* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Proofs
Bayesian inference wikipedia , lookup
Analytic–synthetic distinction wikipedia , lookup
Laws of Form wikipedia , lookup
Intuitionistic logic wikipedia , lookup
Foundations of mathematics wikipedia , lookup
Gödel's incompleteness theorems wikipedia , lookup
Statistical inference wikipedia , lookup
Propositional calculus wikipedia , lookup
Turing's proof wikipedia , lookup
Mathematical logic wikipedia , lookup
Halting problem wikipedia , lookup
Kolmogorov complexity wikipedia , lookup
Law of thought wikipedia , lookup
Truth-bearer wikipedia , lookup
Sequent calculus wikipedia , lookup
Georg Cantor's first set theory article wikipedia , lookup
Curry–Howard correspondence wikipedia , lookup
Proofs Advanced Discrete Mathematics Jim Skon Proofs 1 Proofs Definition: A theorem is a valid logical assertion which can be proved using other theorems axioms (statements which are given to be true) and rules of inference (logical rules which allow the deduction of conclusions from premises). Proofs 2 Proofs A lemma (not a “lemon”) is a 'pretheorem' or a result which is needed to prove a theorem. A corollary is a 'post-theorem' or a result which follows directly from a theorem. Proofs 3 Valid reasoning in proofs A mathematical proof is a sequence of statements, such that each statement: 1. is an assumption, or 2. is a proposition already proved, or 3. Follow logically from one or more previous statements in proof. Proofs 4 Valid Inference Consider: H1 H2 ..... Hn C where Hi are called the hypotheses and C is the conclusion. Proofs 5 Valid Inference: Argument Argument - consists of a collection of statements, called premises of the argument, followed by a conclusion statement. A1 A2 Premises : An A Conclusion where means 'therefore' or 'it follows 6 Proofs } Valid reasoning in proofs Example: modus ponens P (P Q) Q modus ponens P: The car is running Q: The car has gas. If we know that the car is running (P), we can prove that (Q) it has gas. Proofs 7 Rules of Inference Rules of Inference - used in proofs, or arguments, to move from what is known to what we want to prove. modus ponens is a valid rule of inference. Proofs 8 Valid Argument An argument is said to be valid if whenever all the premises are true, the conclusion is also true. If the premises are true, but the conclusion false, the argument is said to be invalid. Proofs 9 Rules of Inference Other famous rules of inference: P P Q Addition ________________________________ ____ P Q P Simplification Proofs 10 Rules of Inference Q P Q P Modus Tollens ________________________________ ____ P Q QR P R Hypothetical syllogism Proofs 11 Rules of Inference P Q P Q Disjunctive syllogism ________________________________ ____ P Q P Q Conjunction Proofs 12 Rules of Inference (P Q) (R S) P R QS Constructive dilemma Proofs 13 Proofs Three Techniques Show true using logical inference • Assume the hypotheses are true • Use the rules of inference and logical equivalences to determine that the conclusion is true. Show true by showing that no way exists to make all premises true but conclusion false Show false by finding a way to make premises true but conclusion false. Proofs 14 Formal Proofs To prove an argument is valid or the conclusion follows logically from the hypotheses: Assume the hypotheses are true Use the rules of inference and logical equivalences to determine that the conclusion is true. Proofs 15 Proof Example Consider the following logical argument: If horses fly or cows eat artichokes, then the mosquito is the national bird. If the mosquito is the national bird then peanut butter takes good on hot dogs. But peanut butter tastes terrible on hot dogs. Therefore, cows don't eat artichokes. Proofs 16 Proof Example F Horses fly A Cows eat artichokes M The mosquito is the national bird P Peanut butter tastes good on hot dogs Proofs 17 Proof Example Represent the formal argument using the variables 1.(FA) M 2.M P 3.P A Proofs 18 Proof Example Use the hypotheses 1., 2., and 3. and the above rules of inference and any logical equivalencies to construct the proof. Proofs 19 Proof Example Assertion 1.(FA) M 2.M P 3.(F A) P` syll. 4.P 5.