Download IOSR Journal of Applied Physics (IOSR-JAP)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

System of polynomial equations wikipedia , lookup

Horner's method wikipedia , lookup

Equation wikipedia , lookup

Elementary algebra wikipedia , lookup

Eisenstein's criterion wikipedia , lookup

Factorization wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Transcript
IOSR Journal of Applied Physics (IOSR-JAP)
e-ISSN: 2278-4861.Volume 6, Issue 5 Ver. II (Sep.-Oct. 2014), PP 01-14
www.iosrjournals.org
The General Formula To Find The Straight Line Distance Of
Solar Planets From Sun With The Help Of Number Theory And
Classical Physics
Arjun. K
VIth Semester,B.Sc Physics (Student), PTM Government College Perinthalmanna, University of Calicut, Kerala
Abstract: Here a particular method is made to generate A Single Formula to find the the straight line distance
of first eight planets from sun
Keywords: Polynomials, Mean distance, Eccentricities, Keplerโ€™s Law, Orbital Velocity, Escape Velocity, Bodeโ€™s
Law
I.
Introduction
In our Solar system there are eight planets in orbit around sun. They can be classified into two different
families based on the distance from sun. The outer family, major planets like Jupiter (whose radius is one tenth
of that of sun, is the most massive among other planets). The outer family have widely spaced orbits; Consists
mainly gaseous material. The four planets in our inner planet category contain the first four planets including
our mother earth. All these planets have radius less than one tenth of the Jupiter.
In 1772 Johann Bode noticed that the planetary orbit up to Saturn were close to fairly simple
mathematical progression. Which became known as Bodeโ€™s Law. The law is in the form ๐‘Ÿ๐‘› = 0.3 + 0.4 ๐‘‹ 2๐‘› .
Where the leading term is the radius of Mercuryโ€™s orbit in Astronomical Unit. And for the remaining planets
n=0,1,2,3... For Venus, Earth โ€ฆetc. The value we get when n=3 is assign to Asteroids.
Here I am trying to generate an equation to find the straight line distance of first eight planets from sun, via
combining Classical Physics with Number Theory. The weapon we are taking from number theory is Mainly
Polynomial Difference Theorem. And In Physics we are using Orbital Mechanics. Combining both these
theories we can generate a single formula as said above.
Here I am going to introduce a new method, Using this method we can find the n th term and sum of n terms of
any different kinds of polynomial sequences. It is worth noting that using this method we can invent The
General Formula to find the mean distance and eccentricity of planets as polynomial functions.
Here we are ignoring attraction of each planets one by another. And we are also ignoring the rotation effect of
planets around sun.
II.
The general method to find the nth term and sum of n terms of any polynomial sequences
using Polynomial Difference Theorem
Polynomial Difference Theorem
Suppose the nth term of a sequence is a polynomial in n of degree m i.e.p(n) = a1nm + a2nmโˆ’1 + a3nmโˆ’2 + a4nmโˆ’3 +
...... + am+1
Then its mth difference will be equal and (m + 1)th difference will be zero.
2.1 Case1:- (When m=1)
Consider a polynomial sequence of power 1, i.e. p(n)=an+b
First term= p(1)=a+b
Second term=P(2)=2a+b
Third term=p(3)=3a+b
First Difference
Second Difference
First Term (1)
a+b
a
0
Second Term P(2)
2a+b
a
Third Term P(3)
3a+b
2.2 Case2:- (When m=2)
Consider a polynomial sequence of power 2, i.e. p(n) = an2 + bn + c
First term= p(1)=a+b+c
Second term=P(2)=4a+2b+c
1 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
Third term=p(3)=9a+3b+c
Fourth term=p(4)=16a+4b+c
First Difference
Second Difference
Third Difference
First Term (1)
Second Term P(2)
Third Term P(3)
a+b+c
3a+b
2a
0
4a+2b+c
5a+b
2a
9a+3b+c
7a+b
Fourth Term
P(4)
16a + 4b + c
2.3 Case3:- (When m=3)
Consider a polynomial sequence of power 3, i.e. p(n) = an3 + bn2 + cn + d
First term= p(1)=a+b+c+d
Second term=P(2)=8a+4b+2c+d
Third term=p(3)=27a+9b+3c+d
Fourth term=p(4)=64a+16b+4c+d
Fifth term=p(5)=125a+25b+5c+d
First Term P(1)
a+b+c+d
7a+3b+c
12a+2b
6a
0
D1
D2
D3
D4
Second Term P(2)
8a+4b+2c+d
19a+5b+c
18a+2b
6a
Third Term P(3)
27a+9b+3c+d
37a+7b+c
24a+2b
Fourth Term P(4)
64a+16b+4c+d
61a+9b+c
Fifth Term P(6)
125a+25b+5c+d
From the previous experience, the basic knowledge of the polynomial difference theorem can be put in another
way.
III.
Inverse Polynomial Differnce theorem !
