* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Climate Change Vulnerability Assessment for Colorado Bureau of
Climate change adaptation wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
General circulation model wikipedia , lookup
Instrumental temperature record wikipedia , lookup
Solar radiation management wikipedia , lookup
Media coverage of global warming wikipedia , lookup
Climate change in Tuvalu wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Climate change and agriculture wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Effects of global warming on human health wikipedia , lookup
Effects of global warming wikipedia , lookup
Climate change in the United States wikipedia , lookup
Climate sensitivity wikipedia , lookup
Years of Living Dangerously wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Climate change and poverty wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
ClimateChangeVulnerability AssessmentforColorado BureauofLandManagement December2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. ColoradoNaturalHeritageProgram WarnerCollegeofNaturalResources ColoradoStateUniversity 1475CampusDelivery FortCollins,CO80523 (970)491‐7331 ReportPreparedfor: BureauofLandManagement ColoradoStateOffice 2850YoungfieldStreet Lakewood,Colorado80215 RecommendedCitation: ColoradoNaturalHeritageProgram[CNHP].2015.ClimateChangeVulnerabilityAssessmentfor ColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.Siemers,editors. ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,Colorado. Individualchaptersmaybecitedassuggestedbelow. Frontcover:KnowlesCanyon,photo©PeggyLyon. Climate Change Vulnerability Assessment for Colorado Bureau of Land Management Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 December2015 EXECUTIVE SUMMARY TheColoradoofficeoftheBureauofLandManagement(BLM),whichadministers8.4millionacres ofColorado’ssurfaceacres,andmorethan29millionacresofsub‐surfacemineralestate,hasbeen chargedwithdevelopingaclimateadaptationstrategyforBLMlandswithinthestate.The assessmentspresentedhereinpresentastatewideperspectiveonthepotentialfutureinfluencesof achangingclimateonspeciesandecosystemsofparticularimportancetotheBLM,withthegoalof facilitatingdevelopmentofthebestpossibleclimateadaptationstrategiestomeetfuture conditions. TheColoradoNaturalHeritageProgramconductedclimatechangevulnerabilityassessmentsof plantandanimalspecies,andterrestrialandfreshwaterecosystems(“targets”)withinatimeframe ofmid‐21stcentury.Ourassessments1)evaluatethepotentialimpactoffutureclimateconditions onbothspeciesandecosystemsbyidentifyingthedegreeofchangeexpectedbetweencurrentand futureclimateconditionswithintheColoradorangeofthetarget,and2)addressthepotential impactofnon‐climatefactorsthatcanaffecttheresilienceofthetargettoclimatechange,orwhich arelikelytohaveagreaterimpactduetoclimatechange.Climatechangevulnerabilityassessments arenotanenduntothemselves,butareintendedtohelpBLMmanagersidentifyareaswhereaction maymitigatetheeffectsofclimatechange,recognizepotentialnovelconditionsthatmayrequire additionalanalysis,andcharacterizeuncertaintiesinherentintheprocess. Ecosystems Sixteenterrestrialecosystemtypesandsixfreshwaterecosystemgroupswereassessedundera highradiativeforcingscenario(RCP8.5)fortheirrelativevulnerabilitybymid‐century.Terrestrial typesincludedsixforestorwoodlandtypes,fourshrublandtypes,fourherbaceousorgrassland types,andriparianandwetlandareas.Fourterrestrialtypes(pinyon‐juniperwoodland,shortgrass prairie,andriparianandwetlandareasoftheeasternplains)wererankedwithhighvulnerability, andasingletype(riparianwoodlandandshrublandoflowerelevationwestslopeareas)was rankedwithveryhighvulnerability.Mostterrestrialecosystemswererankedwithlowormoderate vulnerabilitytotheeffectsofclimatechangebymid‐century. Themajorityofterrestrialecosystemswereevaluatedascurrentlyhavinglowtomoderate resiliencetoclimateimpacts.Actionsthatincreaseecosystemresilienceandenhancetheadaptive capacityofthesetargetswillcushiontheirvulnerabilitytochangingclimateconditions,andshould beaprimaryfocusofmanagementefforts.Forforestandwoodlandecosystems,adaptationactions arelikelytofocusondisturbancefactorssuchasfireandinsectoutbreak,whileforshrublandand herbaceousecosystems,reducingtheimpactsofanthropogenicfragmentationanddisturbanceis centraltoadaptationmanagement. Freshwaterecosystems(streams,rivers,lakes,andreservoirs)wereevaluatedinrelationtoa modeledtransitionzonebetweenwarmandcool‐tocold‐waterhabitatsthatcomparedcurrent ii Colorado Natural Heritage Program © 2015 reachextentineachzonetowhatcouldbeexpectedunderwarmerfutureconditions.Resultswere summarizedbythreeregions(easternplains,mountain,andwesternvalleys).Overallvulnerability offreshwaterecosystemswasnoticeablyhigherthanforterrestrialtypes.Fouroftheevaluated freshwaterecosystems,primarilythoseoflowerelevations,hadvulnerabilityranksofhighorvery high.Onlystreamsofhigherelevationswereconsideredtohavelowvulnerability. Nearlyallfreshwaterecosystemshavemoderatetohighexposuretopotentialimpactsfromclimate change,andgenerallymoderatelevelsofresilienceoradaptivecapacity.Asaresult,mostofthese typeswillremainmoderatelyvulnerableatbest,evenunderconditionsofimprovedresilience. Actionsthatmaintainorincreasehydrologicconnectivityandreducenon‐climateimpactsarethe primarymeansbywhichadaptivecapacityinfreshwaterecosystemscanbemaintainedor increased. Species Ninety‐eightspecies(36animalsand62plants)wereevaluatedforvulnerabilitybymid‐century usingtheNatureServeClimateChangeVulnerabilityIndex,underahighcumulativecarbon emissionscenario(SRESA2). Animalspeciesincludedfouramphibians,thirteenbirds,ninefish,oneinsect,sixmammals,and threereptiles.Fivespecieswererankedasextremelyvulnerabletoclimatechange.Overall,42%of theevaluatedanimalspecieswererankedwithhightoextremevulnerabilitytoclimatechangeby mid‐century.Fish,inparticular,wererankedonthehightoextremelyvulnerableendoftherange; othertaxonomicgroupsweregenerallymoreevenlydistributedbetweenpresumedstabletohighly vulnerable. Nearlyallofthevascularplantspecies(59of62)evaluatedwererankedwithextremelyhigh vulnerabilitytoclimatechangebymid‐century,generallyduetotheirhighlyrestricted distributions,naturalbarrierstomovementandrelativelylimiteddispersalabilityand/or pollinatorspecificity.Restrictiontoaparticularphysiologicalhydrologicalniche,ortouncommon geologicfeaturesandsubstratesalsotendtoincreasethevulnerabilityofmostofColorado’srare plants. Conclusions Theclimatechangevulnerabilityassessmentspresentedhereinprovideabasicfoundationforthe developmentofadaptationstrategiesgoingforward.Togetherwithclearlyarticulatedgoalsand objectivesfortheconservationofimportantBLM‐managedresources,theinformationincludedin theseassessmentshighlightingthepotentialimpactsofclimatechangeandspecies‐orecosystem‐ specifickeyvulnerabilitiescanbelinkedtospecificmanagementactionsthatareintendedto addresschangingclimateconditions. Itisimportanttorecognizethatspeciesassemblagesareverylikelytochangefromwhathasbeen seeninthehistoricpast,sothattheinvestigationofshiftingdistributions,alteredecological Climate Change Vulnerability Assessment for Colorado BLM iii functions,andcriticalthresholdsthataretiedtoawarmingclimatewillprovideessentialtoolsfor adaptationstrategies. Becauseearlieractionallowsforgreaterimpactandinfluenceonmanagementchallengesbothnow andinthefuture,wesuggest: iv UseofstructureddecisionmakingtechniquestofocusandclarifyBLMgoalsandobjectives forclimatechangeadaptationtargets Movingaheadwiththedevelopmentofadaptationstrategiesforkeyspeciesand ecosystems Prioritizingadaptationeffortsforspeciesandecosystems,takingintoconsiderationboth thevulnerabilitylevelofthetarget,practicalcriteriaoftimeandresourceavailability,and trade‐offsorconstraintsthatmaybepresent Developingandimplementingmethodsformonitoringormeasuringtheresultsof adaptationactions Potentiallyrevisitingclimatechangevulnerabilityrankingsasnewinformationbecomes availableoradditionalconcernsbecomeapparent. Colorado Natural Heritage Program © 2015 ACKNOWLEDGEMENTS TheauthorswouldliketoacknowledgethegeneroussupportoftheBureauofLandManagement ColoradoOffice,whoprovidedfundingforthiseffort.WethanktheBLMstaffwhosharedtheir extensiveprofessionalexperienceandknowledgethroughouttheprocess.BruceRittenhouse (BranchChief,NaturalResources),JayThompson(FisheryBiologist),andCarolDawson(Botanist) actedascoordinatingliaisonsfortheproject.AdditionalBLMpersonnelwhoparticipatedinthe reviewprocessincludeRobinSell(WildlifeBiologist),andBLMinternsPhilKreningandColleen Sullivan. MeganFriggens(ResearchEcologist)withtheUSDAForestServiceGrassland,Shrublandand DesertEcosystemsProgramoftheRockyMountainResearchStationprovidedvaluablereviewand inputregardingtheresiliencerankingsofforestandwoodlandecosystems,aswellasreviewofthe documentasawhole. WecontinuetoappreciatethehelpofJeffMorisetteandtheNorthCentralClimateScienceCenter staff,especiallyColinandMarianTalbert,whoprovideduswithessentialtechnicaltoolsfor accessingandusingclimateprojections.ShannonMcNeelyoftheNCCSCalsoprovidedfeedbackon thepreliminaryresultsoftheassessment. Finally,atCNHP,JoannaLemlyprovidedcriticalreviewandinformationaboutwetlandand riparianhabitats,andRenéeRondeauprovidedadviceandreviewthroughouttheproject.Thank youall. Climate Change Vulnerability Assessment for Colorado BLM v Table of Contents Executive Summary ....................................................................................................................................... ii Ecosystems ................................................................................................................................................ ii Species ..................................................................................................................................................... iii Conclusions .............................................................................................................................................. iii Acknowledgements ....................................................................................................................................... v 1 INTRODUCTION .......................................................................................................................................... 1 2 ECOSYSTEMS ............................................................................................................................................ 19 3 ANIMALS ................................................................................................................................................ 173 4 PLANTS ................................................................................................................................................... 325 Appendix A: CCVI Scoring Category Definitions ........................................................................................ 542 Appendix B: Full CCVI Scoring Results ....................................................................................................... 559 vi Colorado Natural Heritage Program © 2015 1 INTRODUCTION Author Karin Decker Recommended chapter citation: Decker, K. 2015. Introduction. Chapter 1 In Colorado Natural Heritage Program 2015. Climate Change Vulnerability Assessment for Colorado Bureau of Land Management. K. Decker, L. Grunau, J. Handwerk, and J. Siemers, editors. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Climate Change Vulnerability Assessment for Colorado BLM 1 Table of Contents – 1 Introduction Background ................................................................................................................................................... 3 Study area ................................................................................................................................................. 4 Overview ............................................................................................................................................... 4 General climate ..................................................................................................................................... 5 Geology and soils .................................................................................................................................. 5 Land ownership ..................................................................................................................................... 5 Human influence on the landscape ...................................................................................................... 6 Climate Change Vulnerability Assessment .................................................................................................... 8 Uncertainty in climate change vulnerability assessment ......................................................................... 8 Comparing the vulnerability of ecosystems and species .......................................................................... 8 Previous vulnerability assessments in the Colorado region ..................................................................... 9 Climate change in Colorado .................................................................................................................... 15 Literature Cited ....................................................................................................................................... 17 List of Figures and Tables Figure 1.1. Components of vulnerability (Glick et al. 2011). ........................................................................ 4 Figure 1.2. Historical (1990‐2014) Colorado statewide trends for (a) annual mean temperature, (b) annual precipitation, and (c) Palmer Drought Severity Index. Temperature and precipitation are shown as departure from the mean of base period (1901‐2000). Data is from NOAA National Centers for Environmental Information: http://www.ncdc.noaa.gov/cag/data‐info. .................................................. 16 Figure 1.3. Seasonal projected temperature (a) and precipitation (b) changes by mid‐21st century (2050; centered around 2035‐2064 period) for Colorado. .................................................................................... 17 Table 1.1. Summary of climate change vulnerability assessments in the Colorado region that have addressed habitats or species. .................................................................................................................... 10 2 Colorado Natural Heritage Program © 2015 BACKGROUND TheColoradoofficeoftheBureauofLandManagement(BLM)hasbeenchargedwithdevelopinga climateadaptationstrategyforBLMlandswithinthestate.Inordertoensurethebestpossible adaptationstrategies,astatewideperspectiveonthepotentialfutureinfluencesofachanging climateonspeciesandhabitatsisneeded.ToassisttheBLMinthiseffort,theColoradoNatural HeritageProgram(CNHP)conductedaclimatechangevulnerabilityassessmentforpriorityspecies andecosystemswithinatimeframeofmid‐21stcentury. Thevulnerabilityassessmentisintendedtobepartofadynamic,iterative,multi‐scaleprocessthat willfocusmanagementactionsonstrategiesthatareeffectiveunderbothcurrentandfuture climates.ThecomponentsofvulnerabilityweredescribedbyGlicketal.(2011)andconsistof projectedexposuretoclimatechange,sensitivityofthespeciesorecosystemtoexpectedchanges, andtheadaptivecapacityofthespeciesorecosystemtorespondtochanges(Figure1.1).Although thisdiagramisstraightforwardandconceptuallysimple,theindividualcomponentsofexposure, sensitivity,andadaptivecapacitycanbedifficulttocalculatewithanyprecision.Uncertaintycomes fromboththedegreeofvariationinthemanyclimateprojectionmodels,andfromthegapsinour knowledgeofthetargetspeciesorhabitat.Inaddressingthesecomponents,wehopetoidentify whichecosystemsaremostorleastvulnerabletoclimatechangeaswellasthetypeandspatial patternofthemostsignificantimpacts.Thisinformationisexpectedtohelplandmanagersidentify areaswhereactionmaymitigatetheeffectsofclimatechange,recognizepotentialnovelconditions thatmayrequireadditionalanalysis,andcharacterizeuncertaintiesinherentintheprocess. OurassessmentisalignedwithexistingandongoingvulnerabilityassessmentsforColoradospecies andhabitatstomaximizetheefficiencyandeffectivenessofourwork,leveragedatadevelopment, sharelessonslearned,andcoordinateexpertinputandinterpretation.TheseincludetheGunnison BasinClimateWorkingGroup,SanJuanClimateInitiative,theStateWildlifeActionPlanrevision andclimatechangevulnerabilityassessment,andtheColoradoRarePlantConservationInitiative. Thisanalysisisbasedonarelativelyshorttemporalscale(i.e.,suitedtoagencyplanninghorizons andattentivetouncertaintylevelsinprojectedclimatemodels)andtheuseofalimitedbut representativesetofpotentialchangescenarios. Ourobjectiveswereto: 1. Identifyplantandanimalspecies,andterrestrialandfreshwaterecosystemsofimportance toBLMmanagementastargetsofouranalysis. 2. Evaluatethepotentialimpactoffutureclimateconditionsonbothspeciesandecosystems byidentifyingthedegreeofclimatechangeexpectedbetweencurrentandfutureconditions withintheColoradorangeofthetarget,andincorporatingscientificallydocumented informationonspeciesorecosystemsresponsetoclimaticfactors. 3. Evaluatethepotentialimpactofnon‐climatefactorsparticulartoeachtargetthatcanaffect theresilienceofthetargettoclimatechange,orwhicharelikelytohaveagreaterimpact duetoclimatechange. 4. Producesummaryvulnerabilityrankingsforpriorityspeciesandecosystems. Climate Change Vulnerability Assessment for Colorado BLM 3 Figure 1.1. Components of vulnerability (Glick et al. 2011). Study area Overview Colorado’sboundariesencompasssome66.6millionacres,orover104,000squaremiles.Within thisarea,thetypeandextentofnaturalvegetationisdeterminedbymanyfactors,including elevation,climate,soils,disturbancepatterns,andtheecologicalhistoryofthelandscape.Colorado spansthecontinentaldivideamidthehighestpeaksoftheSouthernRockyMountains.Asaresult, thestate’stopologyiscomplex.Totheeastofthecontinentaldivide,theeasternplainsrisegently attherateofabout10feetpermilefromelevationsof3,350‐3,650feetatthestate’seasternedge. Althoughtheyappearcomparativelyflat,Colorado’seasternplainsboastlittle‐knowndramatic rivercanyons,shaleoutcropsformingbuttesandscarps,sandystabilizeddunefields,andbasalt‐ cappedmesasthatarelocallandmarksintheeasterncounties.Atelevationsof5,500to6,000feet nearthemountainfront,theplainstransitionfairlyabruptlytofoothillsandmesasthat,inturn, quicklyrisetomontaneelevations.Thecentralportionofthestateisdominatedbythepeaksand rangesoftheSouthernRockyMountains.Here,aseriesofmountainrangestrendinggenerally north‐southboundastringofhighmountainvalleysorparks,andincludemorethanfiftypeaks reachingelevationsof14,000feetormore.Tothewest,moremountainsandextensiveplateaus, heavilydissectedbyravinesandcanyons,formthecharacteristicvalleyandplateauwesternslope landscape.Nearthewesternborderofthestateelevationsdecreaseagain,reachingalowofabout 4,325feetwheretheColoradoRivercrossestheborderwithUtah. 4 Colorado Natural Heritage Program © 2015 General climate Colorado’spositionatthehighpointofthecontinentmeansthatseveraldifferentweatherpatterns influencetheclimateofthestate,andhenceitsvegetation.Ingeneral,higherelevationshavecooler temperaturesandreceivemoreprecipitation,althoughlocaltopographyhasasignificanteffecton airmovementscontrollingthesefactors.MoisturemayreachthestatefromeitherthePacificOcean ortheGulfofMexico,dependingoncurrentaircirculation.Stormsoriginatingtothewestofthe statedropmuchoftheirmoistureasrainorsnowonthemountainsandwestern‐facingslopes;a rain‐shadoweffectpreventsmostofthisprecipitationfromreachingtheeasternplains.The westernpartofColoradoreceivesmostofitsyearlyprecipitationduringwintermonths.Moisture fromtheGulfofMexicocanproduceheavyprecipitationontheeasternslopeofthedivide, especiallyinspringandsummer,andtheplainsreceivethemajorityoftheirannualprecipitation duringthegrowingseason.Southernportionsofthestategenerallyreceivemid‐tolate‐summer precipitationasthemarginoftheNorthAmericanMonsoonmovesnorth. Geology and soils Thelandscapeweseetodayistheproductofbothpastandongoinggeologicprocesses.Theeffects ofcontinentaldrift,geologicuplifts,volcaniceruption,anderosionhaveresultedinahighly complexarrangementofrockandsoiltypesthatprovideasubstrateforColorado’snative vegetation.Colorado’seasternplainsaredominatedbysoilsderivedfromTertiary(2‐65mya)and Cretaceous(65‐140mya)sedimentaryformations,shapedbytheactionofflowingwaterandwind. Inthecentralportionofthestate,theColoradoRockyMountainsareformedofigneousand metamorphicrockthatisthrustupthroughthesedimentarylayerstotheeastandwest.Heresoils aregenerallylesswelldeveloped,exceptinlow‐lyingareas,whereerosionhasdeposited substantialsoilmaterial.ThewesternplateausandvalleysarealsoprimarilyformedinTertiary andCretaceoussubstrates,andmanysoilshavehighconcentrationsofsaltsandmineralsthat inhibitplantgrowth.Incombinationwithclimatefactors,soilsareagoodindicatorofwhichtypeof vegetationwilldominatethelandscapeinaparticulararea. Land ownership Ownershippatternsreflectthelandusehistoryofthestate,and,togetherwithmanagement practicesareanimportantfactorindeterminingtheconservationstatusofColorado’slandscape. Arablelands,especiallyontheeasternplainsandalongriverdrainages,areprimarilyinprivate ownership.Colorado’smininghistoryhasleftalegacyofprivateinholdingswithinextensivetracts ofpublicland.Lowerelevationlandsonthewestslopeusedprimarilyforgrazing,mining,oiland gasextraction,andrecreationaregenerallyadministeredbytheBureauofLandManagement. Higherelevation(mostlyforested)partsofthestatearelargelyundertheadministrationoftheU.S. ForestService,whileNationalGrasslandsadministeredbytheU.S.ForestServiceineastern ColoradowereformedfromfarmlandreclaimedfromtheravagesoftheDustBowldays.The distributionofstate‐ownedlandstillreflectstheschoollandgrantincludedinthe1875Enabling ActfortheTerritoryofColorado,whichprovidedthattwosectionsofeverytownship(usually sections16and36)begrantedforthesupportofpublicschools. Climate Change Vulnerability Assessment for Colorado BLM 5 About57%ofthestate’ssurfaceacresareprivatelyowned,withtheremainderinfederal,state, localgovernment,ortribalownership.Federalpubliclandsaccountforalittleover36%of Coloradoacreage.TheBLMadministers8.4millionacres(13%)ofColorado’ssurfaceacres,aswell asover29millionacresofsub‐surfacemineralestate.OtherfederallandsinColoradoare administeredU.S.ForestService(22%ofstateacreage),NationalParkService(1%),andother federalagenciesincludingtheU.S.FishandWildlifeService,BureauofReclamation,and DepartmentofDefense(<1%).TheStateofColoradoownsnearly5%oftheacreage,andalsoholds aboutamillionacresofsub‐surfacemineralestateonlandsinotherownership.Triballands accountforabout1%ofColorado’sacreage,andtheremainderisownedbygovernmentsatthe countyandcitylevel. Human influence on the landscape Inadditiontonaturaldisturbanceprocessessuchasfire,wind,andflooding,theeffectsofhuman activitieshavealsochangedpatternsofdisturbanceinColorado.ThesettlementhistoryofColorado hasresultedinapatternoflandownershipwherepubliclandsareasignificantpartofthe landscape. Development Althoughindustrial,urban,suburban,andexurbandevelopmentinColoradoaregenerallynot occurringonpubliclands,theseactivitiesareasourceofpotentialdisturbancetoadjacentareas. Colorado’stotalpopulationofover5millionislargelyconcentratedintheFrontRangecorridor fromPueblonorthtoFortCollinswhere11countiesaccountfor83%ofthestate’spopulation. LargercitiesoutsidethisareaincludeGrandJunction,Montrose,andDurango.Anetworkof highways,roads,andothertransportationcorridors,togetherwithutilityright‐of‐waysofvarious typesconnectspopulatedplaceslargeandsmallthroughoutthestate.Inspiteofthestate’s increasingpopulation,andpatchworkofprivateandpubliclands,morethan75%ofColorado’s landscaperemainscoveredbynaturalvegetation,especiallyinhigherelevationareas. Resource Extraction and Energy Development Miningforcoal,gold,gypsum,limestone,silver,molybdenum,sodaash,sodiumbicarbonate,sand, gravel,andcrushedstone,aswellastheextractionofpetroleumandnaturalgas,havehada significantroleinshapingColorado’slandscape.Energydevelopmentisasignificantandexpanding activityinColorado,especiallyinthenaturalgasandoil‐richareasofthenorthernFrontRangeand westernslope.Beginninginthe1860s,coalandpetroleumwerethefirstenergyresourcestobe developedinColorado.Togetherwithnaturalgasandoilshale,thesefossilfuelshavehistorically constitutedthemajorityofenergydevelopmentinthestate.TheBLMadministersmineralleasing forallfederallandsinColoradowheresuchrightshavenotbeenwithdrawn,aswellasforsplit‐ estatefederalmineralrightsundernon‐Federallands.Aspartofitstrustresponsibility,theBLM alsooverseesmineraloperationsontriballands. RenewableenergyfacilitieshavenotbeendevelopedonBLMlands.Coloradocurrentlyhasover 1,500windturbinesinoperation,primarilyontheeasternplains.Concentratedsolarenergy facilitiesarealsobeingdevelopedinseveralareasofthestate.However,withtheprojectedfuture 6 Colorado Natural Heritage Program © 2015 growthoftheseindustries,Coloradocanexpecttoseeanincreaseintransmissionlineconstruction thatmayinvolveBLMadministeredlands. Agriculture TheoriginalgrasslandsofColorado’seasternplainswerehometolargenumbersofgrazinganimals includingdeer,pronghorn,elkandbison.WithEuropeansettlement,thesenativegrazerswere largelyreplacedbydomesticlivestock.Large‐scalegrazingbeganinthe1860s,andquickly expandedasrailroadsprovidedaccesstoeasternmarkets.BoththeBureauofLandManagement andtheU.S.ForestServiceissuegrazingpermitsforpubliclandsinColorado,andstate‐owned landsmayalsobeleasedforgrazing.Cattleandassociatedproductsformthelargestportionof Colorado’sagriculturalcashreceipts,followedbyfieldcrops(USDANASS2015).Around1900,crop farmingbegantoexpandinthestate,withwheatandcornastheprimaryproducts.Although periodicdroughtshaverepeatedlydealthardblowstofarmingandranchinginColorado,theseland usesstillmakeanimportantcontributiontothestate’seconomy,andhavehadanundeniableeffect onthearrangementandconditionofColorado’snaturalvegetation. BLM‐administeredColoradorangelandissubjecttograzingusebypermittedlivestockoperators. About2,500grazingallotmentsaremanagedbypermitsorleasesthatspecifythekindandnumber oflivestock,seasonofuse,andamountofusepermittedeachgrazingyear.Permitsorleasesare subjecttocompliancereviewandpublicscopingpriortorenewal. Recreation and Conservation Inrecentdecades,recreationhasbecomeanincreasinglyimportantpartoflanduseinColorado. FromNationalParkstolocalopenspacelands,increasingnumbersofresidentsandvisitorsare drawntoavarietyofoutdooractivitiessuchashiking,camping,wintersports,hunting,fishing,and off‐roadvehicleuse.Paradoxically,recreationonColorado’spubliclandscancontributetobothits conservationanditsdegradation. AlthoughtheBLMmanagespubliclandsforrecreation,theagencyisalsoresponsiblefor preservationoftheenvironment,wildlifeandarchaeologicalandpaleontologicalresources; sustainablenaturalresourceextraction;thevisualappealofpubliclands;andconsidering socioeconomicimpactsofmanagementdecisions.TheBLM’sapproximatelyonemillionacresof NationalConservationLandsinColoradoincludetwonationalmonuments,threenational conservationareas,fivewildernessareas,53wildernessstudyareas,aswellasNationalHistoric andScenicTrails.TheBLMalsoamanagesanumberofAreasofCriticalEnvironmentalConcernfor scientific,scenic,ecological,biological,geological,historicalandprehistoricvaluesforpublic benefit. Climate Change Vulnerability Assessment for Colorado BLM 7 CLIMATE CHANGE VULNERABILITY ASSESSMENT Uncertainty in climate change vulnerability assessment Theincreasingnumberofclimatechangevulnerabilityassessmentstendstoindicatethatmany entitiesregardtherealityofclimatechangewithahighlevelofcertainty.However,therearea numberofsourcesthatintroduceuncertaintyofvaryingdegreeintotheseassessments.Frequently acknowledgedsourcesofuncertaintyorvariationinprojectedoutcomesarethemodeled componentsofclimatechangeanalysis:theglobalcirculationmodels,hydrologicmodels,species responsemodels,andsoon.Withallprojectionsoffutureclimateconditionswecannotknowwith absolutecertaintywhich,ifany,willturnouttobetrue.Downscalingthesemodelsdoesnotremove inherentuncertainty. Uncertaintyinthecontextofclimatechangeisnotequivalenttocompletelackofknowledge. Currentclimatemodelsrepresentthebestavailablescience,yetdonotallagree.Ingeneral,climate modelsareunderstoodtohavehigherlevelsofcertaintyaboutglobaltemperatureresponsesto forcingfactorsthantheydoforprecipitationresponse.Boththedirectionofresponse(increaseor decrease)andthemagnitude(degrees,inches,etc.)ofresponseofclimatefactorsarevariable amongclimatemodels.Currently,consensusaboutthedirectionoftemperaturechange (increasing)isgreaterthanforprecipitation.Themagnitudeofexpectedchangeforbothfactorsis uncertain. Comparing the vulnerability of ecosystems and species Althoughwehaveestimatedthevulnerabilitytoclimatechangeofbothecosystemsandthespecies thatinhabittheminthefollowingchapters,therearedifferencesofbothmethodandscalebetween theseassessments. Forecosystems,exposureandsensitivitywerecombinedintoasinglemetricthatwaspairedwitha resilience‐adaptivecapacitymetricinascoringmatrixtoproduceanoverallvulnerabilityrank. SpecieswereassessedusingtheNatureServeClimateChangeVulnerabilityIndexmethod(Younget al.2015),whichtreatsexposureasamodifierofsensitivityandadaptivecapacity(i.e.,low exposurediscountssensitivity/adaptivecapacityfactors,andhighexposureamplifiesthose factors). Ecosystemswereassessedusingtherepresentativeconcentrationpathway(RCP8.5)emissions scenariomethodoftheIPCCFifthAssessmentReport,whilebothanimalandplantspecieswere assessedunderA2scenariooftheSpecialReportonEmissionsScenarios(SRES)standards employedintwopreviousIPCCreports.ThisdifferenceisduetotheuseoftheNatureServeCCVI, whichisbasedontheearliermethodology,forspeciesonly.Forthemid‐centurytime‐frameofour assessment,theSRESA2scenarioprojectsCO2concentrationlevelsandtemperatureincreasesthat areslightlyloweronaveragethanthoseprojectedbytheRCP8.5scenario.However,thetwo scenariosareapproximatelyequivalentinthattheyarebasedonsimilarunderlyingassumptions 8 Colorado Natural Heritage Program © 2015 aboutfuturedemographicandeconomictrends,andaregenerallyregardedas“worst‐case” scenarios.Neitherscenarioisconsidered‘better’thantheotherbytheclimatesciencecommunity. Inaddition,thecorrelationofplantandanimalspecieswithasingleecosystemisrare,especially formobileanimalspecies.Becauseofthisvariability,andalsobecauseofdifferencesinscale betweenindividualorganismlife‐cyclefactorsandlandscapelevelprocesses,itispossibleforthe vulnerabilityofaparticularspeciestobedifferentfromthatofitsprimaryecosystem. Previous vulnerability assessments in the Colorado region Priortotheeffortreportedherein,anumberofstudieshaveevaluatedvulnerabilitytochanging climaticconditionsinandaroundColorado(Table1.1).AdditionalreportsnotincludedinTable1.1 havealsoaddressedthevulnerabilitytoclimatechangeofavarietyofsocio‐economicelements. Thelistedstudiesemployedanassortmentofqualitativeandquantitativeapproaches;anumberdo notexplicitlyaddressindividualhabitatsorspecies.Furthermore,spatialscalesoflisted assessmentsdifferbyonetothreeordersofmagnitude.Anelementthatisconsideredhighly vulnerabletoextinctioninasmallareamayhavesignificantlyreducedvulnerabilityinother portionsofitsrange.Consequently,acomparisonofvulnerabilityrankingresultsacrossthese effortsisproblematic.Nevertheless,afewgeneraltrendsareevidentacrossvulnerability assessments.Speciesandhabitatsofhigherelevationsareusuallyconsideredmorevulnerablethan thoseofmid‐elevationareas.Speciesandhabitatsthatareextremelycloselyassociatedwithwater resourcesaregenerallyexpectedtohavehighervulnerabilitythanthoseinmorexericconditions. Agreementaboutvulnerabilityforsomedrymid‐to‐lowerelevationhabitatsispoor.Forinstance, pinyon‐juniperwoodlandsandsagebrushshrublandshavereceivedrankingsrangingfromHighly VulnerabletoLikelytoIncrease,dependingonthescale,location,andmethodofassessment.This disagreementillustratestheimportanceofattentiontoscaleandtime‐frameinthedevelopmentof managementgoalsandobjectivesforclimateadaptationplanning,andhighlightsareaswhere additionalresearchtoaddresswell‐formulatedquestionsmaybeneeded. Climate Change Vulnerability Assessment for Colorado BLM 9 Table 1.1. Summary of climate change vulnerability assessments in the Colorado region that have addressed habitats or species. Full Citation Area Habitats Species Target Time Methodology Frame & Emissions Scenario Brown et al. 2008. Climate Change in Rocky Mountain National Park. http://www.nps.gov/romo/parkmgmt/upload/climate_cha nge_rocky_mountain2.pdf Rocky Mtn. National Park Ray, A.J., J.J. Barsugli, and K.B. Averyt. 2008. Climate change in Colorado: A synthesis to support water resources management and adaptation. Report for Colorado Water Conservation Board. Western Water Assessment http://wwa.colorado.edu/publications/reports/WWA_Clim ateChangeColoradoReport_2008.pdf Reiman, B.E. and D.J. Isaak. 2010. Climate change, aquatic ecosystems, and fishes in the Rocky Mountain West: Implications and alternatives for management. General Technical Report RMRS‐GTR‐250. USDA Forest Service, Rocky Mountain Research Station. Fort Collins, CO. http://www.fs.fed.us/rm/pubs/rmrs_gtr250.pdf Colorado Natural Heritage Program for Rare Plant Conservation Initiative. 2011. Colorado Wildlife Action Plan: proposed rare plant addendum. Lee Grunau, Jill Handwerk, and Susan Spackman‐Panjabi, eds. Colorado Natural Heritage Program, Colorado State University, Fort Collins, CO. http://www.cnhp.colostate.edu/download/documents/201 1/rareplant_SWAP_final_june_30_2011_formattedv2.pdf Statewide 10 Western Colorado, as part of Rocky Mtn. west Wetlands, lakes & streams, montane, subalpine, alpine Water resources, no individual habitats explicitly addressed Stream environments, including riparian Statewide ‐‐‐‐ Vulnerability Ranking (see code key below) ‐‐‐‐ None given Qualitative (workshop narrative synthesis) No rankings ‐‐‐‐ Mid‐century. CMIP3 B1, A1B, A2 ensembles Qualitative (narrative synthesis) No rankings Native fishes None given Qualitative (narrative synthesis) No rankings ‐ habitat loss or gain. 121 G1 and G2 plants Mid‐century. A2 Quantitative (NatureServe CCVI) EV/HV/MV/PS/IL /IE Colorado Natural Heritage Program © 2015 Full Citation Area Habitats Species Target Time Frame & Emissions Scenario Methodology Vulnerability Ranking (see code key below) Neely, B., R. Rondeau, J. Sanderson, C. Pague, B. Kuhn, J. Siemers, L. Grunau, J. Robertson, P. McCarthy, J. Barsugli, T. Schulz, and C. Knapp, Eds. 2011. Gunnison Basin: Vulnerability Assessment for the Gunnison Climate Working Group by The Nature Conservancy, Colorado Natural Heritage Program, Western Water Assessment, University of Colorado, Boulder, and University of Alaska, Fairbanks. Project of the Southwest Climate Change Initiative. http://wwa.colorado.edu/publications/reports/TNC‐CNHP‐ WWA‐ UAF_GunnisonClimChangeVulnAssess_Report_2012.pdf Nydick, K., Crawford, J., Bidwell, M., Livensperger, C., Rangwala, I., and Cozetto, K. 2012. Climate Change Assessment for the San Juan Mountain Regions, Southwestern Colorado, USA: A Review of Scientific Research. Prepared by Mountain Studies Institute in cooperation with USDA San Juan National Forest Service and USDOI Bureau of Land Management Tres Rios Field Office. Durango, CO. http://www.mountainstudies.org/s/ClimateResearchRevie w_SJMs_FINAL.pdf Woodbury, M., M. Baldo, D. Yates, and L. Kaatz. 2012 Joint Front Range Climate Change Vulnerability Study. Water Research Foundation and Tailored Collaboration partners. Denver, CO. http://cwcb.state.co.us/environment/climate‐ change/Pages/JointFrontRangeClimateChangeVulnerability Study.aspx USDA Forest Service, Region 2. UNPUBLISHED. CCVAs for selected habitats. Decker, K. and R. Rondeau. 2014. San Juan / Tres Rios Climate Change Ecosystem Vulnerability Assessment. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. http://www.cnhp.colostate.edu/download/documents/201 4/SJRA_ecological_systems_vulnerability_analysis_FINAL.p df Gunnison Basin 17 terrestrial ecosystems and 7 freshwater 73 species of conservation concern Mid‐century. CMIP3 A2 ‐ Barsugli and Mearns 2010 projected climate scenarios. Qualitative (Manomet‐ MADFW, expert opinion), quantitative (NatureServe CCVI) Uplands: EV/HV/MV/PS/SI. MI/GI/U Riparian: H/M/L Species: EV/HV/MV/PS/IL /IE Southwest Colorado Sagebrush, oak, PJ, Ponderosa, Mixed conifer, aspen, subalpine, alpine, riparian, fens & wet meadows 7 taxonomic groups Mid‐century. NARCCAP (CMIP3 A2) Qualitative (narrative relates to regional climate models, and synthesizes work by others) Decrease – no or little change ‐ increase North Central Colorado (Headwaters of South Platte, Arkansas, Colorado rivers) Streams ‐‐‐‐ 2040 and 2070. Selected CMIP3 A2 ensembles Quantitative (models) No rankings 14 upland and 3 wetland/ riparian ecosystems ‐‐‐‐ Mid‐century. Suite of CMIP5 RCP4.5 & 8.5 models ‐ 3 scenarios – Rangwala 2012 Qualitative (modified Manomet‐ MADFW, expert opinion and narrative synthesis) EV/HV/MV/PS/SI /MI/GI/U Southwest Colorado (San Juan / Tres Rios management area) Climate Change Vulnerability Assessment for Colorado BLM 11 Full Citation Area Habitats Species Target Time Frame & Emissions Scenario Methodology Vulnerability Ranking (see code key below) Handwerk, J., B. Kuhn, R. Rondeau, and L. Grunau. 2014. Climate Change Vulnerability Assessment for Rare Plants of the San Juan Region of Colorado. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. http://www.cnhp.colostate.edu/download/documents/201 4/SanJuan_CCVI_Final_Report.pdf Lukas, J., J. Barsugli, N. Doesken, I. Rangwala, K. Wolter. 2014. Climate change in Colorado: A synthesis to support water resources management and adaptation, 2nd edition. A report for the Colorado Water Conservation Board. Western Water Assessment, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder. http://cwcbweblink.state.co.us/WebLink/0/doc/191995/Ele ctronic.aspx?searchid=e3c463e8‐569c‐4359‐8ddd‐ ed50e755d3b7 Decker, K. and M. Fink. 2014. Colorado Wildlife Action Plan Enhancement: Climate change Vulnerability Assessment. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. http://www.cnhp.colostate.edu/download/documents/201 4/CO_SWAP_Enhancement_CCVA.pdf Pocewicz, A., H.E. Copeland, M.B. Grenier, D.A. Keinath, and L.M. Washkoviak. 2014. Assessing the future vulnerability of Wyoming’s terrestrial wildlife species and habitats. Report prepared by The Nature Conservancy, Wyoming Game and Fish Department and Wyoming Natural Diversity Database. http://www.nature.org/media/wyoming/wyoming‐wildlife‐ vulnerability‐assessment‐June‐2014.pdf Gordon, E. and D. Ojima, eds. 2015. Colorado Climate Change Vulnerability Study. A report by the University of Colorado Boulder and Colorado State University to the Colorado Energy Office. http://wwa.colorado.edu/climate/co2015vulnerability/co_v ulnerability_report_2015_final.pdf Southwest Colorado (San Juan / Tres Rios management area) ‐‐‐‐ 60 rare plant spp. Mid‐century. CMIP3 A2 Quantitative (NatureServe CCVI) EV/HV/MV/PS/IL /IE Statewide, and specific subregions Water resources, no individual habitats explicitly addressed ‐‐‐‐ Mid‐century. CMIP3 and CMIP5, pooled RCPs (4.5 & 8.5 discussed) Qualitative (narrative synthesis) No rankings Statewide 13 terrestrial habitats ‐‐‐‐ Mid‐century. BCCA CMIP5 ‐ RCP6.0 Quantitative (models – projected range shift) VH/H/M/L Adjacent to Colorado 11 habitat types, largely analogous to Colorado types 131 Species of greatest conservation need Mid‐century. A2 VH/H/M/L Statewide Broad categories: Alpine, Forests, and Grasslands ‐‐‐‐ Mid‐century? Quantitative (models – annual mean temperature & moisture deficit, NatureServe CCVI) Qualitative (narrative synthesis) 12 No rankings ‐ key vulnerabilities for broad categories Colorado Natural Heritage Program © 2015 Full Citation Area Habitats Species Target Time Frame & Emissions Scenario Methodology Vulnerability Ranking (see code key below) Handwerk, J., L. Grunau, and S Spackman‐Panjabi, eds. Colorado Wildlife Action Plan: 2015 Rare Plant Addendum. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. http://www.cnhp.colostate.edu/download/reports.aspx Statewide ‐‐‐‐ 117 G1 or G2 plants Mid‐century. CMIP3 A2 Quantitative (NatureServe CCVI) EV/HV/MV/PS/IL /IE Statewide 16 terrestrial habitats and 6 freshwater groups 97 species of conservation concern Mid‐century. NEX‐DCP30 – CMIP5 RCP8.5 & CMIP3 A2 Quantitative (models – out of range conditions, NatureServe CCVI) Ecosystems: VH/H/M/L Species: EV/HV/MV/PS/IL /IE THIS DOCUMENT (CNHP 2015) Rank Definition NatureServe CCVI http://www.natureserve.org/conservation‐tools/climate‐change‐vulnerability‐index (in CNHP RPCI 2011, Neely et al. 2011, Handwerk et al. 2014 & 2015, CNHP 2015) EV ‐ Extremely Vulnerable Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050. HV ‐ Highly Vulnerable Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050. MV ‐ Moderately Vulnerable Abundance and/or range extent within geographical area assessed likely to decrease by 2050. PS ‐ Presumed Stable Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change. IL ‐ Not Vulnerable/Increase Likely Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050. IE ‐ Insufficient Evidence Available information about a species' vulnerability is inadequate to calculate an Index score. Neely et al. (2001), Decker & Rondeau (2014) EV ‐ Extremely Vulnerable Ecosystem at risk of being eliminated from the area as a result of climate change. HV ‐ Highly Vulnerable Majority of ecosystem at risk of being eliminated (i.e., >50% loss) as a result of climate change, but unlikely to be eradicated entirely. For riparian, overall loss of system is expected to be > 50% or ecological process is expected to be severely impacted, e.g., flood frequency occurs 50% less than current flooding regime. MV ‐ Moderately Vulnerable Extent of ecosystem at risk of being moderately reduced (<50% loss) as a result of climate change. For riparian, overall loss of system is expected to be > 50% or ecological process is expected to be severely impacted, e.g., flood frequency occurs 50% less than current flooding regime. LV ‐ Low Vulnerability For riparian only, 0 to 10% loss of area and condition of system remains stable. PS ‐ Presumed Stable Extent of ecosystem approximately the same, but there are significant pattern or condition changes within the area. SI ‐ Slight Increase Ecosystem may become established within the basin from areas outside. MI ‐ Moderate Increase Extent of ecosystem may expand moderately (<50% gain) as a result of climate change. Climate Change Vulnerability Assessment for Colorado BLM 13 Rank Definition GI ‐ Greatly Increase U ‐ Unknown Decker & Fink (2014), CNHP (2015) VH ‐ Very High Vulnerability Ecosystem may expand greatly (>50% gain) as a result of climate change. Vulnerability of ecosystem under climate change is uncertain Habitats/ecosystems have high vulnerability to climate change when exposure and sensitivity are high, and adaptive capacity and resilience are low. Transformation of the habitat/ecosystem is most likely to occur in upcoming decades. High vulnerability to climate change results from combining either high or moderate exposure‐sensitivity with low or medium adaptive capacity‐resilience. Under either combination, climate change is likely to have noticeable impact. Moderate vulnerability to climate change results from a variety of combinations for exposure‐sensitivity and adaptive capacity‐resilience. The number of possible combinations indicates a degree of uncertainty in the vulnerability ranking. Under circumstances where the two factors are essentially balanced, vulnerability is thought to be reduced, but still of concern. Low vulnerability to climate change occurs when a habitat combines low exposure and sensitivity with high or moderate adaptive capacity and resilience. For these habitats/ecosystems climate change stress and its effects are expected to be least severe or absent. HV ‐ Highly Vulnerable MV ‐ Moderately Vulnerable LV ‐ Low Vulnerability 14 Colorado Natural Heritage Program © 2015 Climate change in Colorado AnnualaveragetemperaturesacrossColoradohaveincreasedby2.0°Foverthepast30years (Figure1.2a).Warmertemperaturesareevidentforallseasons,anddailyhighandlow temperatureshavealsoincreased(Lucasetal.2014).Incontrast,overtheperiodofrecord,there arenocomparabletrendsinaverageannualprecipitationinColorado(Figure1.2b),although snowpacklevelshavebeengenerallybelowaveragesince2000.Thedecreaseinsnowpack,along withwarmingspringtemperaturesandtheeffectsofincreaseddust‐on‐snowhavecombinedto shiftthetimingofsnowmeltandpeakrunofffrom1‐4weeksearlier(Lucasetal.2014).Flowering datesforsomeplantspeciesareoveramonthearlierthantheywereacenturyago(Munsonand Sher2015).DroughtconditionsasmeasuredbythePalmerDroughtSeverityIndexalsoreflect warmingtemperaturesandtherecentperiodofbelowaverageprecipitiation(Figure1.2c). ReconstructionsofdroughtsinwesternNorthAmericashowanumberofdroughtspriortothe instrumentalrecordthatweremoresevereandlongerlastingthantheworstdroughtsofthepast century(Woodhouse2004,Stahleetal.2007,Routsonetal.2011),whichillustratestherelatively narrowviewofvariabilityprovidedbythehistoricalrecord.Bothhistoricandpre‐instrumental‐ recorddroughtshavehadnotableeffectsonvegetationpatterns,andhaveseverelyimpacted patternsofhumanhabitationandsocialinteraction(Woodhouse2004,Bensonetal.2007).The possibilityoffuturedroughtsthatgreatlyexceedthemostseveredroughtsofthepastmilleniacan notbeexcluded(Cooketal.2015). Projectionsbasedon17models(NASAEarthExchangeDownscaled30Arc‐SecondCMIP5Climate ProjectionsdatasetfortheconterminousU.S.,Thrasheretal.2013),rununderRCP8.5andRCP4.5 forthe30‐yearperiodcenteredon2050indicatethatallareasofColoradowillexperiencesome degreeofwarming,andpotentiallychangesinprecipitationaswell.Temperaturechange projectionsareregardedasmorecertain(Barsuglipers.comm.),andthereisgeneralagreement thatconditionshavealreadywarmedtosomedegree(Lucasetal.2014);uncertaintyfor temperaturechangeisgreaterregardingthemagnitudeoftheprojectedchange.Incombination withexpectedchangesintemperature,however,evenawetterfuturemaynotbesufficientto maintainrunoffandsoilmoistureconditionssimilartothoseoftherecentpast.Climateprojections presentedherearesummariesoflong‐termtrendsanddonottrackinter‐annualvariation,which willremainasourceofvariability,asithasbeeninthepast.Ourecosystemanalysisfocusedona singlerepresentativeconcentrationpathway(RCP8.5)andalimitedsubsetofavailableglobal circulationmodels;atthispointintimewehavenowayofknowingifthisisthescenariothatwill befoundvalidbymid‐century.However,inallscenarios,changesthatinthepastoccurredover periodsofseveralthousandyearsarenowprojectedtotakeplaceinonlyahundredyears. ProjectedchangessummarizedinFigure1.3aindicateaverageseasonaltemperatureincreasesof anywherefromabout3.5‐5.8F,withmeanincreasesofabout4.1‐5.4F.Furthermore,minimum andmaximumtemperatureincreasesarealsoprojectedforallseasons.Somewhatgreater increasesareprojectedunderRCP8.5incomparisonwithRCP4.5atmid‐century.Winterminimum temperaturesareprojectedtohavegreaterincreasesthanwintermaximumtemperatures,butin allotherseasonsthegreatestincreasesareprojectedinmaximumtemperatures,andtheleastin Climate Change Vulnerability Assessment for Colorado BLM 15 (a) (b) (c) Figure 1.2. Historical (1990‐2014) Colorado statewide trends for (a) annual mean temperature, (b) annual precipitation, and (c) Palmer Drought Severity Index. Temperature and precipitation are shown as departure from the mean of base period (1901‐2000). Data are from NOAA National Centers for Environmental Information: http://www.ncdc.noaa.gov/cag/data‐info. 16 Colorado Natural Heritage Program © 2015 minimumtemperatures(Figure1.3a).Rangesofprojectedincreaseforallseasonsarebroadly overlapping. Meanprojectedprecipitationchangesaregenerallylesscertainthanthosefortemperature,and maynotbeoutsidetherangeofhistoricvariability,atleastbymid‐century.Seasonalprojected percentincreasesinprecipitationareonaveragegreatestforwinterandspring(Figure1.3b),while summerandfallareprojectedtohavedecreasedoressentiallyunchangedprecipitation.However, rangesforgrowingseasonsincludebothincreasedanddecreasedprecipitation. (a) (b) Figure 1.3. Seasonal projected temperature (a) and precipitation (b) changes by mid‐21st century (2050; centered around 2035‐2064 period) for Colorado. For temperature (a), the bottom of each bar represents the 10th percentile, and the top of the bar is the 90th. Mean projected change is represented by open diamonds. RCP8.5 statewide projected change in average seasonal temperatures are the top (red) bars, and RCP4.5 are bottom (purple) bars. For precipitation (b), the bottom of each bar represents the 10th percentile, the middle line is the 50th, and the top of the bar is the 90th. RCP8.5 statewide projected percent change in seasonal average precipitation are the left‐hand bars, and RCP4.5 are the right‐hand bars. Seasons are: winter=DJF, spring=MAM, summer=JJA, and fall=SON. A temperature interval of 1°F is equal to an interval of 5⁄9 degrees Celsius. Climate scenarios used were from the NEX‐DCP30 dataset, prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS). Literature Cited Benson,L.,K.Petersen,andJ.Stein.2007.Anasazi(Pre‐ColumbianNative‐American)migrationsduringthemiddle‐12th andlate‐13thcenturies–weretheydroughtinduced?ClimaticChange83:187‐213. Cook,B.I.,T.R.Ault,andJ.E.Smerdon.2015.Unprecedented21stcenturydroughtriskintheAmericanSouthwestand CentralPlains.ScienceAdvances12Feb2015;1:e1400082. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimatechangeinColorado:Asynthesistosupportwater resourcesmanagementandadaptation,2ndedition.AreportfortheColoradoWaterConservationBoard.WesternWater Assessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado,Boulder. Climate Change Vulnerability Assessment for Colorado BLM 17 Munson,S.M.andA.A.Sher.2015.Long‐termshiftsinthephenologyofrareandendemicRockyMountainplants. AmericanJournalofBotany102:1‐9. Routson,C.C.,C.A.Woodhouse,andJ.T.Overpeck.2011.SecondcenturymegadroughtintheRioGrandeheadwaters, Colorado:Howunusualwasmedievaldrought?GeophysicalResearchLetters38,L22703,doi:10.1029/2011GL050015. Stahle,D.W.,F.K.Fye,E.R.Cook,R.D.andGriffin.2007.Tree‐ringreconstructedmegadroughtsoverNorthAmericasince A.D.1300.ClimaticChange83:133‐149. Thrasher,B.,J.Xiong,W.Wang,F.Melton,A.MichaelisandR.Nemani.2013.DownscaledClimateProjectionsSuitablefor ResourceManagement.Eos,TransactionsAmericanGeophysicalUnion94:321‐323. U.S.DepartmentofAgriculture,NationalAgriculturalStatisticsService[USDANASS].2015.2014StateAgricultural OverviewforColorado.http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=COLORADO Woodhouse,C.A.2004.ApaleoperspectiveonhydroclimaticvariabilityinthewesternUnitedStates.AquaticSciences 66:346‐356. Young,B.E.,E.Byers,G.Hammerson,A.Frances,L.Oliver,andA.Treher.2015.GuidelinesforusingtheNatureServe ClimateChangeVulnerabilityIndex.Release3.0.NatureServe,Arlington,VA.http://www.natureserve.org/biodiversity‐ science/publications/guidelines‐using‐natureserve‐climate‐change‐vulnerability‐index‐0 18 Colorado Natural Heritage Program © 2015 2 ECOSYSTEMS Authors: Karin Decker Michelle Fink Recommended chapter citation: Decker, K. and M. Fink. 2015. Ecosystems. Chapter 2 In Colorado Natural Heritage Program 2015. Climate Change Vulnerability Assessment for Colorado Bureau of Land Management. K. Decker, L. Grunau, J. Handwerk, and J. Siemers, editors. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Climate Change Vulnerability Assessment for Colorado BLM 19 Table of Contents – 2 Ecosystems Terrestrial Ecosystems – Methods .............................................................................................................. 23 Terrestrial Ecosystems ‐ Results ................................................................................................................. 29 Literature Cited ........................................................................................................................................... 40 Forest and Woodland ................................................................................................................................. 42 Aspen .................................................................................................................................................... 43 Lodgepole ............................................................................................................................................. 50 Mixed conifer ....................................................................................................................................... 56 Pinyon‐Juniper ...................................................................................................................................... 62 Ponderosa ............................................................................................................................................. 70 Spruce‐fir .............................................................................................................................................. 76 Shrubland .................................................................................................................................................... 84 Desert shrubland .................................................................................................................................. 85 Oak & Mixed mountain shrub .............................................................................................................. 91 Sagebrush ............................................................................................................................................. 97 Sandsage ............................................................................................................................................. 103 Grassland or Herbaceous .......................................................................................................................... 108 Alpine .................................................................................................................................................. 109 Montane grasslands ........................................................................................................................... 116 Semi‐desert grassland ........................................................................................................................ 123 Shortgrass prairie ............................................................................................................................... 128 Riparian and Wetland ............................................................................................................................... 136 Riparian woodlands and shrublands .................................................................................................. 137 Wetlands ............................................................................................................................................ 144 Freshwater Ecosystems – Methods .......................................................................................................... 150 Freshwater Ecosystems ‐ Results .............................................................................................................. 158 Streams, Rivers, Lakes, and Reservoirs .............................................................................................. 159 20 Colorado Natural Heritage Program © 2015 List of Figures Figure 2.1. Statewide envelope of projected change in annual mean temperature and precipitation under two emissions scenarios (boxes), in comparison with levels of precipitation increase required to maintain the status quo. ............................................................................................................................. 25 Figure 2.2. Vulnerability ranking matrix. .................................................................................................... 28 Figure 2.3. Projected annual change in Colorado for (a) upland ecosystems, and (b) wetland and riparian ecosystems. Ecosystem means are colored to indicate the degree to which the ecosystem is projected to experience conditions that are out of range of those in its current statewide distribution. ..................... 29 Figure 2.4. Comparison of scores by ecosystem for (a‐e) individual resilience factors, and (f) overall resilience – adaptive capacity score. Background colors reflect the low (red), moderate (orange), and high (green) resilience categories. .............................................................................................................. 30 Figure 2.5. Area of ecosystems mapped at various elevations in Colorado. .............................................. 31 Figure 2.6. Bioclimatic envelope as represented by annual precipitation and mean temperature for ecosystems in Colorado. Error bars represent the 10‐90% range around the mean. ................................ 32 Figure 2.7. