Download homeostatic imbalance

Document related concepts

Electrocardiography wikipedia , lookup

Heart failure wikipedia , lookup

Management of acute coronary syndrome wikipedia , lookup

Artificial heart valve wikipedia , lookup

Coronary artery disease wikipedia , lookup

Lutembacher's syndrome wikipedia , lookup

Cardiac surgery wikipedia , lookup

Myocardial infarction wikipedia , lookup

Quantium Medical Cardiac Output wikipedia , lookup

Antihypertensive drug wikipedia , lookup

Dextro-Transposition of the great arteries wikipedia , lookup

Transcript
The cardiovascular system
• The cardiovascular system provides the transport
system that keeps blood continuously circulating.
-The heart is no more than the transport system
pump.
- Blood vessels are the delivery routes.
• Using blood as the transport medium, the heart
continually propels oxygen, nutrients, wastes, and
many other substances into the blood vessels that
service body cells.
Heart Anatomy
-About the size of a fist.
-Cone-shaped , has a mass of between 250
and 350 grams.
-Enclosed within the mediastinum ,the
medial cavity of the thorax.
-Extends obliquely for 12 to 14 cm from the
second rib to the fifth intercostal space .
-Rests on the superior surface of the
diaphragm.
-Anterior to the vertebral column and
posterior to the sternum.
-If you press your fingers between the
fifth and sixth ribs just below the left
nipple, you can easily feel your heart
beating where the apex contacts the
chest wall. Hence, this site is referred to
as the point of maximal intensity(PMI)
- The lungs flank the heart laterally and
partially obscure it.
- Approximately two-thirds of its mass
lies to the left of the midsternal line.
Coverings of the Heart
The heart is enclosed in a sac called the pericardium:
1-The loosely fitting superficial part of this sac is the fibrous
pericardium. This tough, dense connective tissue layer:
(1) protects the heart,
(2) anchors it to surrounding structures,
and (3) prevents overfilling of the heart with blood.
2-Deep to the fibrous pericardium is the serous pericardium, a thin,
slippery, two-layer serous membrane:
-Its parietal layer lines the internal surface of the fibrous pericardium.
-the visceral layer, also called the epicardium over the external heart
surface and is an integral part of its wall.
• Between the parietal and visceral layers is the slitlike pericardial
cavity, which contains a film of serous fluid.
• The serous membranes, lubricated by the fluid, glide smoothly past
one another during heart activity, allowing the mobile heart to work
in a relatively friction-free environment.
HOMEOSTATIC IMBALANCE
Pericarditis, inflammation of the pericardium, is
characterized by pain deep to the sternum.
-Over time, it may lead to adhesions in which the
visceral and parietal pericardia stick together and
impede heart activity.
-In severe cases, excess fluid compresses the heart,
limiting its ability to pump blood. This condition in
which the heart is compressed by fluid is called
cardiac tamponade (tam″pŏ-nād′).
-Physicians treat it by inserting a syringe into the
pericardial cavity and draining off the excess fluid.
Layers of the Heart Wall
The heart wall is composed of three layers :
1-The superficial epicardium is the visceral
layer of the serous pericardium. It is often
infiltrated with fat, especially in older
people.
2-The middle layer, the myocardium
(“muscle heart”), is composed mainly of
cardiac muscle and forms the bulk of the
heart. It is the layer that contracts.
3-The third layer, the endocardium
is a glistening white sheet of
endothelium.it lines the heart
chambers.
The endocardium is continuous
with the endothelial linings of the
blood vessels leaving and entering
the heart.
Chambers and Associated Great Vessels
-The heart has four chambers ,two superior atria
and two inferior ventricles .
-The internal partition that divides the heart
longitudinally is called the interatrial septum
where it separates the atria, and the
interventricular septum where it separates the
ventricles.
-The right ventricle forms most of the anterior
surface of the heart.
-The coronary sulcus or atrioventricular groove,
encircles the junction of the atria and ventricles
like a crown .
Atria: The Receiving Chambers
-The right and left atria are remarkably free of
distinguishing surface features.
-The interatrial septum bears a shallow depression,
the fossa ovalis that marks the spot where an
opening, the foramen ovale, existed in the fetal
heart .
-Because they need contract only minimally to push
blood “downstairs” into the ventricles, the atria are
relatively small, thin-walled chambers.
-As a rule, they contribute little to the propulsive
pumping activity of the heart.
- Blood enters the right atrium via three veins :
(1) The superior vena cava returns blood from
body regions superior to the diaphragm;
(2) the inferior vena cava returns blood from
body areas below the diaphragm; and
(3) the coronary sinus collects blood draining
from the myocardium.
- Four pulmonary veins enter the left atrium,
coming from the lungs.
Ventricles: The Discharging Chambers
-Together the ventricles make up most of the
volume of the heart.
- The conelike papillary muscles, which play a role in
valve function, project into the ventricular cavity.
The ventricles are the actual pumps of the heart .
-The right ventricle pumps blood into the pulmonary
trunk, which routes the blood to the lungs where
gas exchange occurs.
-The left ventricle ejects blood into the aorta (aor′tah), the largest artery in the body.
Pathway of Blood Through the Heart
The heart is actually two side-by-side pumps, each
serving a separate blood circuit.
• The blood vessels that carry blood to and from the
lungs form the pulmonary circuit .
• The blood vessels that carry blood supply to and from
all body tissues constitute the systemic circuit.
• The right side of the heart is the pulmonary circuit
pump. Blood returning from the body is relatively
oxygen-poor and carbon dioxide–rich. It enters the
right atrium and passes into the right ventricle, which
pumps it to the lungs via the pulmonary trunk .
-The left side of the heart is the systemic circuit
pump. Freshly oxygenated blood leaving the
lungs is returned to the left atrium and passes
into the left ventricle, which pumps it into the
aorta to the body tissues.
Then the blood, once again loaded with carbon
dioxide and depleted of oxygen, returns
through the systemic veins to the right side of
the heart, where it enters the right atrium
through the superior and inferior venae
cavae.
Although equal volumes of blood are pumped to the
pulmonary and systemic circuits at any moment,
the two ventricles have very unequal workloads.
-The pulmonary circuit, served by the right ventricle,
is a short, low-pressure circulation, whereas the
systemic circuit, associated with the left ventricle,
takes a long pathway through the entire body .
-The walls of the left ventricle are three times as thick
as those of the right ventricle, and its cavity is
nearly circular.
-Consequently, the left ventricle can generate much
more pressure than the right and is a far more
powerful pump.
Coronary Circulation
-The coronary circulation is the shortest circulation in the body.
-The arterial supply of the coronary circulation is provided by the right
and left coronary arteries, both arising from the base of the aorta
and encircling the heart in the coronary sulcus.
HOMEOSTATIC IMBALANCE
Blockage of the coronary arterial circulation can be serious and
sometimes fatal:
-Angina pectoris is thoracic pain caused by the temporary lack of
oxygen but do not die.
-Myocardial infarction (MI), is cell death due to prolonged coronary
blockage.
-Because adult cardiac muscle is essentially amitotic, most areas of
are repaired with noncontractile scar tissue.
- Damage to the left ventricle, which is the systemic pump, is most
serious.
• Heart Valves
Blood flows through the heart in one direction. This one-way
traffic is enforced by four valves that open and close in
response to differences in blood pressure on their two sides.
1-Atrioventricular Valves
The two atrioventricular (AV) valves, one located at each
atrial-ventricular junction, prevent backflow into the atria
when the ventricles are contracting.
• The right AV valve, the tricuspid valve has three flexible
cusps
• The left AV valve, with two flaps, is called the mitral valve
(mi′tral). It is sometimes called the bicuspid valve.
• Attached to each AV valve flap are tiny white collagen cords
called chordae tendineae “heart strings” which anchor the
cusps to the papillary muscles protruding from the ventricular
walls.
• When the heart is completely relaxed, blood flows
into the atria and then through the open AV valves
into the ventricles.
• When the ventricles contract, the valve edges
meet, closing the valve .
• The chordae tendineae and the papillary muscles
serve to anchor the valve flaps in their closed
position.
• If the cusps were not anchored in this manner,
they would be blown upward into the atria, in the
same way an umbrella is blown inside out by a
gusty wind.
2-Semilunar Valves
The aortic and pulmonary (semilunar, SL) valves
guard the bases of the aorta and pulmonary trunk,
respectively and prevent backflow into the
associated ventricles.
• Each SL valve is fashioned from three pocketlike
cusps, each shaped roughly like a crescent moon .
• When intraventricular pressure rises above the
pressure in the aorta and pulmonary trunk, the SL
valves are forced open .
• When the ventricles relax, and the blood flows
backward toward the heart, it fills the cusps and
closes the valves.
HOMEOSTATIC IMBALANCE
-An incompetent valve forces the heart to repump
the same blood over and over because the valve
does not close properly and blood backflows.
- valvular stenosis (“narrowing”), the valve flaps
become stiff and constrict the opening. This
stiffness compels the heart to contract more
forcibly than normal.