If the mth difference of a polynomial sequence is equal then its nth term will be a polynomial in n
of degree m.
First Difference is the difference between two consecutive terms. Second difference is the difference
between two neighboring first differences. So on
3.1 Problem 1: Find the nth term of the triangular number sequence1,3,6,10,15,21,28,36,45,55...
Solution
First term=t1 = 1, t2 = 3, t3 = 6 , t4 = 10 , t5 = 15 Using polynomial difference theorem, we can find the nth
term,
D1
D2
D3
FirstTermt1P(1)
1
2
1
0
SecondTermt2P(2)
3
3
1
0
ThirdTermt3P(3)
6
4
1
FourthTermt4P(4)
10
5
FifthTermt5
15
Here Second difference is Equal, which means we can represent its nth term as a polynomial of degree 2, i.e. the
general representation tn = p(n) =an2 + bn + c
t1 = p(1) = a + b + c = 1
t2 = p(2) = 4a + 2b + c = 3
t3 = p(3) = 9a + 3b + c = 6
Solving this we get value of a=12; b= 12; c=0;
๐‘›(๐‘› +1)
Nth term=p(n) =
2
www.iosrjournals.org
2 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
3.2 Problem 2: the nth term of the number sequence
solution
Taking tn = ๐’Œ๐Ÿ’
t1
1
16
65
110
84
24
D1
D2
D3
D4
D5
t2
17
81
175
194
108
24
t3
98
256
369
302
132
๐’Œ๐Ÿ’
t4
354
625
671
434
t5
979
1296
1105
t6
2275
2401
t7
4676
Let p(n) be the nth term , Since 5th difference is equal, the degree of nth term is 5
i.e.tn = p(n) = an5 + bn4 + cn3 + dn2 + en + f
t1=p(1) = a+b+c+d+e+f =1
t2=p(2) = 32a+16b+8c+4d+2e+f =17
t3=p(3) = 243a+81b+27c+9d+3e+f =98
t4=p(4) = 1024a+256b+64c+16d+4e+f=354
t5=p(5) = 3125a+625b+125c+25d+5e+f=979
t6=p(6)=7776a+1296b+216c+36d+6e+f=2275
p(2)-p(1)=3a+b=2โ€”-(1)
p(3)-p(2)=5a+b=3โ€”-(2)
(2)-(1)=2a=1
a=12
Solving this we get ๐‘ ๐‘› =
๐‘›
๐‘˜=1
๐‘› ๐‘›+1 2๐‘› +1 (3๐‘› 2 +3๐‘›โˆ’1)
30
๐‘› ๐‘› + 1 2๐‘› + 1 (3๐‘›2 + 3๐‘› โˆ’ 1)
๐‘˜4 =
30
Using this we can find
๏‚ท Equation of mean distance From Sun(In 107 m)
b n =
๏‚ท
โˆ’144464081 7 894094629 6 56448957031 5 11973677 4 5563041 3
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
1000000
200000
1000000
32
4
5955539
4752953
+ 2864028 ๐‘›2 โˆ’
๐‘›+
2
4
Equation of Orbital Period (In Earth days)
T n =
๏‚ท
โˆ’6194601 7 376894501 6 467468457 5 3810907959 4 27956908203 3
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
500000
1000000
100000
125000
250000
14593949 2 15086455
5979771
+
๐‘› โˆ’
๐‘›+
64
64
64
Equation of orbital Eccentricity
e n =
๏‚ท
๏‚ท
151
87493 6 1127483 5 1515287 4 28233521 3 3565267 2
๐‘›7 โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
393750
7200000
7200000
1440000
7200000
450000
10873869
1061
+
๐‘›โˆ’
1400000
400
Equation of Mean Orbital Velocity of planets in (km/s)
5969 7 53069 6 133961 5 879793 4 16029061 3 15941023 2 450101
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘›
252000
72000
14400
14400
72000
36000
1050
10809
โˆ’
100
Equation of Gravity at the Equator( In g)
www.iosrjournals.org
3 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
โˆ’
997 7 32633 6 90763 5 605341 4 11306057 3 11686051 2 710761
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
63000
72000
14400
14400
72000
36000
2100
3376
+
25
๏‚ท
Equation of Escape Velocity(In km/s)
10391 7 10883 6 2087581 5 1862227 4 104555069 3 14428591 2 37666903
โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
36000
1200
18000
2400
36000
2400
6000
250573
+
100
Comparison of Bodoโ€™s Equation V/s Our Equation
In 1772 Johann Bode were close to a fairy simple mathematical progression, which became known as Bodeโ€™s
law.
