* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lectures_8
Survey
Document related concepts
Transcript
MATH 1107 Elementary Statistics Lecture 8 Random Variables Math 1107 – Random Variables • In Class Exercise with Dice Math 1107 – Random Variables • Probability Distribution for a Dice Roll: X P(X) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Math 1107 – Random Variables • • • • • • What is the mean? What is the standard deviation? Are these outcomes discrete or continuous? What is the probability of each outcome? What is the probability distribution? Are these outcomes dependent upon the previous roll? Math 1107 – Random Variables There are two things that must be true for every probability distribution: 1. The Summation of all probabilities must equal 1; 2. Every individual probability must be between 0 and 1. Math 1107 – Random Variables Important Formulas and applications: 1. μ = Σ [x*P(x)] From the Probability table for Dice: μ = (1*1/6)+(2*1/6)+(3*1/6)+(4*1/6)+(5*1/6)+(6*1/6) =3.5 Math 1107 – Random Variables Important Formulas and applications: 2. σ2 = Σ [(x- μ)2 * P(x)] From the Probability table for Dice: σ2 = ((1-3.5)2*.1667)+((2-3.5) )2*.1667)… +((6-3.5) )2*.1667) = 2.92 Math 1107 – Random Variables Important Formulas and applications: 3. σ = SQRT(Σ [(x- μ)2 * P(x)]) From the Probability table for Dice: σ = SQRT( 2.92) = 1.71 Math 1107 – Random Variables An important note on rounding…keep your numbers in your calculator/computer and only round at the end! Math 1107 – Random Variables What is an unusual event? When should we be suspect of results? Ultimately, you need to KNOW YOUR DATA to determine what makes sense or not. But here is a rule of thumb – If an event is more than 2 standard deviations away from the mean, it is “unusual”: μ + or - 2σ Math 1107 – Random Variables Expected Values: Knowing something about the distribution of events, enables us to create an expected value. This is calculated as: E(x) = Σ(x* P(x)) But note that the “expected value” may not be logical when dealing with discrete numbers. Math 1107 – Random Variables Would you want to play a game where you had a 75% chance of winning $5 and a 25% chance of losing $10? The expected value of this game is: (.75*5)+(.25*-10) = $1.25 Math 1107 – Random Variables Would you be willing to play a lottery for $1 where the chances of winning $100K were 1/1000? The expected value of this game is: (1/1000* 100,000)+(999/1000*-1) = $99 Would you be willing to play a lottery for $1 where the chances of winning $10M were 1/15,625,000,000? (this is 6 number 150) The expected value is: (1/15,625,000,000)*10,000,000)+(15,624,999,999/15,625,000, 000*-1) = -0.99936