In both instances, the heart’s workload increases
and, ultimately, the heart may be severely
weakened. Under such conditions, the faulty valve
(most often the mitral valve) is replaced .
Cardiac muscle structure
Heart Physiology
-The ability of cardiac muscle to depolarize and contract is
intrinsic; that is, it is a property of heart muscle and does
not depend on the nervous system. Even if all nerve
connections to the heart are severed, the heart continues
to beat rhythmically (as demonstrated by transplanted
hearts).
-Nevertheless , the healthy heart is amply supplied with
autonomic nerve fibers that can alter the basic rhythm of
heart activity set by intrinsic factors.
Setting the Basic Rhythm: The Intrinsic Conduction System
The independent activity consists of noncontractile cardiac
cells specialized to initiate and distribute impulses
throughout the heart in an orderly, sequential manner.
Thus, the heart beats as a coordinated unit.
Sequence of Excitation
1-Sinoatrial node. The crescent-shaped sinoatrial (SA)
node is located in the right atrial wall, just inferior
to the entrance of the superior vena cava. A minute
cell mass with a mammoth job, the SA node
typically generates impulses about 75 times every
minute. (However, its inherent rate in the absence
of extrinsic neural and hormonal factors is closer to
100 times per minute.) Because no other region of
the conduction system or the myocardium has a
faster depolarization rate, the SA is the heart’s
pacemaker, and its characteristic rhythm, called
sinus rhythm, determines heart rate.
2-Atrioventricular node.
From the SA node, the depolarization wave
spreads to the atrioventricular (AV) node, located
in the inferior portion of the interatrial septum
immediately above the tricuspid valve.
At the AV node, the impulse is delayed allowing the
atria to respond and complete their contraction
before the ventricles contract.
Once through the AV node, the signaling impulse
passes rapidly through the rest of the system.
3-Atrioventricular bundle. From the AV node, the
impulse sweeps to the atrioventricular (AV) bundle
(also called the bundle of His) in the superior part
of the interventricular septum.
4- Right and left bundle branches. The AV bundle
persists only briefly before splitting into two
pathways—the right and left bundle branches,
which course along the interventricular septum
toward the heart apex.
5- Purkinje fibers complete the pathway through the
interventricular septum, penetrate into the heart
apex, and then turn superiorly into the ventricular
walls.
HOMEOSTATIC IMBALANCE
Defects in the intrinsic conduction system can cause
irregular heart rhythms, or arrhythmias (ah-rith′meahz):
fibrillation, a condition caused by ischemia . It is a
rapid and irregular contractions in which control of
heart rhythm is taken away from the SA node by
rapid activity in other heart regions. The heart in
fibrillation has been compared with a squirming bag
of worms.
Fibrillating ventricles are useless as pumps; and unless
the heart is defibrillated quickly, circulation stops and
brain death occurs.
Defibrillation is accomplished by electrically shocking
the heart . The hope is that the SA node will begin to
function normally and sinus rhythm will be
reestablished.
• Because the only route for impulse transmission
from atria to ventricles is through the AV node, any
damage to the AV node, referred to as a heart
block.
-In total heart block no impulses get through and
the ventricles beat at their intrinsic rate, which is
too slow(20-40/min) to maintain adequate
circulation.
-In partial heart block, only some of the atrial
impulses reach the ventricles.
In both cases, pacemakers are used to recouple the
atria to the ventricles as necessary.
Modifying the Basic Rhythm: Extrinsic
Innervation of the Heart
• The sympathetic nervous system (the
“accelerator”) increases both the rate and the
force of heartbeat.
• The Parasympathetic activation (the “brakes”)
slows the heart. It sends inhibitory impulses to
the heart via branches of the vagus nerves.
The cardiac centers are located in the medulla
oblongata (cardioacceleratory center and
cardioinhibitory center )
• They sends impulses to the SA and AV nodes.
Electrocardiography
The electrical currents generated in and transmitted
through the heart spread throughout the body and
can be detected with an electrocardiograph. A
graphic record of heart activity is called an
electrocardiogram .An ECG is a composite of all the
action potentials generated by nodal and contractile
cells at a given time and not, as sometimes
assumed, a tracing of a single action potential.
A typical ECG has three waves :
1-The first, the small P wave, lasts about 0.08 s and
results from movement of the depolarization wave
from the SA node through the atria.
2-The large QRS complex results from
ventricular depolarization. It has a
complicated shape because the paths of the
depolarization waves through the ventricular
walls change continuously, producing
corresponding changes in current direction.
3- The T wave is caused by ventricular
repolarization.