This law is illustrated in given below table
Rn=0.4+0.3x2n
Where the leading term is the distance from sun to mercury
Planets
Actual Distance
(In AU)
Bodes Distance
Error in
Bode(%)
By above
formula
calculation
Error %
Mercury
0.4
0.4
0
0.4 (n=1)
0
Venus
0.7
0.7 (n=0)
0
0.7 (n=2)
0
Earth
1
1 (n=1)
0
1 (n=3)
0
Mars
1.5
1.6 (n=2)
6.67
1.5 (n=4)
0
Jupiter
5.2
5.2 (n=4)
0
5.2 (n=5)
0
Saturn
9.5
10 (n=5)
5.27
9.5 (n=6)
0
Uranus
19.6
19.6 (n=6)
0
19.6 (n=7)
0
Neptune
30
38.8(n=7)
29.3
30 (n=8)
0
IV.
Equations of Motion in an Inertial frame (Two bodies problem)
โ€“๐บ๐‘š 1 ๐‘š 2
Consider two point masses in free space, the mutual attraction between them will be
shows attraction) (Universal law of gravitation)
m ๐‘ +m ๐‘
The position of center of mass relative to an inertial frame ABC is ๐‘ ๐† = 1m ๐Ÿ +m 2 ๐Ÿ
Each of the body is pulled by the other
1
๐‘Ÿ2
(-ve sign
2
๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ = Force exerted on 1 by 2.
๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ = Force exerted on 2 by 1
ah
www.iosrjournals.org
4 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
Absolute velocity of G (Centre of mass ) is ๐‘ฝ๐บ =
๐’‚๐‘ฎ =
Absolute Acceleration of G is
d๐‘๐†
dt
d 2๐‘
๐†
dt 2
=
=
m1
d ๐‘๐Ÿ
d๐‘
+m 2 ๐Ÿ
dt
dt
m 1 +m 2
d 2 ๐‘๐Ÿ
d 2๐‘
m 1 2 +m 2 2๐Ÿ
dt
dt
m 1 +m 2
๐ซ
Now ๐’ be a vector pointing from m1 towards m2. I.e. ๐’ = r
Where r is the position vector of m2 relative to m1 . r = R2-R1.
Thus
Gm 1 m 2
๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ =
opposite) .
๐’
r2
Similarly ๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ = โˆ’
Gm 1 m 2
r2
๐’
According to Newtonโ€™s second law
๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ = m1
d 2 ๐‘๐Ÿ
d t2
d 2 ๐‘๐Ÿ
=
Gm 1 m 2
Gm 2
r2
๐’
๐‘ญ๐Ÿ ๐’ƒ๐’š ๐Ÿ = m2
and
d 2 ๐‘๐Ÿ
Therefore dt 2 = r 2 ๐’ and dt 2 = โˆ’
Thus G moves with a constant velocity.
Gm 1
r2
๐’
(-ve sign indicates that the direction is
d 2 ๐‘๐Ÿ
dt 2
=โˆ’
Gm 1 m 2
r2
๐’
Substituting this on ๐’‚๐‘ฎ we get ๐’‚๐‘ฎ = 0.
4.1 Relative motion Equations
We have
d 2 ๐‘๐Ÿ
dt 2
d 2 ๐‘๐Ÿ
dt 2
=
Gm 2
๐’
r2
Gm 1
=โˆ’
r2
๐’
d 2๐ซ
d2
Therefore acceleration of m2 w.r.t m1 is 2 = 2 ๐‘ ๐Ÿ โˆ’ ๐‘ ๐Ÿ = โˆ’
dt
dt
Gravitational parameter ๐œ‡ = G(m1 + m2 )
d 2๐ซ
G(m 1 +m 2 )
r2
๐’
๐œ‡
Hence dt 2 = โˆ’ r 2 ๐’
This equation will give information about the motion of m2 relative to m1.
4.2 Its time for some Orbit Formulas
The Angular momentum of m2 relative to m1.
๐‘‘๐’“
๐‘ณ๐Ÿ๐Ÿ = ๐’“ ๐‘‹ ๐‘š2
๐‘‘๐‘ก
๐‘‘๐’“
is
the
velocity
of m2 with respect to m1.
๐‘‘๐‘ก
Now ๐’ =
๐‘ณ๐Ÿ๐Ÿ
๐‘š2
=๐’“๐‘‹
๐‘‘๐’“
๐‘‘๐‘ก
๐‘‘๐’ ๐‘‘๐’“ ๐‘‘๐’“
๐‘‘2 ๐’“
๐œ‡
๐œ‡
=
๐‘‹
+๐’“๐‘‹ 2 = 0+๐’“๐‘‹ โˆ’ 2 ๐’= ๐ŸŽ+๐’“๐‘‹ โˆ’ 3๐ซ = 0
๐‘‘๐‘ก ๐‘‘๐‘ก
๐‘‘๐‘ก
๐‘‘๐‘ก
r
r
๐‘‘๐’
๐‘‘๐‘ก
= 0 ๏ƒจ l= a constant .
๐‘‘๐’“
๐‘‘๐’“
๐’“ ๐‘‹ ๏ƒจ is a constant. Which means that at any given time r ( position vector) & (velocity
๐‘‘๐‘ก
๐‘‘๐‘ก
vector) is in the same plane.
The Cross product ๐’“ ๐‘‹
๐ฅ
๐‘‘๐’“
๐‘‘๐‘ก
is perpendicular to that plane.
