• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
what is the value of the GED for dropouts who
what is the value of the GED for dropouts who

... Willett, and Tyler (2000) offer a discussion of how these more recent results can be reconciled with the earlier Cameron and Heckman findings. Heckman, Hsse, and Rubinstein (2000), on the other hand, find that failing to control for time- invariant heterogeneity between low-skilled credentialed and ...
An Introduction to Bootstrap Methods with Applications to R
An Introduction to Bootstrap Methods with Applications to R

The CALIS Procedure
The CALIS Procedure

... Structural equation modeling is an important statistical tool in social and behavioral sciences. Structural equations express relationships among a system of variables that can be either observed variables (manifest variables) or unobserved hypothetical variables (latent variables). For an introduct ...
When Everyone Misses on the Same Side: Debiased Earnings Surprises and Stock Returns
When Everyone Misses on the Same Side: Debiased Earnings Surprises and Stock Returns

An introduction to Bootstrap Methods Outline Monte Carlo
An introduction to Bootstrap Methods Outline Monte Carlo

ANOVA
ANOVA

Testing Conditional Factor Models
Testing Conditional Factor Models

Multiple Fixed Effects in Nonlinear Panel Data Models - Theory and Evidence
Multiple Fixed Effects in Nonlinear Panel Data Models - Theory and Evidence

Estuarine, Coastal and Shelf Science. 44:493-505
Estuarine, Coastal and Shelf Science. 44:493-505

Likelihood-ratio-based confidence sets for the timing of structural
Likelihood-ratio-based confidence sets for the timing of structural

Applied Missing Data Analysis
Applied Missing Data Analysis

Diagnosing Harmful Collinearity in Moderated Regressions
Diagnosing Harmful Collinearity in Moderated Regressions

SPATIAL DATA ANALYSIS WITH GIS: AN INTRODUCTION TO
SPATIAL DATA ANALYSIS WITH GIS: AN INTRODUCTION TO

... What is Special About Spatial Data? An attention to location, spatial interaction, spatial structure and spatial processes lies at the heart of research in several subdisciplines in the social sciences. Empirical studies in these fields routinely employ data for which locational attributes (the "whe ...
Bayesian Modeling in the Wavelet Domain
Bayesian Modeling in the Wavelet Domain

Time-Frequency analysis for multi-channel and/or multi
Time-Frequency analysis for multi-channel and/or multi

... Multi-channel/multi-trial time-frequency analysis Application to rest EEG Rest EEG basically features Alpha waves : short duration time-localized oscillations (frequencies around 10 Hz) which appear in specific situations ; topographically localized in specific sensors located in posterior regions ...
Assessing statistical significance in multivariable
Assessing statistical significance in multivariable

1747grading1726 - Emerson Statistics
1747grading1726 - Emerson Statistics

Vector Autoregressions with Parsimoniously Time
Vector Autoregressions with Parsimoniously Time

Vector Autoregressions with Parsimoniously Time Varying
Vector Autoregressions with Parsimoniously Time Varying

Missing Data Problems in Machine Learning
Missing Data Problems in Machine Learning

Chapter 5
Chapter 5

Springer Series in Statistics
Springer Series in Statistics

Teradata Warehouse Miner User Guide
Teradata Warehouse Miner User Guide

The FMM Procedure
The FMM Procedure

Lecture IX -- SupervisedMachineLearning
Lecture IX -- SupervisedMachineLearning

1 2 3 4 5 ... 125 >

Regression analysis

In statistics, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a quantile, or other location parameter of the conditional distribution of the dependent variable given the independent variables. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function which can be described by a probability distribution.Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. However this can lead to illusions or false relationships, so caution is advisable; for example, correlation does not imply causation.Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data. Nonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional.The performance of regression analysis methods in practice depends on the form of the data generating process, and how it relates to the regression approach being used. Since the true form of the data-generating process is generally not known, regression analysis often depends to some extent on making assumptions about this process. These assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are often useful even when the assumptions are moderately violated, although they may not perform optimally. However, in many applications, especially with small effects or questions of causality based on observational data, regression methods can give misleading results.In a narrower sense, regression may refer specifically to the estimation of continuous response variables, as opposed to the discrete response variables used in classification. The case of a continuous output variable may be more specifically referred to as metric regression to distinguish it from related problems.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report