* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download v C
Integrating ADC wikipedia , lookup
Radio transmitter design wikipedia , lookup
Power MOSFET wikipedia , lookup
Schmitt trigger wikipedia , lookup
Josephson voltage standard wikipedia , lookup
Phase-locked loop wikipedia , lookup
Operational amplifier wikipedia , lookup
Power electronics wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Regenerative circuit wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Standing wave ratio wikipedia , lookup
Opto-isolator wikipedia , lookup
Surge protector wikipedia , lookup
Two-port network wikipedia , lookup
Index of electronics articles wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Current mirror wikipedia , lookup
Rectiverter wikipedia , lookup
Network analysis (electrical circuits) wikipedia , lookup
Physics 121 - Electricity and Magnetism Lecture 15E - AC Circuits & Resonance II No Y&F reference for slides on Complex analysis • Circuit Analysis using Complex Exponentials – – – – Imaginary and Complex Numbers Complex Exponential Phasors and Rotations Phasors as Solutions of Steady State Oscillator Equations Phasor representation applied to current versus voltage in R. L. C. – Series LCR Circuit using Complex Phasors – Parallel LCR Circuit using Complex Phasors – Transient Solution of Damped Oscillator using Complex Phasors Copyright R. Janow – Fall 2015 Summary: AC Series LCR Circuit vR E R L vL C vC Circuit Element Symbol Resistance or Reactance Phase of Current Phase Angle Amplitude Relation Resistor R R In phase with VR 0º (0 rad) VR = ImR Capacitor C XC=1/wdC Leads VC by 90º -90º (-p/2) VC = ImXC Inductor L XL=wdL Lags VL by 90º +90º (p/2) VL = ImXL E(t) Emax cos(wDt F) i(t) Im cos(wDt) Em Im F Pav Prms ErmsI rms cos(F) VL-VC Z VR XL-XC sketch shows XL > XC Em Im | Z | R wDt | Z | [ R2 (XL XC )2 ]1/2 tan(F ) VL VC X XC L VR R Copyright R. Janow – Fall 2015 Complex Exponentials in Circuit Analysis z2 1 has roots 1 i 1 z2 1 has roots i is “pure imaginary” • Roots of a quadratic equation az2 + bz +c = 0 b are complex if b2<4ac: Re{z} , 2a 1 Im{z} 4ac b2 2a b 1 z b2 4ac 2a 2a • Complex number in rectangular form: z Re(z) i Im( z) REVERSE SIGN OF IMAGINARY PART • Re{z} and Im{z} are both real numbers • Complex conjugate: z* Re(z) i Im( z) • Addition: z1 z2 Re(z1) Re(z2 ) i { Im(z1) Im(z1)} z z * 2 Re(z) z z * 2 Im( z) • EE’s use j instead of i (i is for current) Copyright R. Janow – Fall 2015 Representation using the Complex Plane Imaginary axis (y) |z| q x “Argand diagram” z Re(z) i Im( z) x Re(z) y y Im{z} z x iy • Polar form: Real axis (x) r |z| x r cos(q) y r sin(q) z r cos(q) i r sin(q) • Magnitude2: r 2 zz * (x iy) (x i y) x2 y2 • Argument: q tan-1 ( y/x ) • Picture also displays complex-valued functions Copyright R. Janow – Fall 2015 Complex Exponentials: Euler’s Formula • Taylor’s Series definition of exponential function: 2 3 4 5 6 u u u u u eu 1 u for all u (including complex) 2! 3! 4! 5! 6! • Evaluate for u = iq: i2q2 i3q3 i4 q4 i5q5 i6q6 i q e 1 iq ... for all q 2! 3! 4! 5! 6! q2 q4 q6 q3 q5 i q use i2n+1 = i(-1)2n e {1 ...} i { q ...} 2! 4! 6! 3! 5! • Recognize series definitions of sine and cosine: q2 q 4 q6 cos(q) 1 ... 2! 4! 6! • Hence: q3 q5 sin(q) q ... (radians) 3! 