๐’ = l๏ƒจ Unit vector normal to the plane.
www.iosrjournals.org
5 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
Since it is a constant unit vector , m2 around m1 is in a single plane.
๐‘‘๐’“
Now let us resolve ๐‘‘๐‘ก into two components
๐‘‘๐’“
= V2 ๐ฎ2 + V1 ๐ฎ1
๐‘‘๐‘ก
๐‘ฝ๐Ÿ is along the outward radial from m1 and ๐•1 Is perpendicular to it.
๐‘‘๐’“
Then ๐’ = ๐’“ ๐‘‹ ๐‘‘๐‘ก = ๐‘Ÿ๐ฎ2 ๐‘‹ V2 ๐ฎ2 + V1 ๐ฎ1
๐‘‘๐’“
๐‘‘r
Identity proof ๐’“ . ๐‘‘๐‘ก = r. ๐‘‘๐‘ก
I.e. l = rV1 .
We have ๐ซ. ๐ซ = r 2
๐‘‘
d๐ซ
๐ซ. ๐ซ = 2๐ซ
๐‘‘๐‘ก
dt
๐‘‘
dr
r. r = 2r
๐‘‘๐‘ก
dt
1
1
๐‘‘๐’“
๐ซ x ๐ฅ = 3 (๐ซ x ๐’“ x
)
3
r
r
๐‘‘๐‘ก
But A x (B xC) = B(A.C)-C(A.B)
1
d๐ซ
d๐ซ
๐ซ ๐ซ.
โˆ’
๐ซ. ๐ซ
3
r
dt
dt
1
dr
d๐ซ 2
= 3 ๐ซ r
โˆ’
r
r
dt
dt
1
dr
d๐ซ
= 2 ๐ซ โˆ’r
r
dt
dt
www.iosrjournals.org
6 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
Let r covers an area โˆ†๐ด in a time interval โˆ†๐‘ก
.
1
Therefore โˆ†A = bh
2
โˆ†๐ด 1
๐‘™
= ๐‘Ÿ๐‘‰1 =
โˆ†๐‘ก
2
2
l2
4.3 Proof for r = ฮผ(1+eCos
ฮธ )
๐‘™๐‘ฅ
๐‘‘๐’“
๐‘‘๐‘ฅ
๐’.
x๐ฅ =
๐‘‘๐‘ก
๐‘‘๐‘ก
๐‘™๐‘ฅ
๐‘‘2 ๐’“
d ๐‘‘๐’“
x๐ฅ=
x๐ฅ
๐‘‘๐‘ก 2
dt ๐‘‘๐‘ก
But
๐‘‘2 ๐’“
๐œ‡
x
๐ฅ
=
โˆ’
๐ซx๐ฅ
๐‘‘๐‘ก 2
r3
๐‘‘
๐ซ
๐‘‘๐‘ก
๐‘Ÿ
=
r
๐‘‘๐’“
๐‘‘r
โˆ’๐’“
๐‘‘๐‘ก
๐‘‘๐‘ก
๐‘Ÿ2
๐‘‘
๐ซ
๐‘Ÿ
1
= โˆ’ r3 ๐ซ x ๐ฅ
l
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘‘๐œƒ
Then๐‘‰1 = r ๐‘‘๐‘ก
๐‘‘๐œƒ
But ๐‘™ = ๐‘Ÿ๐‘‰1 = ๐‘Ÿ 2 ๐‘‘๐‘ก
๐‘™
Thus ๐‘‰1 = ๐‘Ÿ
๐‘‰2 =
I.e.
๐‘‘๐’“
๐ซ
x ๐ฅ โˆ’ ๐œ‡ = ๐ด ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก = ๐‘ช
๐‘‘๐‘ก
๐‘Ÿ
Taking dot products on both sides by l.
๐‘‘๐’“
๐ซ
๐’.
x๐ฅ โˆ’ ๐œ‡ = ๐‘ช. ๐’
๐‘‘๐‘ก
๐‘Ÿ
Thus ๐‘ช. ๐’ = ๐ŸŽ
I.e. C lies in the orbital plane.
