* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Unit II Forces
Jerk (physics) wikipedia , lookup
Coriolis force wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Classical mechanics wikipedia , lookup
Fundamental interaction wikipedia , lookup
Electromagnetism wikipedia , lookup
Center of mass wikipedia , lookup
Nuclear force wikipedia , lookup
Fictitious force wikipedia , lookup
Seismometer wikipedia , lookup
Equations of motion wikipedia , lookup
Relativistic angular momentum wikipedia , lookup
Centrifugal force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Classical central-force problem wikipedia , lookup
Unit II Forces Force = a push or pull on an object measured in Newtons (N) 4 Ways Force Effects an Object 1. Increase v 2. Decrease v 3. Change Direction 4. Change Shape What are the forces action on box being pushed? Which box is moving? A B Net Force = sum of forces acting on an object Forces are vectors Same direction add Opposite direction subtract Balanced vs. Unbalanced Forces Balanced Forces: the forces on an object are equal and opposite. Unbalanced Forces: the forces are not equal and opposite -no change to the motion -the object will change -object does not accelerate -the object will accelerate Friction: force that opposes motion of an object 1. Static Friction 3. Sliding Friction 2. Rolling Friction 4. Fluid Friction Laws of Motion 12.2-12.3 1st Law of Motion An Object in motion will remain in motion, or an object at rest will remain at rest unless acted upon by an unbalanced force teachertech.rice.edu/.../Newton /law1.html Inertia The tendency of an object to keep doing what it is already doing 2nd Law of Motion Force, mass and acceleration are all related 2nd Law Force = mass x acceleration F = ma 3rd Law of Motion Action and Reaction For every action there is an equal and opposite reaction http://upload.wikimedia.org/wikipedia/commons/f/f6/Skaters_showing_newtons_third_law.png How is weight different than mass? Weight pull of gravity acting on an object Weight = mass x acceleration due to gravity Mass amount of matter in an object Sample Problems 1. A boy pushes a cart of groceries forward with a total mass of 40 kg. What is the acceleration of the car if the net force on the cart is 60 N? 1.5 m/s² 2. What is the upward acceleration of a helicopter with a mass of 5000 kg if a force of 10000 N act on it in an upward direction? 2 m/s² 3. An automobile with a mass of 1200 kg accelerates at a rate of 3 m/s/s in the forward direction. What is the net force acting on the automobile? 3600 N 4. A 25 N force accelerates a boy in a wheelchair at 0.5 m/s/s. What is the mass of the boy and the wheelchair? 50 kg Sample Problems 5. A girl pushes a box of books forward with a total mass of 80 kg. What is the acceleration of the box if the net force on the box is 40 N? 0.5 m/s² 6. An truck with a mass of 3600 kg accelerates at a rate of 2 m/s/s in the forward direction. What is the net force acting on the automobile? 7200 N 7. A 30 N force accelerates a boy on a tricycle at 0.5 m/s/s. What is the mass of the boy and the tricycle? 60 kg 14.1 Work Definition: the product of distance and the force in the direction an object moves W=Fxd SI unit for work: newton-meter (N·m) or joule (J) If there is no movement, no work is done Power What is power? • The rate of doing work • Doing work faster requires more power Power = Work Time SI Unit – Watt (W) Momentum Momentum = mass x velocity of an object Momentum is large if product of mass and velocity is large Objects with large momentum’s are hard to stop Momentum Momentum of an object at rest = 0 SI Units = kg*m s Momentum Law of Conservation of Momentum If no net force acts on the system, the total momentum of the system does not change. In a closed system, momentum is conserved. Momentum Problem Which has more momentum, a 0.046 kg golf ball with a velocity of 60 m/s or a 7.0 bowling ball with a velocity of 6 m/s? Remember: Momentum = mass x velocity 12.4 Universal Forces What are the 4 universal forces? • Electromagnetic • Nuclear (Strong and Weak) • Gravity How are these different from forces talked about in the 12.1-12.3? • All act over a distance between particles Describe each universal force and what makes them unique. 1. Electromagnetic Force • only force that can attract and repel 2. Gravitational force • An attractive force between 2 masses Describe each universal force and what makes them unique. Nuclear force: act within nucleus to hold it together 3. Strong – acts only on neutrons and protons in the nucleus (100x stronger than charges) 4. Weak – attractive force that acts over a short range Force Can be represented by Can be Measured in units of unbalanced Causes no change to the object Causes the object to Force Can be represented by arrows Can be Measured in units of unbalanced Newtons balanced Causes no change to the object State of Motion Causes the object to Accelerate