* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 6 slides
History of electric power transmission wikipedia , lookup
Electrical substation wikipedia , lookup
Thermal runaway wikipedia , lookup
Electrical ballast wikipedia , lookup
Surge protector wikipedia , lookup
Stray voltage wikipedia , lookup
Buck converter wikipedia , lookup
Opto-isolator wikipedia , lookup
Two-port network wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Current source wikipedia , lookup
Rectiverter wikipedia , lookup
Voltage optimisation wikipedia , lookup
Alternating current wikipedia , lookup
Mains electricity wikipedia , lookup
Lumped element model wikipedia , lookup
Lecture 6 •Review: •Circuit reduction •Circuit reduction examples •Practical application •Temperature measurement •Related educational materials: –Chapter 2.3 Review: series resistors and voltage division • Equivalent resistance: Voltage divider formula: Review: parallel resistance and current division • Equivalent resistance: Current divider formula: Checking parallel resistance results • The equivalent resistance of a parallel combination of resistors is less than the smallest resistance in the combination • Resistance decreases as resistors are added in parallel • Range of equivalent resistance: • Rmin is the lowest resistance; N is the number of resistors Examples: Non-ideal “loaded” power sources • Loaded voltage source: • Loaded current source: Circuit Reduction • Series and parallel combinations of circuit elements can be combined into a “equivalent” elements • The resulting simplified circuit can often be analyzed more easily than the original circuit Circuit reduction – example 1 • Determine the equivalent resistance of the circuit below Circuit reduction – example 2 • Determine Vout in the circuit below. Circuit reduction – example 3 • In the circuit below, find i1, VS, and VO. 3W + 6A VS - 9W i1 1W + VO - 2W 5W Example 3 – continued Example 3 – continued Circuit reduction – example 4 • In the circuit below, determine (a) the equivalent resistance seem by the source, (b) the currents i1 and i2 i1 i2 Example 4 – continued • Practical application – temperature measurement • Design a temperature measurement system whose output voltage increases as temperature increases • In general, we will typically have other design objectives • For example, power and sensitivity requirements • We neglect these for now; lab 2 will provide a more rigorous treatment of this problem Temperature sensors: thermistors • Thermistors are sensors whose resistance changes as a function of temperature • Thermistors are classified as either NTC (negative temperature coefficient) or PTC (positive temperature coefficient) • Resistance increases with temperature for PTCs; Resistance decreases with temperature for NTCs • A resistance variation is generally not directly useful; information is generally relayed with voltage • We need to convert the resistance change to a voltage change Example thermistor characteristics • Response: • NTC 10KW @ 25C • Negative temperature coefficient thermistor with (nominal) resistance of 10kW at 25C Initial Design Concept • Use voltage divider to convert resistance variation to voltage variation • Design problem: choose Vs and R to obtain desired variation in Vout for a given variation in temperature Potential Design Issues • Sensitivity • Our design requirements may specify a minimum voltage change per degree of temperature change (the sensitivity of the instrumentation system) • We can affect the sensitivity with our choice of R • Power requirements • We can increase the sensitivity by increasing VS • Increasing VS increases the power required by the system; increasing power (generally) increases cost • The above can cause us to modify or discard our initial design concept! Effect of resistance change on voltage • Demo: – Change of thermistor resistance with temperature (DMM) – Change of output voltage from voltage divider • R<<RTH • R>>RTH • Intermediate R