Because atrial repolarization takes place during
the period of ventricular excitation, the wave
representing atrial repolarization is normally
obscured by the large QRS complex being
recorded at the same time.
Heart Sounds
During each heartbeat, two sounds can be distinguished
when the thorax is auscultated (listened to) with a
stethoscope. These heart sounds, often described as lub-dup,
are associated with closing of heart valves.
The basic rhythm of the heart sounds is lub-dup, pause,
lub-dup, pause, and so on.
• The first sound, which occurs as the AV valves close, signifies
the point when ventricular pressure rises above atrial
pressure .The first sound tends to be louder, longer, and more
resonant than
• the second sound, which is a short and sharp sound heard as
the SL valves close at the beginning of ventricular relaxation
(diastole).
HOMEOSTATIC IMBALANCE
Blood flows silently as long as the flow is smooth and
uninterrupted. If it strikes obstructions, however, its
flow becomes turbulent and generates heart murmurs
that can be heard with a stethoscope.
• Heart murmurs are fairly common in young children
(and some elderly people) with perfectly healthy
hearts, probably because their heart walls are relatively
thin and vibrate with rushing blood.
• Most often, however, murmurs indicate valve
problems. If a valve is incompetent, a murmur is heard
as the blood backflows or regurgitates through the
valve.
• A stenotic valve, in which the valvular opening is
narrowed, restricts blood flow through the valve.
Mechanical Events: The Cardiac Cycle
The heart alternately contracts, forcing blood out of
its chambers, and then relaxes, allowing its
chambers to refill with blood. The terms systole
(sis′to-le) and diastole (di-as′to-le) refer respectively
to these contraction and relaxation periods. The
cardiac cycle includes atrial systole and diastole
followed by ventricular systole and diastole`(one
complete heart beat). These mechanical events
always follow the electrical events seen in the ECG.
The average heart beats approximately 75 times
per minute , so the length of the cardiac cycle is
normally about 0.8 seconds.
Cardiac output (CO)
is the amount of blood pumped out by each ventricle in 1
minute. It is the product of heart rate (HR) and stroke
volume (SV).
Stroke volume is defined as the volume of blood pumped out
by one ventricle with each beat. In general, stroke volume
is correlated with the force of ventricular contraction.
Using normal resting values for heart rate (75 beats/min)
and stroke volume (70 ml/beat), the average adult cardiac
output is about 5 L.(heart rate x stroke volume)
Thus, the entire blood supply passes through each side of the
heart once each minute.
Notice that cardiac output varies directly with SV and HR.
Thus CO increases when the stroke volume increases or the
heart beats faster or both, and decreases when either or
both of these factors decrease.
Regulation of Heart Rate
1- When blood volume drops sharply or when
the heart is seriously weakened, SV declines
and CO is maintained by increasing HR and
contractility.
2 -Temporary stressors can also influence HR—
and consequently CO—by acting through
homeostatic mechanisms induced neurally,
chemically, and physically.
a-Autonomic Nervous System Regulation The most
important extrinsic controls affecting heart rate.
-When the sympathetic nervous system is activated by
emotional or physical stressors, such as fright, anxiety,
or exercise ,sympathetic nerve fibers release
norepinephrine. As a result, the pacemaker fires more
rapidly and the heart responds by beating faster.
-The parasympathetic division opposes sympathetic
effects and effectively reduces heart rate when a
stressful situation has passed. Cutting the vagal nerves
results in an almost immediate increase in heart rate of
about 25 beats/min, reflecting the inherent rate (100
beats/min) of the pacemaking SA node.
b-Chemical Regulation
1. Hormones.
-Epinephrine, liberated by the adrenal medulla
during sympathetic nervous system activation,
enhances heart rate and contractility.
-Thyroxine is a thyroid gland hormone that
increases metabolic rate and body heat
production and heart rate.
2. Ions. Plasma electrolyte imbalances pose real
dangers to the heart.
- Low calcium(hypocalcemia) depress the heart
- Excessive K+ (hyperkalemia) may lead to heart
block and cardiac arrest
c-Other Factors
-age,, and also influence HR. Resting heart rate is
fastest in the fetus (140–160 beats/min) and gradually
declines throughout life.
- gender,, average heart rate is faster in females (72–80
beats/min) than in males (64–72 beats/min).
- Exercise raises HR by acting through the sympathetic
nervous system . However, resting HR in the physically
fit tends to be as slow as 40 beats/min.
- body temperature increases HR by enhancing the
metabolic rate of cardiac cells. This explains the rapid,
pounding heartbeat you feel when you have a high
fever and also accounts, in part, for the effect of
exercise on HR (remember, working muscles generate
heat). Cold directly decreases heart rate.
