* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download L3 Vector Operations
Trigonometric functions wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Rational trigonometry wikipedia , lookup
Rotation formalisms in three dimensions wikipedia , lookup
Euler angles wikipedia , lookup
Riemannian connection on a surface wikipedia , lookup
Tensors in curvilinear coordinates wikipedia , lookup
Metric tensor wikipedia , lookup
Covariance and contravariance of vectors wikipedia , lookup
VECTOR ALGEBRA MATH23 MULTIVARIABLE CALCULUS GENERAL OBJECTIVE At the end of the lesson the students are expected to: • Perform dot product and cross product • Apply the concepts of dot product to get the angle between two vectors • Apply cross products in various applications • Evaluate scalar triple product The Dot (Scalar) Product Definition: If u = <u1, u2 > and v = <v 1, v2> are vectors in 2-space, then the dot product of u and v, written as u.v, is defined as uv = u1 v1 + u2 v2 Similarly, if u = <u1 , u2 , u3 > and v = <v1 , v2, v3 > are vectors in 3-space, then their dot product is defined as u v = u1 v1 + u2 v2 + u3 v3 The Dot (Scalar) Product Angle Between Two Vectors Let u and v be nonzero vectors in 2-space or 3space, and if θ is the angle between them, then u v cos u v Note: 1) If uv > 0, θ is an acute angle. 2) If u v < 0 , θ is an obtuse angle. 3) If u v = 0, θ is a right angle. . Direction Angles In an xy-coordinate system, the direction of a nonzero vector v is determined by the angles α and β between v and the unit vectors i and j, and in an xyzcoordinate system, the direction is determined by the angles α, β, and γ between v and the unit vectors i, j, and k. In both 2- space and 3-space, the angles between a nonzero vector v and the vectors i , j, and k are called the direction angles of v, and the cosines of those angles are called the direction cosines of v. The Dot (Scalar) Product Direction Angles Using angle between two vectors, ,,and are obtained as follows: vi cos , v v1 cos v v1 , v2 , v3 1,0,0 v v1 v -1 The Dot (Scalar) Product cos v j , v cos -1 v2 v v1 , v2 , v3 0,1,0 v v2 v vk cos , v v3 cos v v1 , v2 , v3 0,0,1 v v3 v -1 Exercise Set 11.3 1. Find the dot product of the vectors and the cosine of the angle between them. b) u = <-7, 3>, v = <0, 1> c) u = 1- 3j + 7k, v = 8i – 2j – 2k 2. a) Find u.v if ǁuǁ = 1, ǁvǁ = 2, the angle between u and v is π/6. 3. Determine whether u and v make an acute angle, an obtuse angle, or are orthogonal. b) u = 6i +j + 3k, v = 4i – 6k 7. b) Use vectors to find the interior angles of the triangle with vertices (-1, 0), (2, -1), and (1, 4). Exercise Set 11.3 13. Find r so that the vector from the point A (1, -1, 3) to the point B (3, 0, 5) is orthogonal to the vector from A to the point P (r, r, r). 16. Find the direction cosines and direction angles of a) v = 3i – 2j – 6. b) v = 3i – 4k. The Cross (Vector) Product Let u=<u1, u2, u3>, and v=<v1, v2, v3> be vectors in 3-space. The cross product of u and v, denoted by uxv, is defined as i j k uxv u1 u2 u3 v1 v 2 v 3 The Cross (Vector) Product Algebraic Properties of the Cross Product Theorem: If u, v, and w are any vectors in 3space and k is any scalar, then: a) u x v = - (v x u) b) u x (v + w) = (u x v) + (u x w) c) (u + v) x w = ( u x w) + (v x w) d) k(u x v) = (ku) x v = u x (kv) e) u x 0 = 0 x u = 0 f) u x u = 0 The Cross (Vector) Product Geometric Properties of the Cross Product Theorem: 1. If u and v are vectors in 3-space, then: a) u. (u x v) = 0 (u x v is orthogonal to u) b) v. (u x v) = 0 (u x v is orthogonal to v) 2. Let u and v be nonzero vectors in 3-space, and let θ be the angle between these vectors when they are positioned so their initial points coincide. a) ǁu x vǁ = ǁuǁ ǁvǁ sinθ b) The area A of a parallelogram that has u and v as adjacent sides is A=ǁuxvǁ c) u x v = 0 if and only if u and v are parallel vectors, that is, if and only if they are scalar multiples of one another. Exercise Set 11.4 4. Find u x v and check that it is orthogonal to both u = 3i +2j - k and v = - 1i – 3j + k. 7. Let u = <2, -1, 3>, v =<0, 1, 7> and w = <1, 4, 5>. Find a) u x ( v x w) b) (u x v) x (v x w) 10. Find two unit vectors that are orthogonal to both u = -7i + 3j + k, v = 2i + 4k. 18. Find the area of the parallelogram that has u = 2i + 3j and v = -i + 2j – 2k as adjacent sides. 20. Find the area of the triangle with vertices P(2, 0, -3), Q(1, 4, 5), R(7, 2, 9). The Scalar Triple Products • The scalar triple product is defined as the dot product of one of the vectors with the cross product to the third vector. Geometric interpretation • Geometrically, the scalar triple product is the (signed) volume of the parallelepiped defined by the three vectors given. PROPERTIES OF SCALAR TRIPLE PRODUCT • The scalar triple product can be evaluated numerically using any one of the following equivalent equations: • Switching the two vectors in the cross product negates the triple product, • The parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined. Properties of Scalar Triple Product • The scalar triple product can also be understood as the determinant of the 3 × 3 matrix having the three vectors as its rows or columns (the determinant of a transposed matrix is the same as the original); this quantity is invariant under coordinate rotation. • Note that if the scalar triple product is equal to zero, then the three vectors a, b, and c are coplanar, since the "parallelepiped" defined by them would be flat and have no volume Exercise Set 11.4 24. Find u . (v x w) where u = i, v = i + j, w = i + j + k. 26. Find the volume of the parallelepiped that has u = 3i + j + 2k, v = 4i + 5j + k and, w = i + 2j + 4k as adjacent sides. TEXTBOOKS SUGGESTED READINGS Anton, Howard; Bivens Irl and Davis Stephen Calculus, Early Transcendentals, Chapter 7 pages 547 to 555 Peterson, Thurman S Calculus With Analytic Geometry, Chapter 14 pages 289 to 292