๐‘‘๐’“
๐ซ
x๐ฅโˆ’๐œ‡ =๐‘ช
๐‘‘๐‘ก
๐‘Ÿ
Therefore
๐‘‘๐’“
ฮผ
Proof For ๐‘‰2 = eSin(ฮธ)
Angular velocity be
d ๐‘‘๐’“
๐ซ
x๐ฅโˆ’๐œ‡ =0
dt ๐‘‘๐‘ก
๐‘Ÿ
๐ซ
๐‘™๐‘ง
๐‘‘๐‘ง
=0
๐‘‘๐‘ก
๐‘™๐‘ง
Since l is perpendicular to r l.r=0
From the textbox it is clear that ๐‘‘๐‘ก
Thus
๐‘‘2 ๐’“
๐œ‡
๐‘‘ ๐ซ
x๐ฅ=โˆ’ 3๐ซx๐ฅ=๐œ‡
2
๐‘‘๐‘ก
r
๐‘‘๐‘ก ๐‘Ÿ
d ๐‘‘๐’“
๐‘‘
๐ซ
x๐ฅ =
๐œ‡
dt ๐‘‘๐‘ก
๐‘‘๐‘ก ๐‘Ÿ
๐‘‘๐’“
๐‘™๐‘ฆ
๐‘‘๐‘ฆ
๐‘‘๐‘ก
๐‘™๐‘ฆ
x๐ฅ
๐ซ
๐‚
l2
ฮผ
l2
=
ฮผ
=
๐‘‘r ๐‘‘
l2
=
๐‘‘๐‘ก ๐‘‘๐‘ก ฮผ 1 + eCos ฮธ
โˆ’eSinฮธ
dฮธ
2
(1 + eCos ฮธ)
dt
โˆ’eSinฮธ
l
2
(1 + eCos ฮธ) r 2
But ๐‘Ÿ = ฮผ
x๐ฅ = ๐‘ช + ๐œ‡ ๐‘Ÿ ๏ƒจ ๐‘‘๐‘ก๐œ‡ = ๐‘Ÿ + ๐œ‡
๐‘‘๐‘ก
๐‚
๐’† = = ๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘™๐‘’๐‘ ๐‘  ๐‘’๐‘๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘๐‘–๐‘ก๐‘ฆ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ
๐œ‡
Now equation becomes
๐‘‘๐’“
x๐ฅ ๐ซ
๐‘‘๐‘ก
= +๐’†
๐œ‡
๐‘Ÿ
Taking dot product with r we get
๐‘‘๐’“
x๐ฅ
๐ซ
๐ซ. ๐‘‘๐‘ก
= ๐ซ. + ๐’†
๐œ‡
๐‘Ÿ
l2
1+eCos ฮธ
Substituting this on above eqn we get
ฮผ
๐‘‰2 = โˆ’ eSinฮธ
l
Taking the magnitude only
ฮผ
๐‘‰2 = eSinฮธ
l
www.iosrjournals.org
7 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
๐‘‘๐’“
๐ซ x ๐‘‘๐‘ก
๐ฅ.
๐œ‡
= r + ๐ซ. ๐ž
r + reCos ฮธ =
l2
ฮผ
or
l2
ฮผ(1 + eCos ฮธ )
4.4 Apse line and Periapsis
r=
We have ๐‘Ÿ =
l2
ฮผ 1+eCos ฮธ
ฮผ
๐œ‡
l
๐‘™
; ๐‘‰2 = eSinฮธ ; ๐‘‰1 =
1 + eCos ฮธ
The point of closest approach lies on apse line and is called
Periapsis. I.e. When ฮธ = 0 ๏ƒจ ๐‘Ÿ = ฮผ
๐‘‰
l2
m2 comes close to m1 now.
1+e
eSin ฮธ
The flight path angle is ๐‘‡๐‘Ž๐‘›๐›พ = ๐‘‰2 = 1+eCos ฮธ๏ƒจThe orbit equation is symmetric about its axis.
1
4.5 Latus Rectum
The latus rectum is the chord perpendicular to the apse line and passing through the center of
attraction. By symmetry, the center of attraction divides the latus rectum into two equal parts, each of
length p,
Where ๐‘ =
We have
๐‘Ÿ=
l2
ฮผ
l2
ฮผ 1 + eCos ฮธ
Elliptical Orbits( 0<e<1)
๐‘Ÿ๐‘Ž = ฮผ
๐‘Ÿ๐‘ =
l2
1โˆ’e
l2
ฮผ 1+e
๏ƒจApoapsis
๏ƒจPeriapsis
From figure it is clear that 2๐‘Ž = ๐‘Ÿ๐‘Ž + ๐‘Ÿ๐‘
๐‘Ž=ฮผ
l2
1โˆ’e 2
.