HOMEOSTATIC IMBALANCE Although HR varies with
changes in activity, marked and persistent rate
changes usually signal cardiovascular disease.
• Tachycardia (take-kar′de-ah; “heart hurry”) is an
abnormally fast heart rate (more than 100 beats/min)
that may result from elevated body temperature,
stress, certain drugs, or heart disease. Because
tachycardia occasionally promotes fibrillation,
persistent tachycardia is considered pathological.
• Bradycardia (brade-kar′de-ah; brady = slow) is a heart
rate slower than 60 beats/min. It may result from low
body temperature, certain drugs, or parasympathetic
nervous activation. It is a known, and desirable,
consequence of endurance training.
Homeostatic Imbalance of Cardiac Output
-The heart’s pumping action ordinarily maintains
a balance between cardiac output and venous
return. Were this not so, blood congestion would
occur in the veins returning blood to the heart.
- When the pumping efficiency (CO) of the heart
is so low that blood circulation is inadequate to
meet tissue needs, the heart is said to be in
congestive heart failure (CHF). It occurs in:
1. Coronary atherosclerosis
2. Persistent high blood pressure
3. Multiple myocardial infarcts
Because the heart is a double pump, each side can
initially fail independently of the other.
- If the left side fails, The right side continues to
propel blood to the lungs, but the left side does not
adequately eject the returning blood into the
systemic circulation. causing pulmonary edema. If
the congestion is untreated, the person suffocates
- If the right side of the heart fails, peripheral
congestion occurs. Blood stagnates in body organs,
and pooled in the extremities (feet, ankles, and
fingers).
Failure of one side of the heart puts a greater
strain on the other side, and ultimately the whole
heart fails.
OVERVIEW OF BLOOD VESSEL STRUCTURE AND FUNCTION
The blood vessels of the body form a closed delivery system
that begins and ends at the heart.
The three major types of blood vessels are :
1- the arteries, capillaries, and veins. As the heart contracts,
it forces blood into the large arteries leaving the ventricles.
The blood then moves into successively smaller arteries,
finally reaching their smallest branches, the arterioles (arte′re-ōlz; “little arteries”), which feed into
2-the capillary beds of body organs and tissues. Blood drains
from the capillaries into
3-the venules (ven′ūlz), the smallest veins, and then on into
larger and larger veins that merge to form the large veins that
ultimately empty into the heart.
- Altogether, the blood vessels in the adult human stretch for
about 100,000 km (60,000 miles) .
Structure of Blood Vessel Walls
The walls of all blood vessels, except the very smallest, have
three distinct layers, or tunics :
• The walls of arteries and veins are composed of the tunica
intima (endothelium underlain by loose connective tissue),
the tunica media (smooth muscle cells and elastic fibers), and
the tunica externa (largely collagen fibers).
• Capillaries are composed of only of simple squamous
epithelium on a basement membrane.
• Depending on the body’s needs at any given moment, either
vasoconstriction (reduction in lumen diameter as the smooth
muscle contracts) or vasodilation (increase in lumen diameter
as the smooth muscle relaxes) can be effected.
• The arterial wall is thicker , more circular , with less diameter
than the corresponding vein.
• Large vein also has valves and large arteries are able to
expand and recoil.
venous return
Venous pressure is normally too low to promote
adequate venous return. Hence, three factors are
critically important to venous return:
1-the respiratory “pump.” As we inhale, abdominal
pressure increases, squeezing the local veins and
forcing blood toward the heart. At the same time, the
pressure in the chest decreases, allowing thoracic
veins to expand and speeding blood entry into the
right atrium.
2- the muscular “pump.” Skeletal muscle activity, or
the so-called muscular pump, is the more important
pumping mechanism. As the skeletal muscles
surrounding the deep veins contract and relax, they
“milk” blood toward the heart, and once blood
passes each successive valve, it cannot flow back.
3- the valves in the large veins.
HOMEOSTATIC IMBALANCE
• Varicose veins are veins that have become
tortuous and dilated because of incompetent
(leaky) valves. More than 15% of adults suffer from
varicose veins, usually in the lower limbs. Several
factors contribute, including heredity ,prolonged
standing, obesity, or pregnancy. Consequently,
blood pools in the lower limbs, and the venous
walls stretch and become floppy.
• A serious complication is thrombophlebitis,
inflammation of a vein that results when a clot
forms in a vessel with poor circulation .
• The clot may detach and pulmonary embolism may
occur.
The muscular
pump. When
contracting skeletal
muscles press
against a vein, the
valves proximal to
the area of
contraction are
forced open and
blood is propelled
toward the heart.