(F A) 6.F A 7.A F 8.A Q. E. D. Reasons Hypothesis 1. Hypothesis 2. steps 1 and 2 and hypothetical Hypothesis 3. steps 3 and 4 and modus tollens step 5 and DeMorgan step 6 and commutativity of 'and' step 7 and simplification Proofs 20 Proof Example Consider: p (q r) q p r Proofs 21 Proof by contradiction Consider: rs p s rq p q Proofs 22 Rules of Inference for Quantifiers "xP(x) P(c) Universal Instantiation (UI) _______________________________ P(x) "xP(x) Universal Generalization (UG) Proofs 23 Rules of Inference for Quantifiers P(c) $xP(x) Existential Generalization (EG) _______________________________ $xP( x) P(c) Existential Instantiation (EI) Proofs 24 Example Every man has two legs. John Smith is a man. Therefore, John Smith has two legs. Proofs 25 Example Define the predicates: M(x): x is a man L(x): x has two legs J: John Smith, a member of the universe The argument becomes 1."x[M(x) L(x)] 2.M( J ) L( J) Proofs 26 Example The proof is 1."x[M(x) L(x)] Hypothesis 1 2.M( J ) L(J ) step 1 and UI 3.M(J) Hypothesis 2 4. L( J) steps 2 and 3 and modus ponens Q. E. D. Proofs 27 Fallacies Fallacies are incorrect inferences. Some common fallacies: The Fallacy of Affirming the Consequent The Fallacy of Denying the Antecedent Begging the question or circular reasoning Proofs 28 The Fallacy of Affirming the Consequent If the butler did it he has blood on his hands. The butler had blood on his hands. Therefore, the butler did it. This argument has the form: P Q Q or [(P Q) Q] P P which is not a tautology and therefore not Proofs 29 a rule of inference! The Fallacy of Denying the Antecedent (or the hypothesis) If the butler is nervous, he did it. The butler is really mellow. Therefore, the butler didn't do it. This argument has the form P Q P or [(P Q) P] Q Q which is also not a tautology and hence not a rule of inference.Proofs 30 Begging the question or circular reasoning This occurs when we use the truth of statement being proved (or something equivalent) in the proof itself. Example: Conjecture: if x2 is even then x is even. Proof: If x2 is even then x2 = 2k for some k. Then x = 2l for some l. Hence, x must be even. Proofs 31 Proof Example If the law is sufficient, then Christ died in vain The law is sufficient Therefore Christ died in vain. Proofs 32 Example Babies are illogical Nobody is despised who can manage a crocodile Illogical persons are despised Therefore, babies cannot manage crocodiles Proofs 33 Methods of Proof We wish to establish the truth of the 'theorem’ P Q P may be a conjunction of other hypotheses. P Q is a conjecture until a proof is produced. Proofs 34 Types of proof: Vacuous Proof of P Q The truth value of P Q is true if P is false. If P can be shown false, then P Q holds. Thus prove P Q by showing P is false. Example: If I am both rich and poor then hurricane Fran was a mild breeze. This is of the form: (P P) Q and the hypotheses form a contradiction. Proofs 35 Trivial Proof of P Q If we know Q is true then P Q is true! Example: If it's raining today then the empty set is a subset of every set. The assertion is trivially true independent of the truth of P. Proofs 36 Direct Proof of P Q Prove Q, using P as an assumption. Thus prove P Q by showing Q is true whenever P is true. assume the hypotheses are true use the rules of inference, axioms and any logical equivalences to establish the truth of the conclusion. Example: the Cows don’t eat artichokes proof above Proofs 37 Direct Proof of P Q Theorem: If 6x + 9y = 101, then x or y is not an integer. Proof: (Direct) Assume 6x + 9y = 101 is true. Then from the rules of algebra 3(2x + 3y) = 101. But 101/3 is not an integer so it must be the case that one of 2x or 3y is not an integer (maybe both). Therefore, one of x or y must not be an integer. Q.E.D. Proofs 38 Indirect Proof of P Q Prove the contrapositive, e.g. Q P is true, using a direct proof methods. Proofs 39 Indirect Proof of P Q Example: A perfect number is one which is the sum of all its divisors except itself. For example, 6 is perfect since 1 + 2 + 3 = 6. So is 28. Theorem: A perfect number is not a prime. Proof: (Indirect). We assume the number p is a prime and show it is not perfect. But the only divisors of a prime are 1 and itself. Hence the sum of the divisors less than p is 1 which is not equal to p. Proofs 40 Hence p cannot be perfect. Q. E. D.. Proof by contradiction (reductio ad absurdum) Assume the negation of the proposition is true, then derive a contradiction. Thus to prove of P Q, assume P Q is true, then derive a contradiction. Proofs 41 Proof by contradiction Theorem : 2 is irrational. Proof: Let P be the proposition “2 is irrational” Assume P or “2 is rational” Then 2 = a/b, where a and b are integers and have no common factors (lowest terms). Then (2)2 = (a/b)2 is 2 = a2/b2. Thus 2b2 = a2. Thus a2 is even, implying a is even. Since a is even, a = 2c for some integer c. Thus 2b2 = 4c2, so b2 = 2c2. Hence b is even. Contradiction! A and b are both even, so Proofs 42 divisible by 2! Proof by cases of P Q To prove P Q, find a set of propositions P1, P2, ..., Pn, n2, in which at least one Pj must be true for P to be true. P P1 P2 ... Pn Then prove the n propositions P1 Q, P2 Q, ..., Pn Q. Proofs 43 Proof by cases of P Q Let be the operation 'max' on the set of integers: if a b then ab = max{a, b} = a = ba. Theorem: The operation is associative. For all a, b, c (ab)c = a (bc). Proofs 44 Proof by cases: The operation is associative Let a, b, c be arbitrary integers. Then one of the following 6 cases must hold (are exhaustive): 1. a b c 2. a c b 3. b a c 4. b c a 5. c a b 6. c b a Proofs 45 Proof by cases: The operation is associative Case 1: ab = a, ac = a, and bc = b. Hence (ab)c = a = a(bc). Therefore the equality holds for the first case. The proofs of the remaining cases are similar. Q. E. D. Proofs 46 Vacuous Proof Consider the proposition: If you your grandfather dies as a baby then you will get an A in this class. Proof of this statement: Your grandfather didn’t die, thus thus the premise must be false. Thus P Q must be true. Proofs 47 Trivial Proof Consider the proposition: If 3n2 + 5n -2 2n2 + 7n - 16 then n = n2. P(n). Proof of P(0): 0 = 02, thus P(0) is trivially true. QED. Proofs 48 Direct Proof Consider: The sum of two even numbers is even. Restate as: "x:"y: (x is even and y is even) x + y is even Proof: 1. Remember: x is even $a:x = 2a (definition) 2. Assume x is even and y is even (assume hypothesis) 3. x + y = 2a + 2b (from 1 and 2) 4. 2a + 2b = 2·(a+b) 5. By 1, 2·(a+b) is even - QED. Proofs 49 Direct Proof Consider: Every multiple of 6 is also a multiple of 3. Rewrite: "x $z$y:(6·x = y 3·z = y) Proof: 1. Assume 6x = y (hypothesis) 2. 6x = y can be rewritten as 3 · 2x = y 3. Let z = 2x, then 3·z = y holds. QED. Proofs 50 Indirect Proofs Prove the contrapositive, e.g. Prove that: Q P is true Proofs 51 Indirect Proofs Prove: If x2 is even, then x is even. Rewrite: "x : (EVEN(x2) EVEN(x)) Proofs 52 Indirect Proofs Prove: If x2 is even, then x is even 1. "x : (ODD(x) ODD(x2)) (contrapositive) 2. Assume 1 ODD(n) true for some n (hypothesis) 3. x is odd $a:x = 2a + 1 (definition) 4. n = 2a + 1 for some a (2 & 3) 5. n2 = (2a + 1)2 (substitution) 6. (2a + 1)2 = (2a + 1)(2a + 1) = 4a 2 + 4a + 1 = 2 (2a2 + 2a) + 1 7. 2 (2a2 + 2a) + 1 is odd (3 & 6) QED Proofs 53 Proof by contradiction To prove of P Q, assume P Q), derive a contradiction. Recall that: P Q P Q Then: P Q) P Q) P Q (Demorgan’s) Thus to prove P Q we assume P Q and show a contradiction. Proofs 54 Proof by contradiction Consider Theorem: There is no largest prime number. This can be stated as "If x is a prime number, then there exists another prime y which is greater" Formally: "x $y: (PRIME(x) PRIME(y) x < y) Proofs 55 Proof by contradiction There is no largest prime number Assume largest prime number does exist. Call this number p. Restate implication as p is prime, and there does not exist a prime which is greater. 1. Form a product r = 2 · 3 · 5 · ... p) (e.g. r is the product of all primes) 2. If we divide r+1 by any prime, it will have remainder 1 3. r+1 is prime, since any number not divisible by any prime which is less must be prime. 4. but r+1 > p , which contradicts that p is the greatest prime number. QED. Proofs 56 Proof by cases To prove P Q, find a set of propositions P1, P2, ..., Pn, n2, in which at least one Pj must be true for P to be true. P P1 P2 ... Pn Then prove the n propositions P1 Q, P2 Q, ..., Pn Q. Thus: P(P1P2...Pn) and (P1Q)(P2Q)...