming across medium at multiple frequencies Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 5 Reasons to Network  Data communications: exchange of messages across a medium  Networking: interconnection of groups or systems with purpose of exchanging information  Some reasons to build a network: – To exchange information – To share scarce or expensive resources – To allow distributed organizations to act as if centrally located Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 6 Types of Networks  Networks can be categorized by: – Components: peer-to-peer (P2P), server-based, distributed multi-server – Size: local area network (LAN), metropolitan area network (MAN), wide area network (WAN) – Layout or topology: physical (ring, bus, star, hierarchy, mesh, hybrid), logical (bus, star) – Media: guided (wired), unguided (wireless) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 7 Network Standards  Among the agencies that work on data communications standards are: – – – – – Internet Society (ISOC) Internet Assigned Numbers Authority (IANA) American National Standards Institute (ANSI) International Telecommunication Union (ITU) Institute of Electrical and Electronics Engineers (IEEE) – Telecommunications Industry Association (TIA) – International Organization for Standardization (ISO) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 8 OSI Reference Model and Security  OSI reference model allocates functions of network communications into seven distinct layers, each with its own functions and protocols  Premise of model is information sent from one host is translated and encoded through various layers, from Application layer to Physical layer  Physical layer initiates transmission to receiver  Receiver translates and decodes message by processing information through each layer in reverse order Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 9 The Physical Layer  The primary function of the Physical layer is to place the transmission signal carrying the message onto the communications media—that is, to put “bits on a wire”  The functions of the Physical layer are: – Establish and terminate the physical and logical connection to the media – Manage the flow and communication on the media – Embed the message onto the signal carried across the physical media Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 10 Network Media  Dominant media types and standards include: – – – – – – Coaxial cable Fiber-Optic cable Twisted-pair wire Wireless LAN Bluetooth Infrared Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 11 Embedding the Message  Method used to embed message on signal depends on type of message and type of signal  Two types of message (or information): – Analog information: continuously varying source (such as voice communications) – Digital information: discrete, between a few values (such as computer communications) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 12 Embedding the Message (continued)  Multiplexing combines several circuits to create high-bandwidth stream to carry multiple signals long distances  Three dominant multiplexing methods are: – Frequency division multiplexing (FDM): combines voice channels – Time division multiplexing (TDM): assigns a time block to each client – Wave division multiplexing (WDM): uses different frequencies of light so multiple signals can travel on same fiber-optic cable Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 13 Managing Communication  Bit (or signal) flow conducted in several ways: – Simplex transmissions: flow one way through a medium – Half-duplex transmissions: flow either way, but in only one direction at a time – Full-duplex transmissions: can flow both ways at the same time – Serial transmissions: flow one bit at a time down a single communications channel – Parallel transmissions: flow multiple bits at a time down multiple channels Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 14 Managing Communication (continued)  Asynchronous (or timing-independent) – Formulate data flow so each byte or character has its own start and stop bit – Used in older modem-based data transfers to send individual characters between systems  Synchronous (or timing-dependent) – Use computer clocking to transmit data in continuous stream between two systems – Clock synchronization makes it possible for end nodes to identify start and end of data flow – This protocol is much more efficient Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 15 Data Link Layer  Primary networking support layer  Referred to as first “subnet” layer because it provides addressing, packetizing, media access control, error control, and some flow control for local network  In LANs, it handles client-to-client and client-toserver communications Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 16 Data Link Layer (continued)  DLL is further divided into two sublayers: – Logical Link Control (LLC) sublayer • Primarily designed to support multiplexing and demultiplexing protocols transmitted over MAC layer • Also provides flow control and error detection and retransmission – Media Access Control (MAC) sublayer • Designed to manage access to communications media—in other words, to regulate which clients are allowed to transmit and when Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 17 DLL Protocols  Dominant protocol for local area networking is Ethernet for wired networks and Wi-Fi for wireless networks  Other DLL LAN protocols include: – – – – – Token ring Fiber Distributed Data Interface (FDDI) Point-to-Point Protocol (PPP) Point-to-Point Tunneling Protocol (PPTP) Layer Two Tunneling Protocol (L2TP)  WANs typically use ATM and frame relay Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 18 Forming Packets and Addressing  First responsibility of DLL is converting Network layer packet into DLL frame  DLL adds not only a header but also a trailer  When