The valves distal to
the area of
contraction are
closed by the back
flowing blood.
ANASTOMOSES
• An anastomosis is a connection, or joining, of vessels,
that is, artery to artery or vein to vein. The general
purpose of these connections is to provide alternate
pathways for the flow of blood if one vessel becomes
obstructed. An arterial anastomosis helps ensure that
blood will get to the capillaries of an organ to deliver
oxygen and nutrients and to remove waste products.
• There are arterial anastomoses, for example, between
some of the coronary arteries that supply blood to the
myocardium.
• A venous anastomosis helps ensure that blood will be
able to return to the heart in order to be pumped
again. Venous anastomoses are most numerous
among the veins of the legs, where the possibility of
obstruction increases as a person gets older.
CAPILLARIES
Capillaries carry blood from arterioles to venules. Their walls
are only one cell in thickness; capillaries are actually the
extension of the endothelium, the simple squamous lining, of
arteries and veins.
-Some tissues do not have capillaries; these are the
epidermis, cartilage, and the lens and cornea of the eye.
- Most tissues, however, have extensive capillary networks.
The quantity or volume of capillary networks in an organ
reflects the metabolic activity of the organ. The functioning of
the kidneys, for example, depends upon a good blood supply.
The vessels in kidneys are dense, most of which are
capillaries.
In contrast, a tendon such as the Achilles tendon at the heel
or the patellar tendon at the knee would have far fewer
vessels, because fibrous connective tissue is far less
metabolically active.
Blood flow into capillary networks
-Is regulated by smooth muscle cells called precapillary
sphincters, found at the beginning of each network.
Precapillary sphincters constrict or dilate depending on the
needs of the tissues. Because there is not enough blood in
the body to fill all of the capillaries, precapillary sphincters
are usually slightly constricted.
-In an active tissue that requires more oxygen, such as
exercising muscle, the precapillary sphincters dilate to
increase blood flow. These automatic responses ensure that
blood, the volume of which is constant, will circulate where
it is needed most.
-Some organs have another type of capillary called sinusoids,
which are larger and more permeable than are other
capillaries. Sinusoids are found in the red bone marrow and
spleen, where blood cells enter or leave the blood, and in
organs such as the liver and pituitary gland, which produce
and secrete proteins into the blood.
EXCHANGES IN CAPILLARIES
Capillaries are the sites of exchanges of materials .
Some of these substances move from the blood to
tissue fluid, and others move from tissue fluid to the
blood. They move by diffusion, that is, from their area
of greater concentration to their area of lesser
concentration. Oxygen, therefore, diffuses from the
blood in systemic capillaries to the tissue fluid, and
carbon dioxide diffuses from tissue fluid to the blood to
be brought to the lungs and exhaled.
Blood pressure here(the pushing power) is about 30 to
35 mmHg, and the pressure of the surrounding tissue
fluid is much lower, about 2 mmHg. Because the
capillary blood pressure is higher, the process of
filtration occurs, which forces plasma contents (except
cells and albumin) out of the capillaries and into tissue
fluid.
Arrows shows the direction of movement. Filtration takes place at the
arterial end of the capillary. Osmosis takes place at the venous end.
Blood pressure decreases as blood reaches the
venous end of capillaries, to become 15mmHg .
Albumin contributes to the osmotic pressure of
blood; this is an “attracting” pressure, or “pulling”
rather than a “pushing” pressure and constant all
through the capillary which is about 25mmHg. At
the arterial end of capillaries, the pulling power of
albumin is less than pushing power of blood
pressure so plasma goes out the capillaries. Blood
pressure at the venous end is less than osmotic
pressure so fluid comes back to circulation.
Pathways of Circulation
Pulmonary circulation: Right ventricle  pulmonary artery  pulmonary
capillaries (exchange of gases)  pulmonary veins  left atrium
.
Systemic circulation: Left ventricle  aorta  capillaries in body
tissues  superior and inferior caval veins  right atrium.
Special circulations
1-Circle of Willis or cerebral arterial circle
Each side of the brain is supplied by:
1-Anterior and middle cerebral arteries which are
branches of the internal carotid artery
2- Posterior cerebral artery which is a branch of the
basilar artery which results from union of the right
and left vertebral arteries.
Anterior and posterior communicating arteries join these
six arteries in a circle around the pituitary gland at
the base of the brain. This circle is called Circle of
Willis or cerebral arterial circle. This circle provides
alternate route for blood to reach the brain tissue if a
carotid or vertebral artery becomes occluded.
