* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Motion in Two Dimensions
Virtual work wikipedia , lookup
Hunting oscillation wikipedia , lookup
Automatic transmission wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Coriolis force wikipedia , lookup
Transmission (mechanics) wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Equations of motion wikipedia , lookup
Differential (mechanical device) wikipedia , lookup
Seismometer wikipedia , lookup
Jerk (physics) wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Centrifugal force wikipedia , lookup
Mitsubishi AWC wikipedia , lookup
Fictitious force wikipedia , lookup
Center of mass wikipedia , lookup
Classical central-force problem wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Mass versus weight wikipedia , lookup
Work (physics) wikipedia , lookup
Moment of inertia wikipedia , lookup
Centripetal force wikipedia , lookup
Rotational spectroscopy wikipedia , lookup
Torque wrench wikipedia , lookup
Friction-plate electromagnetic couplings wikipedia , lookup
Up to this point, balanced Forces meant no acceleration…. 100 N Balanced Forces? Yes! 100 N No Acceleration? It will accelerate in a spin! Rotational Dynamics and Torque A net force will cause and object to accelerate in one dimension, but what about rotational acceleration? Would a Force exerted at .5r from the center produce the same rotational acceleration around the center as……. ….. the same force exerted at r from the center? Forces that are not concurrent (same point) are called Parallel Forces. Parallel Forces exert Torque on an object. Torque is the product of the Parallel Force and the torque arm (lever arm) the force acts through. τ=rxF Units: Nm What torque is exerted by a 55 kg bike rider who puts all of his weight straight down on each pedal if the pedal is 17 cm from the center of the sprocket? What force needs to be exerted on the end of a torque wrench that is 35.0 cm long in order to tighten a bolt to 80.0 Nm? Explain why doorknobs are generally placed toward the side of a door instead of in the middle of the door. A force of 5.00 N is used to turn a doorknob that has a diameter of 6.70 cm. What torque does this exert? A torque of 3.25 Nm is required to pull open a certain door. What force must be used to open this door if the knob is located 75.0 cm away from the hinge? The mass exerts a torque of 23.0 Nm on the wheel which has a diameter of 45.0 cm. How much is the attached mass that produces this torque? The wheel on a car is held in place by four nuts. Each nut should be tightened to 94.0 N∙m of torque to be secure. If you have a wrench with a handle that is 0.250 m long, what minimum force do you need to exert perpendicular to the end of the wrench to tighten a nut correctly? Bob and Ray push on a door from opposite sides. They both push perpendicular to the door. Bob pushes 0.63 m from the door hinge with a force of 89 N. Ray pushes 0.57 m from the door hinge with a force of 98 N, in a manner that tends to turn the door in a clockwise direction. What is the net torque on the door? Rotational Inertia An object will not start to spin unless a net torque acts upon it. A net torque would produce an angular acceleration. An object spinning at a constant rate will accelerate if the mass is redistributed farther or closer to the axis of rotation. Rotational Inertia is the resistance of a rotating object to changes in its rotational velocity-- it depends on mass, distribution of mass, and the axis of rotation! The angular acceleration of an object will depend directly upon the net torque, but inversely upon the rotational inertia of the object: = τ I therefore τ=I This is the rotational equivalent of Newton’s Second Law (F = ma) for angular motion! Rotational Inertia takes into account both the shape, the mass and the rotation of a rotating object! Rotational Inertia, also called moment of inertia, (kgm2) depends upon the mass and the axis of rotation: The farther the mass is concentrated from the axis of rotation, the more rotational inertia Ring and disk of same mass and same radius--Will they reach the bottom at the same time? A wheel with a rotational inertia of .270 kgm2 is accelerated from rest to 35.0 rad/s in 10.0 s. What torque is required to accomplish this? A force of 25.0 N is applied to a disk with a radius of .300 m that is initially rotating at 38.0 rad/s. The disk is stopped after having rotated 95.0 radians. What is the rotational inertia of this disk? A torque of 32.0 Nm is used to accelerate a sphere of rotational inertia 175 kgm2. If the sphere is accelerated to 8.66 rad/s in 20.0 s, what must have been the original angular velocity of the sphere? The pulley shown in the illustration has a radius of 2.70 m and a moment of inertia of 39.0 kg∙m2. The hanging mass is 4.20 kg and it exerts a force tangent to the edge of the pulley. What is the angular acceleration of the pulley? A string is wound tight around the spindle of a top, and then pulled to spin the top. While it is pulled, the string exerts a constant torque of 0.150 N∙m on the top. In the first 0.220 s of its motion, the top reaches an angular velocity of 12.0 rad/s. What is the moment of inertia of the top?