5! eiq cos(q) i sin(q) Above is a complex number of magnitude 1, argument q: • Special Properties: 1/i i e0 1 ei2p ei2np n 1,2,... e ip 1 (e ip )* eip 1 eip / 2 i e ip / 2 i (e ip / 2 )* Copyright R. Janow – Fall 2015 Rules for Complex Quantities Euler’s Formula for magnitude r: z r eiq r cos(q) i r sin(q) Polar form of arbitrary complex z z * r e iq r cos(q) i r sin(q) Complex conjugate of z z1 z2 (x1 x2 ) i(y1 y2 ) Sum: | z1 z2 | { (x 1 x2 )2 (y1 y2 )2 }1/ 2 iq1 iq2 i (q q2 ) Product: z1 z2 r1 e r2 e r1 r2 e 1 z z * | z |2 | 1/ z | 1/ | z | •Magnitude of a product = product of individual magnitudes •Argument of a product = sum of individual arguments •Two complex entities are equal if and only if their amplitudes (magnitudes) are equal and their arguments (phases) are equal Periodicity 2p: ei ( 2np) ei [ e 2pi ]n ei [1n ] ei DeMoivre’s Theorem: zn { r ei q }n rnei nq rn {cos(nq) isin(nq)} i (q 2pk) / n z1/n r1/ne for integer n & k = 0,1….n-1 Copyright R. Janow – Fall 2015 Phasors, Rotation Operators, Evolution Operators: e+i rotates complex number z by angle + in complex plane ze i Im z z' z ei r ei qei r ei (q ) Time Evolution: Let = w(t-t0) iw(t f t0 ) evolves z from t0 to t for tf > t0 e q ze Re i Represent sinusoidally varying real quantity a(t) as a vector in the complex plane, rotating (counterclockwise) at angular frequency w. Define A(t) • • • • Amaxei (wt ) then Re {A(t)} Amaxcos(wt ) a(t) A(t) is called a “time domain phasor” Re {A} = is the measurable instantaneous value of A(t) Time dependent exponentials like eiwt are sometimes called evolution operators Cancelling common factors of eiwt leaves a “frequency domain phasor” A (often simply called a “phasor”): A A max ei Copyright R. Janow – Fall 2015 Phasor Definitions, continued A phasor represents a sinusoidal, steady state signal whose amplitude Amax, phase , and frequency w are time invariant. peak value of a(t), real time domain phasor, complex a(t) Re { (Amax ei ) eiwt } instantaneous value, time domain, real frequency domain phasor A, complex, rotated by from real axis Phasor Transform P: forward - time to frequency domain inverse - frequency to time domain e.g. : A Amax ei a(t) P -1 { A } e.g. : a(t) Re{Aeiwt } A P { a(t) } Advantage of phasor transform: For sinusoidal signals, differential equations (time domain) become algebraic equations (frequency domain) as common factors of eiwt cancel). Process: Replace real variables in time dependent analysis problem with variables written using complex exponentials. Cancel common factors of eiwt and solve remaining algebraic problem. Then return to real solution in time Copyright R. Janow – Fall 2015 domain. Time domain phasors are alternative solutions to sines and cosines in differential equations representing oscillations. Recall: d(e f (a) ) df(a) f ( a ) e da da chain rule: d(eia ) i eia da a can be complex First and Second Derivatives: set a = wt+, amplitude Amax dA d d [ Amaxei (wt ) ] i A (wt ) iwA dt dt dt 2 d A d dA 2 [ i w A ] i w w A 2 dt dt dt Example: Simple Harmonic Oscillator d2x 2 w x w0 k/m 0 2 dt x2 (t) x0sin(wt ' ) Trig Solutions: x1(t) x0cos(wt ) Complex Solutions: x 3 (t) x 0ei(wt ) x 4 (t) x * (t) x 0ei(wt ) note : cos(x) (x n xn *)/2 also a solution Copyright R. Janow – Fall 2015 Complex Exponential Representation applied to Passive Circuit Elements: Revisit AC Voltage vs. Current in L, C, and R Apply complex voltage & current (time domain phasors): Resistor: ε(t) - vR(t ) 0 vR (t) i(t) R magnitudes: exponents: Note: now using j = sqrt(-1) i(t) jω t j(w t F) D I Re equate to E e D m m ε Em Im R jwDt jwDt jF F 0 jw t ) j(w t F) di d jw t) L Im [e D ] ImLjwDe D equate to Eme D dt dt magnitudes: ImwDL Em L wDL Em ImL jw t exponents: jwD t jF e j e D e jF