2-Hepatic portal circulation: Blood from the digestive organs and spleen
flows through the portal vein to the liver where it divides into capillaries
then it joins into hepatic vein before returning to the heart. The
purpose is that the liver stores some nutrients or regulates their blood
levels and detoxifies potential poisons before blood enters the rest of
peripheral circulation.
3-FETAL CIRCULATION
The fetus depends upon the mother for oxygen and nutrients and for the removal of carbon
dioxide and wastes.
• Because the fetal lungs are deflated and do not provide for
gas exchange, blood is shunted away from the lungs. The
foramen ovale is an opening in the interatrial septum that
permits some blood to flow from the right atrium to the
left atrium. The blood that does enter the right ventricle is
pumped into the pulmonary artery.
• The ductus arteriosus is a short vessel that diverts most
of the blood in the pulmonary artery to the aorta, to the
body. Both the foramen ovale and the ductus arteriosus
permit blood to bypass the fetal lungs .
• Just after birth, the baby breathes and expands its lungs,
which pulls more blood into the pulmonary circulation.
• More blood then returns to the left atrium , and a flap on
the left side of the foramen ovale is closed. The ductus
arteriosus constricts, probably in response to the higher
oxygen content of the blood.
BLOOD PRESSURE
Blood pressure is the force the blood exerts against the walls of the
blood vessels
.
-The dynamics of blood flow in blood vessels is similar
to any fluid driven by a pump and the nearer the fluid
is to the pump, the greater the pressure exerted on
the fluid. The blood flows through the blood vessels
along a pressure gradient always moving from higherto lower-pressure areas.
-Systemic blood pressure is highest in the aorta and
declines throughout the pathway to finally reach 0 mm
Hg in the right atrium.
-The steepest drop in blood pressure occurs in the
arterioles, which offer the greatest resistance to blood
flow.
Blood pressure in various blood vessels of the systemic circulation.
Question: In which class of blood vessels does the greatest drop in blood pressure
occur?
Answer: Arterioles, because this is the site of greatest resistance. Arterioles control
the distribution of blood to the tissues by changing their resistance.
Arterial blood pressure
Reflects two factors:
(1) how much the elastic arteries close to the heart
can be stretched, and
(2) the volume of blood forced into them.
Blood pressure rises and falls in a regular fashion in
the elastic arteries near the heart.As the left
ventricle contracts and expels blood into the aorta,
it stretches the elastic aorta and large arteries. This
pressure peak, called the systolic pressure,
averages 120 mm Hg in healthy adults.
• Blood moves forward into the arterial bed
because the pressure in the aorta is higher
than the pressure in the more distal vessels.
• During diastole, the aortic valve closes,
preventing blood from flowing back into the
heart, and the walls of the aorta (and other
elastic arteries) recoil, maintaining sufficient
pressure to keep the blood flowing forward
into the smaller vessels.
• During this time, aortic pressure drops to its
lowest level (approximately 70 to 80 mm Hg in
healthy adults), called the diastolic pressure.
• The difference between the systolic and diastolic
pressures is called the pulse pressure. It is felt as a
throbbing pulsation (pulse) in an artery during
systole, as the elastic arteries are expanded by the
blood being forced into them by ventricular
contraction.
Factors that increase BP
1-increased stroke volume.
2-increased heart rate.
3-increased blood viscosity .
4-increased peripheral resistance
• Peripheral resistance: is the friction force created
between the blood and the walls of the blood
vessels which hinders blood flow.
• Viscosity: The greater the viscosity the greater the
resistance to flowing. The presence of blood cells
and plasma proteins increases the viscosity of the
blood hence the greater the force is needed to
move it in the vascular system.
• Therefore, the BP rises as the blood viscosity
increases and drops as viscosity decreases.
• Hypertension is a resting systemic pressure above the
normal range. Clinicians now consider:
• from125 to 139/85 to 89 mmHg to be pre-hypertension.
• A systolic reading of 140 to 159 mmHg or a diastolic reading
of 90 to 99 mmHg may be called stage 1 hypertension.
• a systolic reading above 160 mmHg or a diastolic reading
above 100 mmHg may be called stage 2 hypertension.
• The term “primary or essential hypertension” means that
no specific cause can be determined; most cases are in this
category.
• For some people, however, the cause of their hypertension
is known ,it is called secondary hypertension.
• Although hypertension often produces no symptoms, the
long-term consequences may be very serious on the heart
and may be fatal(silent killer).
• Although the walls of arteries are strong, hypertension
weakens them and arteries may rupture or develop
aneurysms, which may in turn lead to a cerebrovascular accident (CVA) or kidney damage.
• Hypertension let the left ventricle works harder and,
like any other muscle, enlarges as more work is
demanded; this is called left ventricular hypertrophy.
