* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Uniform Circular Motion
Pioneer anomaly wikipedia , lookup
Electromagnetism wikipedia , lookup
Mechanics of planar particle motion wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Lorentz force wikipedia , lookup
Coriolis force wikipedia , lookup
Fictitious force wikipedia , lookup
Artificial gravity wikipedia , lookup
Weightlessness wikipedia , lookup
Uniform Circular Motion Warm – up: 1. Give an example of uniform circular motion 2. Draw a free-body diagram for the object in your example http://www.physicsclassroom.com/mmedia/circmot/circmotTOC.html 1 Uniform Circular Motion http://www.physicsclassroom.com/mmedia/circmot/circmotTOC.html 2 Uniform circular motion • motion of an object in a circle with a constant or uniform speed • constant change in direction 3 Uniform Circular Motion: Period Object repeatedly finds itself back where it started. distance = rate time distance 2r time = rate v 2r T= v The time it takes to travel one “cycle” is the “period”. 4 Quantifying Acceleration: Magnitude v1 v2 Similar Triangles: v x v x 5 Quantifying Acceleration: Magnitude v v t v r 2 v t v r v v a t r 2 Centripetal Acceleration 6 Applying Newton’s 2nd Law: F ma mv F r 2 Centripetal Force Always points toward center of circle. (Always changing direction!) Centripetal force is the magnitude of the force required to maintain uniform circular motion. 7 Direction of Centripetal Force, Acceleration and Velocity Without a centripetal force, an object in motion continues along a straight-line path. Without a centripetal force, an object in motion continues along a straight-line path. 8 Direction of Centripetal Force, Acceleration and Velocity 9 What if velocity decreases? 10 What if mass decreases? 11 What if radius decreases? 12 What provides the centripetal force? • Tension • Gravity • Friction • Normal Force Centripetal force is NOT a new “force”. It is simply a way of quantifying the magnitude of the force required to maintain a certain speed around a circular path of a certain radius. 13 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles of identical diameter but one object goes around the circle twice as fast as the other. The force required to keep the faster object on the circular path is The answer is E. As the A. the same as velocity increases the B. one fourth of centripetal force required to maintain the circle increases C. half of as the square of the speed. D. twice E. four times the force required to keep the slower object on the path.14 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles with the same speed. The diameter of one circle is half of the diameter of the other. The force required to keep the object on the smaller circular path is A. the same as The answer is D. The centripetal force needed B. one fourth of to maintain the circular motion of an object is inversely proportional to the radius of the circle. C. half of Everybody knows that it is harder to navigate a D. twice sharp turn than a wide turn. E. four times the force required to keep the object on the larger path. 15 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles of identical diameter and speed but one object has twice the mass of the other. The force required to keep the more massive object on the circular path is A. the same as B. one fourth of Answer: D.The mass is directly C. half of proportional to centripetal force. D. twice E. four times 16 Tension Can Yield a Centripetal Acceleration: If the person doubles the speed of the airplane, what happens to the tension in the cable? mv F = ma r 2 Doubling the speed, quadruples the force (i.e. tension) required to keep the plane in uniform circular 17 motion. Friction Can Yield a Centripetal Acceleration: 18 Car Traveling Around a Circular Track Friction provides the centripetal acceleration 19 Friction Can Yield a Centripetal Acceleration FN fs Force X Y W 0 -mg FN 0 FN fs -sFN 0 Sum ma 0 W What is the maximum speed that a car can use around a curve of radius “r”? 20 Maximum Velocity F y 0 mg FN FN mg F x ma max s mv 2 max s mg r 2 max v s g r v smax g r mg Force X Y W 0 -mg FN 0 FN FC -sFN 0 Sum ma 0 21 Centripetal Force: Question A car travels at a constant speed around two curves. Where is the car most likely to skid? Why? mv F = ma r 2 Smaller radius: larger force required to keep it in uniform circular motion. 22 Gravity Can Yield a Centripetal Acceleration: Hubble Space Telescope orbits at an altitude of 598 km (height above Earth’s surface). What is its orbital speed? 23 Gravity and Centripetal Acceleration: Centripetal acceleration provided by gravitational force G m ME m v 2 R R 2 24 Gravity and Centripetal Acceleration: G m ME m v 2 R R 2 Solve for the velocity…. G m ME R v 2 m R G ME 2 v R G ME v R 2 25 Hubble Space Telescope: v GM E RE 598km (6.67 1011 m3 kg -1s-2 ) (5.974 1024 kg) v 6,976,000 m v 7,600 m / s 26 Banked Curves Why exit ramps in highways are banked? 27 Banked Curves Q: Why exit ramps in highways are banked? 28 Banked Curves Q: Why exit ramps in highways are banked? A: To increase the centripetal force for the higher exit speed. 29 The Normal Force Can Yield a Centripetal Acceleration: Engineers have learned to “bank” curves so that cars can safely travel around the curve without relying on friction at all to supply the centripetal acceleration. How many forces are acting on the car (assuming no friction)? 30 Banked Curves Why exit ramps in highways are banked? FN cosq = mg 31 Banked Curves Why exit ramps in highways are banked? FN cosq = mg 32 The Normal Force as a Centripetal Force: Two: Gravity and Normal Force X Y W 0 -mg FN Sum FNsinq FNcosq ma 0 33 The Normal Force as a Centripetal Force: F y mg FN cosq 0 mg FN cosq mv 2 Fx FN sin q ma r mg mv 2 sin q cosq r 2 v tan q gr 34 The Normal Force and Centripetal Acceleration: How to bank a curve… 2 v tan q gr …so that you don’t rely on friction at all!! 35 Artifical Gravity 36 Vertical Circular Motion 37 Vertical Circular Motion 38 The End! 39