j F p / 2 Capacitor: vC(t ) vR( t ) ε(t) - vL(t ) 0 Inductor: vL(t ) L i(t) Ime jwDt E (t) Eme j( wDt F) i(t) ε L vL(t) ε(t) - vC(t ) 0 I I jw t jw t j(w t F) q(t) 1 i(t)dt m e D dt m e D equate to Eme D C C C jwDC Im / wDC Em C 1/ wDC Em ImC exponents: e jwD t jF j e jwD t e jF j F p / 2 magnitudes: i(t) ε C vC ( t ) Copyright R. Janow – Fall 2015 Summary: Complex Exponential Representation of AC Voltage vs. Current in L, C, and R Applied voltage: E (t) Eme j( wD t F ) & current: i(t) Ime jwD t time domain Phase angle factor ejF rotates E CCW from current phasor Passive circuit elements: Resistor: Inductor: Capacitor: VR / IRm R VL / ILm L wDL VC / ICm C 1 wDC VR& IRm in phase VL leads ILm by p/2 VC lags ICm by p/2 Phasor rotations of voltage drops relative to currents: e0 =1 e+jp/2 = +j e-jp/2 = -j Voltage drop phasors relative to currents: time domain vR (t) IRm R e jωDt vL(t ) ILmLe jwDt e jp / 2 vC(t ) ICmCe jwDt e jp / 2 Frequency domain (factor out time dependence) vR (t) IRm R vL(t ) ILmLe jp / 2 vC(t ) ICm Ce jp / 2 Define: Complex impedance z = E(t)/i(t) and |z| = Vmax/Imax Impedances of simple circuit elements (complex): zR R zL jL zC jC Magnitudes of Impedances |z| = [zz*]1/2 (real) | zR | R | zL | L Copyright | z | R.Janow – Fall 2015 C C Complex Impedance z Applied voltage: E (t) Eme j( wD t F ) & current: i(t) Ime jwD t time domain Definition: complex impedance z (or simply impedance) is the ratio of the (complex) voltage phasor to the (complex) current phasor (in time or frequency domain). jF E (t) i(t) z | z | Em / Im z | z |e Definition: Phase angle F measures rotation of the applied voltage referenced to the current in the branch. It is also the angle between z and the real axis. The rotation operator is ejF. Sketch shows positive Im{z}. jF e cos(F) j sin(F) z Re{z} j Im{z} F is positive, implying that Em leads Im. Re{z} | z | cos(F) Im{z} | z | sin(F) tan(F) Im{z} sin(F) Re{z} cos(F) 1/z occurs when analyzing parallel branches: 1 z* e jF cos(F) sin(F) 2 zz* | z | j z |z| |z| |z| | z |2 cos(F) Re{z} Re{1 / z} |z| | z |2 sin(F) Im{z} Im{1/z} |z| | z |2 Im Z Im(z) Em F Re(z) tan(F) Im Re Im{1/z} Re{1/z} Copyright R. Janow – Fall 2015 Impedances of Series or Parallel Collections of Circuit Elements Impedances of individual passive circuit elements: zR R zL jL zC jC The kth sub-circuit (arbitrary complexity) consists of R, L, and/or C basic elements: zk Assertion: Follow series or parallel resistor addition rules to compute equivalent impedances (complex) Series branch formula: z ser zk z2 z1 n zk complex k 1 Parallel sub-circuit formula: 1 n 1 complex zpara k 1 zk z1 z2 zk Copyright R. Janow – Fall 2015 Revisit series LCR circuit using complex phasors AC voltage: E (t) Eme j( wDt F) time domain phasors Currents are the same everywhere in an essential branch, same phase, same magnitude. Im IRm ILm ICm vR E jw t Current: i(t) Ime D R L C vL Kirchhoff Loop rule for series LRC circuit: E(t) vR (t) vL (t) vC (t) Substitute the time domain voltage phasors for vR, vL, vC. vC Eme j(wDtF) Im R e jωDt ImLe jwDte jp / 2 ImCe jwDte jp / 2 (1) Divide equation (1) by i(t) ( = Imejwt ) E(t) z | z | e jF R Le jp / 2 Ce jp / 2 i(t) replace : e jp / 2 j e jp / 2 j z R j(L C ) (1) Magnitude of Z: | z | z z * [ R 2 (L C )2 ]1/2 VL Em Im F wDt VR VC Sketch shows F positive for VL>VC XL>XC A t = 0 sketch would show phasors in frequency domain Copyright R. Janow – Fall 2015 Revisit the series LCR circuit, Continuation Impedance z (Equation 1) can also be