(PnQ)(PQ) Proofs 57 Proof by cases Consider: For every nonzero integer x ,x2 > 0. Let: P = "x is a nonzero integer” Q = x2 > 0 We want to prove P Q Proofs 58 Proof by cases If: P = "x is a nonzero integer” Q = x2 > 0 Prove P Q P can be broken up into two cases: P1 = x > 0 P2 = x < 0 Note that P (P1 P2). Proofs 59 Proof by cases For every nonzero integer x ,x2 > 0. Prove each case Prove P1 Q: If x > 0, then x2 > 0, since the product of two positive numbers is always positive. Prove P2 Q: If x < 0, then x2 > 0, since the product of two negative numbers is always positive. QED. Proofs 60 Existence Proofs We wish to establish the truth of $xP( x). Constructive existence proof: Establish P(c) is true for some c in the universe. Then $xP( x) is true by Existential Generalization (EG). Proofs 61 Constructive Existence Proofs Theorem: There exists an integer solution to the equation x 2 + y2 = z2 . Proof: Choose x = 3, y = 4, z = 5. Proofs 62 Constructive Existence Proofs Theorem: There exists a bijection from A= [0,1] to B= [0, 2]. Proof: We build two injections and conclude there must be a bijection without ever exhibiting the bijection. Let f be the identity map from A to B. Then f is an injection (and we conclude that | A | | B | ). Define the function g from B to A as g(x) = x/4. Then g is an injection. Therefore, | B | | A |. We now apply a previous theorem which states that if | A | | B | and | B | | A | then | A | = | B |. Hence, there must be a bijection from A to B. (Note that we could have chosen g(x) = x/2 and obtained a bijection directly). Q. E. D. Proofs 63 proof Assume no c exists which makes P(c) true and derive a contradiction. Example: Theorem: There exists an irrational number. Proof: Assume there doesn’t exist an irrational number. Then all numbers must be rational. Then the set of all numbers must be countable. Then the real numbers in the interval [0, 1] is a countable set. But we have already shown this set is not countable. Hence, we have a contradiction (The set [0,1] is countable and not countable). Therefore, there must exist Proofs an irrational number. 64 Q. E. D. " Disproof by Counterexample: Recall that $xP(x) "xP(x ). To establish that "xP(x ) is true (or "xP(x) is false) construct a c such that P(c) is true or P(c) is false. In this case c is called a counterexample to the assertion "xP(x) Proofs 65 Nonexistence Proofs We wish to establish the truth of $xP( x) (which is equivalent to "xP(x) ). Use a proof by contradiction by assuming there is a c which makes P(c) true. Proofs 66 The (infamous) Halting Problem We wish to establish the nonexistence of a universal debugging program. Theorem: There does not exist a program which will always determine if an arbitrary program P halts. We say the Halting Problem is Yes (Halts) undecidable. P1 UDP P2 No (Infinite Loop) P3 Proofs 67 Halting Problem Proof: Suppose there is such a program called HALT which will determine if any input-free program P halts. HALT(P) prints 'yes' and halts if P halts, otherwise, HALT(P) prints 'no' and halts. We now construct another procedure as follows: procedure ABSURD; if HALT(ABSURD) = 'yes' then while true do print 'ha' (Note that ABSURD is input-free.) Proofs 68 Halting Problem If ABSURD halts then we execute the loop which prints unending gales of laughter and thus the procedure does not halt. If ABSURD does not halt then we will exit the program and halt. Hence, ABSURD halts if it doesn't and doesn't halt if it does which is an obvious contradiction. Hence such a program does not exist. Q. E. D. Proofs 69 Universally Quantified Assertions We wish to establish the truth of "xP(x) We assume that x is an arbitrary member of the universe and show P(x) must be true. Using UG it follows that "xP(x) . Proofs 70 Universally Quantified Assertions Example: Theorem: For the universe of integers, x is even iff x2 is even. Proof: The quantified assertion is "x[x is even x2 is even] Proofs 71 Universally Quantified Assertions Proof: We assume x is arbitrary. Recall that P Q is equivalent to (P Q) (QP). Case 1. We show if x is even then x2 is even using a direct proof (the only if part or necessity). If x is even then x = 2k for some integer k. Hence, x2 = 4k2 = 2(2k2 ) which is even since it is an integer which is divisible by 2. This completes the proof of case 1. Proofs 72 Universally Quantified Assertions Case 2. We show that if x 2 is even then x must be even (the if part or sufficiency) . We use an indirect proof: Assume x is not even and show x2 is not even. If x is not even then it must be odd. So, x = 2k + 1 for some k. Then x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 which is odd and hence not even. This completes the proof of the second case. Therefore we have shown x is even iff x2 is even. Since x was arbitrary, the result follows by UG. Q.E.D. Proofs 73 Proofs 74 Proofs 75