necessary, packet is fragmented into frames, with corresponding information embedded into each frame header  Addressing is accomplished with a number embedded in network interface card (NIC)  This MAC address allows packets to be delivered to an endpoint; typically shown in hexadecimal format (e.g., 00-00-A3-6A-B2-1A) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 19 Media Access Control  A primary function of DLL is controlling flow of traffic—that is, determining which station is allowed to transmit when  Two general approaches: – Control – Contention Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 20 Media Access Control (continued)  Control (deterministic) – Well-regulated network: traffic transmitted in orderly fashion, maintaining optimal data rate – Facilitate priority system: key clients or servers can be polled more frequently than others  Contention (stochastic) – Clients listen to determine if channel is free and then transmit – Must have mechanisms to deal with collisions – Collision avoidance vs. collision detection Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 21 Switches and Bridges  Specific technologies used to connect networks at Data Link layer  While hub connects networks at Physical layer, connecting two networks with hub results in one large network (or collision domain)  Connection via Layer 2 switch, capable of bridging, maintains separate collision domains  Bridging: process of connecting networks with DLL protocols while maintaining integrity of each network, only passing messages that need to be transmitted between the two Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 22 Network Layer and Packetizing  Network layer is primary layer for communications between networks  Three key functions: – Packetizing – Addressing – Routing  During packetizing, Network layer takes segments sent from Transport layer and organizes them into packets for transmission across a network Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 23 Addressing  Network layer uses network-layer address to uniquely identify destination across multiple networks  Typical address consists of the network ID and the host ID  In TCP/IP, IP address is network-layer address  IP address contains source and destination IP address along with additional packet information Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 24 Addressing (continued)  Addresses maintained and issued by Internet Assigned Numbers Authority (IANA)  In early years, addresses distributed as follows: – Class A: consists of primary octet (the netid) with three octets providing host ID portion; allows up to 16,777,214 hosts on network – Class B: consists of two octets in netid with two octets providing 65534 host IDs – Class C: consists of three octets in netid with one octet providing 254 host IDs – Class D and Class E addresses are reserved Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 25 Addressing (continued)  This address assignment method proves inefficient  Internet moving to new version of IP, IPv6, which uses 128-bit address instead of 32-bit  Increases available addresses by factor of 2128  Network Address Translation (NAT): uses device, like a router, to segregate external Internet from internal network  Device maps organizational addresses to different addresses inside the intranet Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 26 Routing  Moving Network layer packets across networks  Routing protocols include static and dynamic  Internal routing protocols: – Used inside autonomous system (AS) – Distance-vector routing protocols and link-state routing protocols  External routing protocols: – Communicate between autonomous systems – Translate different internal routing protocols – Border Gateway Protocol (BGP) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 27 Transport Layer  Primary function of Transport layer is to provide reliable end-to-end transfer of data between user applications  Lower layers focus on networking and connectivity while upper layers, beginning with Transport layer, focus on application-specific services  Transport layer also responsible for end-to-end error control, flow control, and several other functions Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 28 Error Control  Process of handling problems with transfer process, which may result in modified or corrupted segments  Broken into two components: error detection and error correction  Errors are typically single-bit or multiple-bit  Bit errors are most likely the result of noise interference Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 29 Error Control (continued)  Errors detected using one of several schemes: – Repetition: data transmitted redundantly – Parity: “check bits” at end of each byte of data – Redundancy: parity calculated for blocks of data rather than individual byte (LRC, VRC, CRC)  Errors typically corrected by retransmission of damaged segment  Dominant error correction techniques are automatic repeat requests (ARQs)  Three most common ARQs are Stop-And-Wait, Go-Back-N, and Selective Repeat Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 30 Flow Control  Purpose is to prevent receiver from being overwhelmed with segments, preventing effective processing of each received segment  Some error correction techniques have built-in flow control  Dominant technique is sliding window protocol, which provides mechanism by which receiver can specify number of segments (or bytes) it can receive before sender must wait  Receiver enlarges or reduces window size as necessary Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 31 Other Functions of the Transport Layer  Assignment of ports, which identify the service requested by a user  Combination of Network layer address and port is referred to as a socket  Tunneling protocols also work at Transport layer  These protocols work with Data Link