found by summing the impedances of the 3 basic circuit elements in series LCR circuit (invoke Series Formula*) z R j( L C ) | z | e jF (1) Re{z} R Im Z Im{z} XL XC z is not a phasor, as it is time independent. Previous “phasor diagrams” showed z rotating with Em. Phase angle F for the circuit: tan(F) Power factor: V VC Im{z} L C L Re{z} R VR cos(F) VR R Em | z | XL-XC F R Re Sketch shows F >0 for XL > XC VL > VC. F is positive when Im{z} is positive * The equivalent (complex) impedance for circuit elements in series (arbitrarily many) is the sum of the individual (complex) impedances. Resonance: As before, z is real for XL= XC (w2 = 1/LC). |z| is minimized. Current amplitude Im is maximized at resonance Phase angle in terms of admittance 1/z: 1 z* 2 2 Re{z} / | z | j Im{z} / | z | z | z |2 tan(F) Im{ z} Im{1/z} Re{z} Re{1/z} Copyright R. Janow – Fall 2015 Parallel LCR circuit using complex phasors All steady state voltages and currents oscillate at driving frequency wD AC voltage: E (t) Eme j( wDt F) Instantaneous Current: i(t) Ime jwDt i a iL iR E vR iC vL R L vC C b Kirchhoff Loop Rule (time domain): E(t) vR (t) 0 E(t) vC (t) 0 E(t) vL (t) 0 • 2 essential nodes “a” & “b” • 4 essential branches, • Not all independent Instantaneous voltages across parallel branches have the same magnitude and Use voltage as reference phase: E(t) vR (t) vL (t) vC (t) instead of current Common voltage phase, all branches: e Common voltage peak, all branches: Em VRm VLm VCm j(wD t F) Kichhoff Current Rule (node a or b): i(t) iR (t) iL (t) iC (t) (1) Current Amplitudes in each parallel branch (reference now to voltage drop): Em IRm R ILm L wDL Em L C 1 wD C ICm Em C Copyright R. Janow – Fall 2015 Parallel LCR circuit, Continuation #1 Instantaneous currents in each branch lead, lag, or are in phase with the (reference) voltages: iR (t) IRme iL (t) ILme j(wD t F) j(wD t F) jp / 2 iC (t) ICme e j(wD t F) jp / 2 e Im Em, VR, VL, VC • in phase with E(t) F • lags E(t) by p/2 IRm wDt Im • leads E(t) by p/2 ICm ICm- ILm Current amplitude addition rule is Pythagorean Im [ I2Rm ( ICm ILm )2 ]1/2 ILm Re Sketch shows F < 0 (applied voltage lags current) for ICm > ILm XL>XC Substitute currents into junction rule equation (1): jw t j(w t F) j(w t F) jp / 2 j(w t F) jp / 2 i(t) Ime D IRme D ILme D e ICme D e (2) Cancel ejwt factor and multiply by e-jF (current phasor – frequency domain) Ime jF IRm ILme jp / 2 ICme jp / 2 Em R Em jp / 2 E e m e jp / 2 (2.1) L C Copyright R. Janow – Fall 2015 Parallel LCR circuit, continuation #2 Recall, impedance “admittance” Note that: voltage phasor z z e jF current phasor 1 current phasor 1 jF e z voltage phasor z e jp / 2 j e jp / 2 j Substitute, then divide (Eq. 2.1) above by Em Em jF e Im Im jF e Em |z| Em Im 1 z* z | z |2 1 1 1 1 j[ ] (3) z R C L Admittance 1/z in Equation 3 is also the sum of the reciprocal impedances of the 3 basic circuit elements in parallel LCR circuit (invoke Parallel Formula) Find |1/z|: multiply 1/z by complex conjugate (1/z)* and take square root: 1 1 1 1 1 j[ ] C L | z |2 z z * R 1 1 1 1 ] j[ C L R 1/2 2 2 1 1 1 1 R |z| C L (4) Represent z in terms of 1/z: 1 z * Re{z} Im{ z} 1 1 j Re{ } j Im{ } 2 z zz * | z |2 z z |z| 1 1 Re{z} | z |2 Re{ } | z |2 R z 1 1 Re{ } R z 1 1 1 Im{ } [ ] z C L 1 1 1 Im{z} | z |2 Im{ } | z |2 [ ] z C L Copyright R. Janow – Fall 2015 Parallel LCR circuit, Continuation #3 Im Phase angle F: 1/z 1/XC-1/XL Im{z} Im{1 / z} tan(F) Re{z} Re{1 / z} 1 1 tan(F) R ( ) (5) XL XC tan(F) ILm ICm IR F E 1/R Sketch shows F negative for 1/XC > 1/XL IC > IL XL > XC 1/XL 1 / XC 1/R For XL > XC: 1/XL – 1/XC < 0 -Tan (F) and F are positive in Series LCR circuit (see above), Voltage Em leads current Im - Tan(F) and F are negative in Parallel LCR circuit Current Im leads applied voltage Em Converse for XC > XL F = 0 at resonance (XL = XC) in both Series and Parallel circuits Copyright R. Janow – Fall 2015 Parallel LCR circuit, Continuation #4 Resonance: Minimizes E Im m |z| as function of frequency 1/2 2 2 1 1 1 1 R |z| L C (4) Minimum of 1/|z| when XL = XC, i.e. when w2 = 1/LC Same resonant frequency as series LCR, but current is minimized instead of maximized at resonance Lim 1 1 |z| R Lim 1 1 also as w wres, z R z R as w wres | z | R At resonance, the current amplitudes ILm and ICm in the L & C branches are equal, but are 180o apart in phase. These cancel at all times at nodes a and b of the circuit. Copyright R. Janow – Fall 2015 Using complex exponentials to solve a differential equation Revisit Damped Oscillator: After “step response” to switch at ‘a’ saturates, turn switch to ‘b’. Decaying natural oscillations start when damping is weak. dUtot i2 (t)R dt • R dissipates potential energy • not a steady state system • solutions not simple sinusoids d2Q(t) R dQ w20Q(t) 0 2 dt L dt Trial solution… Q(t) Q 0e j( wt ) (2) Assume complex frequency a + E w0 1/LC (1) R b L C second order equation for Q(t) – see Lect. 13 … but if w is real, solution oscillates forever w wx jwy wx and wy assumed real dQ(t) d2Q(t) j( wt ) 2 j( wt ) 2 Q 0 jwe jwQ(t) Q ( j w ) e w Q(t) 0 2 dt dt R Substitute into Equation (1): w2 Q j w Q w20Q(t) 0 L “characteristic R Cancel common factors of Q: w2 j w w20 0 (3) equation” L Derivatives: Phasor-like trial solution (2) turned differential equation into polynomial equation Copyright R. Janow – Fall 2015 Using complex exponentials to solve a differential equation, #2 2 2 2 Expand: w wx 2 jwx wy wy Equation (3) becomes 2 separate equations for real and imaginary terms R R 2 wx wy wx 0 (4.1) Im{Eq 3} wy L 2L R 2 2 2 Re{Eq 3} wx wy wy w0 0 (4.2) L 2 R R 2 2 2 wx w20 2L Substitute wy: wx w0 0 2L ( Shifted natural frequency wx is For real wx (underdamping): damping Q(t) Q0 e w20 real for Q( t ) Q 0e j(wx jwy ) t oscillation R t 2L e j(ωx t ) For critical damping, wx = 0: j Q(t) Q0 e e R t 2L w20 imaginary for (6) w20 ( < ( underdamping R 2 2L overdamping 2 j j wy t jω x t R 2 2L e j Q0e Re Q(t) Q0 e ( R 2 2L (5) e e R t 2L cos(wx t ) (7) No oscillations, decay only: R t 2L Copyright R. Janow – Fall 2015 Re Q(t) Q0 cos() e (8) Using complex exponentials to solve a differential equation, #3 ( wx becomes imaginary. Equations 4.1 & 4.2 invalid For overdamping: w0 < 2L Return to Eq. 3.0. Assume frequency is 2 2 w j w ' w ' real w ( w ' ) y y y pure imaginary ( no oscillation) 2 Eq. 3.0 becomes: Solution: R (w y ' ) 2 2 R wy ' w20 0 L R w jwy ' / - j j 2L quadratic, real coefficients ( w R 2 2L 2 0 (9) two roots both pure imaginary Both roots lead to decay w/o oscillation + root: w+ implies damping faster than e-Rt/2L - root: w- implies damping slower than e-Rt/2L but not growth Most general solution: linear combination of Q+ and Q-, each of form of Eq. 2.0 Q( t ) 1 2 j Q (t ) Q (t ) Q 0e e Recall definition, hyperbolic cosine: ReQ(t) Rt / 2L 1 2 e 1 x e ex 2 Q 0 cos() e-Rt/2L cosh ( R 2L R 2 2 w0 t 2L e R 2 2 w0 t 2L cosh(x) 2 w2 t ) (10) 0 Correctly reduces to critically damped Eq. 8.0 Copyright R. Janow – Fall 2015 Copyright R. Janow – Fall 2015