๐‘Ÿ๐‘Ž = a(1 + e)
๐‘Ÿ๐‘ = a(1 โˆ’ e)
4.6 Time Period
According to Keplerโ€™s law
๐‘‘๐ด
= ๐ด ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘‘๐‘ก
In case of a complete rotation ๐‘‘๐ด = ๐œ‹๐‘Ž๐‘; ๐‘‘๐‘ก = ๐‘‡
๐œ‹๐‘Ž๐‘
๐‘™
Therefore ๐‘‡ = 2
๐‘‡=
2๐œ‹๐‘Ž๐‘ 2๐œ‹๐‘Ž
2๐œ‹๐‘Ž2
2๐œ‹
l2
=
๐‘Ž 1 โˆ’ ๐‘’2 =
1 โˆ’ ๐‘’2 =
1 โˆ’ ๐‘’2
๐‘™
๐‘™
๐‘™
๐‘™
ฮผ 1 โˆ’ e2
www.iosrjournals.org
2
8 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
2๐œ‹
Solving we get ๐‘‡ = ๐œ‡ 2 (
On further solving =
2๐œ‹
๐œ‡
๐‘™
1โˆ’๐‘’ 2
)3
3
(๐‘Ž)2 ; ๐‘‡ 2 =
4๐œ‹ 2
๐œ‡
๐‘Ž3
4.7 Finding Mean distance
Now we have ๐‘Ÿ(ฮธ) = ฮผ
l2
1+eCos ฮธ
2๐œ‹
1 2๐œ‹ ๐‘Ž 1โˆ’e 2
Therefore ๐‘Ÿ๐‘Ž๐‘ฃ = 2๐œ‹ 0 ๐‘Ÿ ฮธ ๐‘‘ฮธ = 2๐œ‹ 0 1+eCos ฮธ
๐‘Ž 1โˆ’e 2
2๐œ‹
1
๐‘Ÿ๐‘Ž๐‘ฃ = 2๐œ‹
๐‘‘ฮธ
0
1+eCos ฮธ
1
๐‘‘ฮธ
ฮธ
๐‘ƒ๐‘ข๐‘ก ๐‘ฅ = tan
2
ฮธ = 2tanโˆ’1 x
๐‘Ž=
๐œƒ
2
2 = 1โˆ’x
Cosฮธ =
๐œƒ
1 + x2
1 + tan2 2
Since the function is an even function we can write it as following
1 โˆ’ tan2
๐‘Ÿ๐‘Ž๐‘ฃ = 2
๐‘Ÿ๐‘Ž๐‘ฃ
๐‘Ÿ๐‘Ž๐‘ฃ
๐‘Ÿ๐‘Ž๐‘ฃ
๐‘Ž 1 โˆ’ e2
=4
2๐œ‹
๐‘Ž 1 โˆ’ e2
=4
2๐œ‹
๐‘Ž 1 โˆ’ e2
=4
2๐œ‹ 1 โˆ’ e
๐‘Ÿ๐‘Ž๐‘ฃ =
๐‘Ÿ๐‘Ž๐‘ฃ
๐œ‹
๐‘Ž 1 โˆ’ e2
2๐œ‹
2๐‘Ž 1 + e
๐œ‹
0
๐œ‹
1
1+e
1 โˆ’ x2
1 + x2
1
2
๐‘‘x
1 + x2
1 + x2 + e 1 โˆ’ x2
1
๐‘‘x
2
0 x 1โˆ’e +1+e
๐œ‹
1
๐‘‘x
1+e
0 x2 +
1โˆ’e
๐œ‹
1
2 ๐‘‘x
0
1
+
e
x2 +
1โˆ’e
2๐‘Ž 1 + e
=
๐œ‹
๐‘Ž2
l2
ฮผ 1 โˆ’ e2
l2
= ๐‘Ž 1 โˆ’ e2
ฮผ
1
1
๐‘ฅ
๐‘‘๐‘ฅ = tanโˆ’1
2
+๐‘ฅ
๐‘Ž
๐‘Ž
๐‘‘x
0
๐œ‹
1โˆ’e
๐‘ฅ 1โˆ’๐‘’
tanโˆ’1
1+e
1+๐‘’
โˆž
0
1 โˆ’ e2 ฯ€
๐‘Ÿ๐‘Ž๐‘ฃ =
๐œ‹
2
๐‘Ÿ๐‘Ž๐‘ฃ = ๐‘Ž 1 โˆ’ e2
I.e. ๐‘Ÿ๐‘Ž๐‘ฃ = ๐‘Ž 1 โˆ’ e2 = ๐‘†๐‘’๐‘š๐‘– ๐‘š๐‘–๐‘›๐‘œ๐‘Ÿ ๐‘Ž๐‘ฅ๐‘–๐‘  = ๐‘
Or
. ๐‘Ÿ๐‘Ž๐‘ฃ = ๐‘Ž 1 โˆ’ e2 = ra rp
Where ๐‘Ÿ๐‘Ž = a(1 + e) ; ๐‘Ÿ๐‘ = a(1 โˆ’ e)
2๐‘Ž
We know that ๐‘™ =
Therefore
But ๐‘Ÿ =
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘™
๐‘‘๐œƒ
๐‘Ÿ 2 ๐‘‘๐‘ก
V.
Orbiting Path As A Time Function
= ๐‘Ÿ2
l2
ฮผ 1+eCos ฮธ
www.iosrjournals.org
9 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
๐‘‘๐œƒ ฮผ2
2
= 3 1 + eCos ฮธ
๐‘‘๐‘ก
l
t 2
ฮธ
ฮผ
1
dt
=
2 dฮธ
3
tp l
0 1 + eCos ฮธ
Where t p time at periapsis passing.
5.1 Circular Orbit
For circular orbits e=0.