• This abnormal growth of the myocardium, however, is
not accompanied by a corresponding growth in
coronary capillaries, and the blood supply of the left
ventricle may not be adequate for all situations.
• Exercise, for example, puts further demands on the
heart, and the person may experience angina due to a
lack of oxygen or a myocardial infarction if there is a
severe oxygen deficiency.
• Although several different kinds of medications (diuretics,
vasodilators) are used to treat hypertension, people with
moderate hypertension may limit their dependence on
medications by following certain guidelines:
• Don’t smoke, because nicotine stimulates vasoconstriction,
which raises BP. Smoking also damages arteries, contributing to
arteriosclerosis.
• Lose weight if overweight. A weight loss of as little as 10 pounds
can lower BP. A diet high in fruits and vegetables may, for some
people, contribute to lower BP. Saturated fat, and cholesterol
increase the possibilities of hypertension.
• Cut salt intake in half. Although salt consumption may not be the
cause of hypertension, reducing salt intake may help lower blood
pressure by decreasing blood volume.
• Exercise on a regular basis. A moderate amount of aerobic
exercise (such as a half hour walk every day) is beneficial for the
entire cardiovascular system and may also contribute to weight
loss.
• Avoid Stress
• Secondary hypertension, which accounts for 10% of cases,
is due to identifiable disorders, such as obstruction of the
renal arteries, kidney disease, arteriosclerosis, and
endocrine disorders such as hyperthyroidism and Cushing’s
disease. Treatment for secondary hypertension is directed
toward correcting the causative problem.
• The renin and angiotensin mechanism
1. Decreased blood pressure stimulates the kidneys to secrete
renin.
2. Renin splits the plasma protein angiotensinogen
(synthesized by the liver) to angiotensin I.
3. Angiotensin I is converted to angiotensin II by an enzyme
(called converting enzyme) secreted by lung tissue and
vascular endothelium.
4. Angiotensin II:
-causes vasoconstriction
-stimulates the adrenal cortex to secrete aldosterone
• Hypotension is a systolic pressure below 100 mm Hg. Low
blood pressure is often associated with old age free of
cardiovascular illness.
• Elderly people are prone to orthostatic hypotension—
temporary low blood pressure and dizziness when they rise
suddenly. Because the aging sympathetic nervous system,
blood pools briefly in the lower limbs, reducing blood delivery
to the brain. Making postural changes slowly usually prevents
this problem.
• Chronic hypotension may indicate poor nutrition because
poorly nourished people are often anemic and have
inadequate levels of blood proteins so blood viscosity is low.
Chronic hypotension may occur in Addison’s disease
(inadequate adrenal cortex function), hypothyroidism, or
severe tissue wasting.
• Acute hypotension is one of the most important signs of
circulatory shock and a threat to patients undergoing surgery
and those in intensive care units.
Developmental Aspects of Blood Vessels
1. The fetal vasculature is functioning in blood delivery
by the fourth week.
2. Fetal circulation differs from circulation after birth.
The shunts(foramen ovale and ductus arteriosus) are
normally occluded shortly after birth.
3. Blood pressure is low in infants and rises to adult
values.
4. Common vascular problems include varicose veins,
hypertension, and atherosclerosis.
-Hypertension is the most important cause of sudden
cardiovascular death in middle-aged men.
-Atherosclerosis is the most important cause of
cardiovascular disease in the aged.
AGING AND THE VASCULAR SYSTEM
• The cholesterol deposits of atherosclerosis are to be
expected with advancing age, with the most serious
consequences in the coronary arteries.
• The veins also deteriorate with age; their thin walls
weaken and stretch, making valves incompetent.
This is most likely to occur in the veins of the legs;
their walls are subject to great pressure as blood is
returned to the heart against the force of gravity.
• Varicose veins and phlebitis are more likely to occur
among elderly people.
HOMEOSTATIC IMBALANCE
• Each year about 30,000 infants are born in the U.S. with one
or more of 30 different congenital heart defects, making
them the most common of all birth defects.
• Most congenital heart problems are due to environmental
influences, such as maternal infection or drug intake during
month 2 when the major events of heart formation occur.
• The most prevalent abnormalities produce two basic kinds
of disorders in the newborn. They either :
(1) lead to mixing of oxygen-poor systemic blood with
oxygenated pulmonary blood (so that inadequately
oxygenated blood reaches the body tissues) as septal
defects and patent ductus arteriosis.
(2) involve narrowed valves or vessels that greatly increase
the workload on the heart as coarctation of the aorta .
Modern surgical techniques can correct most of these heart
defects.