layer protocols to provide secure connections Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 32 Session Layer  Responsible for establishing, maintaining, and terminating communications sessions between two systems  Regulates whether communications are simplex (one way only), half-duplex (one way at a time), or full-duplex (bidirectional) Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 33 Presentation Layer  Responsible for data translation and encryption functions  For example, if one system is using standard ASCII and another is using EBCDIC, the Presentation layer performs the translation  Encryption can also be part of operations performed at this level  Presentation layer encapsulates Application layer messages prior to passing them down to Transport layer Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 34 Application Layer  At Application layer, user is provided with a number of services, most aptly called application protocols  TCP/IP protocol suite includes applications such as e-mail (SMTP and POP), World Wide Web (HTTP and HTTPS), file transfer (FTP and SFTP), and others Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 35 The Internet and TCP/IP  The Internet incorporates millions of small, independent networks, connected by most of the major common carriers  Most services we associate with the Internet are based on Application layer protocols  The Internet is a physical set of networks, while the World Wide Web (WWW) is a set of applications that run on top of the Internet  Web uses domain name-based Uniform Resource Identifiers (URIs), Uniform Resource Locator (URL) being best-known type Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 36 TCP/IP  TCP/IP actually suite of protocols used to facilitate communications across the Internet  Developed before OSI reference model, it is similar in concept but different in detail  TCP/IP model is less formal than OSI reference model  Each of the four layers of TCP/IP model represents a section of one or more layers of OSI model Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 37 Application Layer  TCP/IP Application layer consists of utility protocols that provide value to end user  Data from users and utilities are passed down to Transport layer for processing  Wide variety of Application layer protocols that support Internet users: SMTP, POP for e-mail, FTP for data transfer, HTTP for Web content  Application layers on each host interact directly with corresponding applications on other hosts to provide requisite communications support Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 38 Transport Layer  Responsible for transferring of messages, including resolution of errors, managing necessary fragmentation, and control of message flow, regardless of underlying network  Connection or connectionless messages  Connects applications through use of ports  Lowest layer of TCP/IP stack to offer any form of reliability  TCP: connected, reliable protocol  UDP: connectionless, unreliable protocol Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 39 Internetwork Layer  Handles moving packets in a single network  Examples of protocols are X.25 and ARPANET’s Host/IMP Protocol  Internet Protocol (IP) performs task of moving packets from source host to destination host  IP carries data for many different upper-layer protocols Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 40 Internetwork Layer (continued)  Some protocols carried by IP function on top of IP but perform other Internetwork layer functions  All routing protocols are also part of Network layer Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 41 Subnet Layers  TCP/IP Subnet layers include Data Link and Physical layers  TCP/IP relies on whatever native network subnet layers are present  For example, if user’s network is Ethernet then IP packets are encapsulated into Ethernet frames  No specification for Data Link layer or Physical layer Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 42 Chapter Summary  Fundamental exchange of information: sender communicates message to receiver over some medium  Communication only occurs when recipient is able to receive, process, and comprehend message  Any medium may be subject to interference: attenuation, crosstalk, distortion, echo, impulse, jitter, white noise Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 43 Chapter Summary (continued)  Some reasons to build a network: – To exchange information – To share scarce or expensive resources – To allow distributed organizations to act as if centrally located  Networks can be categorized by: components, size, layout or topology, media  OSI reference model allocates functions of network communications into seven distinct layers, each with its own functions and protocols Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 44 Chapter Summary (continued)  OSI reference model layers: – Physical: puts transmissions onto media – Data Link: primary networking support layer – Network: primary layer for communications between networks – Transport: provides reliable end-to-end transfer of data between user applications – Session: establishes, maintains, terminates communications sessions between two systems – Presentation: data translation and encryption – Application: provides application protocols Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 45 Chapter Summary (continued)  Each of four layers of TCP/IP model represents a section of one or more layers of OSI model – Application: consists of utility protocols that provide value to end user – Transport: responsible for transferring messages, regardless of underlying network – Internetwork: handles moving packets in a single network – Subnet: includes Data Link and Physical layers, relying on whatever native network subnet layers are present for signal transmission Firewalls & Network Security, 2nd ed. - Chapter 2 Slide 46