ฮผ2
t โˆ’ tp = ฮธ
l3
If we take t p = 0
ฮผ2
t=ฮธ
l3
On solving
3
t=
r2
ฮธ
ฮผ
For a full revolution t = T, ฮธ = 2ฯ€
3
T=
2ฯ€r 2
ฮผ
2ฯ€
Therefore ฮธ = T t
5.2 Elliptical Orbit (0<e<1)
ฮธ
0
1
1 + eCos ฮธ
ฮผ2
t=
l3
1
1โˆ’
Rewrite it as
ฮผ2
l3
t=
3
e2 2
1
3
1โˆ’e 2 2
Now let ME =
1
2 dฮธ =
1 โˆ’ e2
2ฯ€
T
t=
ฮผ2
l3
ฮผ2
l3
1โˆ’e
ฮธ
e 1 โˆ’ e2 Sinฮธ
tan ] โˆ’
}
1+e
2
1 + eCosฮธ
1โˆ’e
ฮธ
e 1 โˆ’ e2 Sinฮธ
tan ] โˆ’
}
1+e
2
1 + eCosฮธ
{ 2 tanโˆ’1 [
{ ME } or
3
2
{ 2 tanโˆ’1 [
3
1 โˆ’ e2 2 t = ME
1 โˆ’ e2
3
2
t
For the first Eight planets in our solar system e has a maximum value 0.20 in case of mercury. And
e=0.0068 in case of venus (minimum)
If we ignore mercury then e ranges between 0.0068 and 0.05 .
Plotting X axis =ฦŸ and Y axis as corresponding ME. [Straightline is : y=x=theta]
Mercury e=0.2056
Venus , e= 0.0068
www.iosrjournals.org
10 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
Earth e=0.0167
Mars e=0.0934
Jupiter
Saturn e=0.0560
e=0.0483
Uranus, e=0.0461
Neptune e=0.0097
AT A GLANCE
www.iosrjournals.org
11 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
2ฯ€
I.e. we can approximate ME = T t
N.B. We take t=0, at perihelion and starts counting from there.
We know that ๐‘Ÿ = ฮผ
l2
1+eCos ฮธ
But
l2
ฮผ
= ๐‘Ž 1 โˆ’ e2
๐‘Ž 1 โˆ’ e2
๐‘Ÿ=
1 + eCos ฮธ
But b = ๐‘Ž 1 โˆ’ e2
Therefore
b 1 โˆ’ e2
๐‘Ÿ=
2ฯ€
1 + eCos T t
VI.
r(n) =
Combining Classical Physics to Polynomial difference theorem
b(n) 1 โˆ’ e(n) 2
2ฯ€
1 + e(n) Cos T(n) t
e(n)=Eccentricity of planet
T(n) =Time period of planet
Now let us recall our findings
Equation of mean distance From Sun(In 107 m)
๏‚ท
b n =
โˆ’144464081 7 894094629 6 56448957031 5 11973677 4 5563041 3
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
1000000
200000
1000000
32
4
5955539
4752953
+ 2864028 ๐‘›2 โˆ’
๐‘›+
2
4
( n=1:Mercury, n=2:Venus, n=3:Earthโ€ฆ..etc)
Equation of Orbital Period (In Earth days)
๏‚ท
T n =
๏‚ท
โˆ’6194601 7 376894501 6 467468457 5 3810907959 4 27956908203 3
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
500000
1000000
100000
125000
250000
14593949 2 15086455
5979771
+
๐‘› โˆ’
๐‘›+
64
64
64
Equation of orbital Eccentricity
e n =
151
87493 6 1127483 5 1515287 4 28233521 3 3565267 2
๐‘›7 โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘›
393750
7200000
7200000
1440000
7200000
450000
10873869
1061
+
๐‘›โˆ’
1400000
400
I(n) =
50349 7 479215 6 865181 5 4268557 4 91522621 3
๐‘› โˆ’
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘›
3000000
900000
125000
90000
500000
195666519 2 417357269
40261711
โˆ’
๐‘› +
๐‘›โˆ’
500000
1000000
250000
Gives the angle of inclination of each planet.
( n=1:Mercury, n=2:Venus, n=3:Earthโ€ฆ..etc)
N.B
www.iosrjournals.org
12 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
We have invented equation in such a way that when t=0 planet will be at perihelion and we will
start counting from there onwards.
VII.
Letโ€™s Make a reference point
Let us try to make an equation of t based on some date as reference point.
Here I am trying to make 1/12/1966 As a reference point.
From planet Calendar which shows distance between each planet from Earth, After some
mathematical treatments (Using simple Trigonometry) We can find the position/distance of planet
from sun.
In order to make a reference point function, we have applied
๐‘ก=
T n
b n
๐ถ๐‘œ๐‘  โˆ’1 (
2๐œ‹
1โˆ’e n
e n d
2
โˆ’d
)
For each n=1,2,.. we will take corresponding planetโ€™s distance d based on 1/12/1966 planetary
calendar.
Using that and Inverse polynomial Difference Theorem we can find a polynomial equation for
this t for the specific date as
โˆ’32230339 7 469816681 6 5581737793 5 34875074219 4
๐‘ก ๐‘› =
๐‘› +
๐‘› โˆ’
๐‘› +
๐‘›
1000000
500000
500000
500000
15736047 3 15504011 2 15603855
3032237
โˆ’
๐‘› +
๐‘› โˆ’
๐‘›+
64
32
32
16
Now let us re write our equation as
b(n) 1 โˆ’ e(n) 2
r(n) =
2ฯ€
1 + e(n) Cos
[t n + โˆ†t)
T n
โˆ†t =No of days from 1/12/1966
( n=1:Mercury, n=2:Venus, n=3:Earthโ€ฆ..etc)
Let us take an Example, Suppose we want to find the distance between Earth and sun on 1 may 2014
Then โˆ†t = 01 โˆ’ 05 โˆ’ 2014 โˆ’ 01 โˆ’ 12 โˆ’ 1966 โ‰ˆ 17318.22 Days
The distance between Earth and sun on May 1 =r 3 =
1โˆ’e 3 2
b 3
1+e 3 Cos
2ฯ€
T 3
= 1.016 AU
t 3 +โˆ†t
Let us take a look on other planets and to the value we got from planetary calendar
1 May 2014
n
1
2
3
4
5
6
7
8
Name of
planet
MERCURY
VENUS
EARTH
MARS
JUPITOR
SATURN
URANUS
NEPTUNE
Mean distance b n
x 107 m
Eccentricit
ye n
Time Period
T n
t(n)
5790.958283
10820.00392
14960.32528
22794.74907
77834.24688
142941.9512
287101.9634
450433.9838
0.2056
0.0068
0.0167
0.0934
0.0483
0.056
0.0461
0.0097
87.967214
224.695849
365.249328
686.925287
4332.53725
10759.08091
30684.1288
60188.37532
13.029
51.583032
54.09746
306.81414
1211.88
2753.92808
30739.04497
27365.2161
Value
From
Formula
(In AU)
0.31
0.73
1.02
1.60
5.24
9.20
20.02
30.10
From
Planetary
calendar
0.30
0.73
1.01
1.61
5.23
9.92
20.04
30.03
Conclusion
We have shown that, through this special type method we can find the โ€˜The General formula to
find the straight line distance of solar planets from sun at any instantโ€™.
The General formula straight line distance of nth solar planets from sun At any instant
www.iosrjournals.org
13 | Page
The General formula to find the straight line distance of solar planets from sun with the help of
r(n) =
b(n)
1 โˆ’ e(n)
2
2ฯ€
1 + e(n) Cos T(n) t
We have invented equation in such a way that when t=0 planet will be at perihelion and we will
start counting from there onwards.
Where r(n)denotes the position of nth planet planet at t second.
b n denotes the mean distance of nth planet from sun.
e n denotes the orbital eccentricity of nth planet
T n denotes equation of orbital period of nth planet.
50349
479215
865181
I(n)=3000000 ๐‘›7 โˆ’ 900000 ๐‘›6 + 125000 ๐‘›5 โˆ’
40261711
4268557
90000
๐‘›4 +
91522621
500000
๐‘›3 โˆ’
195666519
500000
๐‘›2 +
417357269
1000000
๐‘›โˆ’
250000
Gives the angle of inclination of each planet.
( n=1:Mercury, n=2:Venus, n=3:Earthโ€ฆ..etc)
But we can re-write the equation by making 1/12/1966 as a reference point as shown in the part
VII Equation
I.e.
b(n) 1 โˆ’ e(n) 2
r(n) =
2ฯ€
1 + e(n) Cos
[t n + โˆ†t)
T n
โˆ†t =No of days from 1/12/1966
t n = Reference time function
Acknowledgements
I express my sincere thanks to
K.Mohamed Haneefa, Professor of Physics, Malappuram Government College,Malappuram Kerala
Rajesh.P.M , Asst.Professor of Physics, Government Engineering College, Thrissur
Reeja Gopalakrishnan Nair, Asst.Professor of Physics, PTM Government College Perinthalmanna
Sanal Raj, Asst.Professor of Physics , PTM Government College Perinthalmanna
Sunil Kumar.P , HOD of Physics, PTM Government College Perinthalmanna
For their valuable suggestions for the completion of this project and I especially thanks to my parents
and classmates for all the support.
References
[1].
[2].
[3].
[4].
Planetary Science: The Science of planets around stars (2002) By George H A Cole, Michael M Woolfson
Astrophysics of Solar System By KD Abhyankar (1999)
Orbital Mechanics for Engineering Students (2005) By Howard Curtis
The General formula to find the sum of first n Kth Dimensional S sided polygonal numbers and a simple way to find the n-th term
of polynomial sequences By Arjun.K IOSR Journal of Mathematics (IOSR-JM) Volume 8 - Issue 3 10.9790/5728-0830110
[5].
[6].
[7].
http://www.nightskyatlas.com/planetscal.jsp
http://www.windows2universe.org
Classical Mechanics by Goldstein
www.iosrjournals.org
14 | Page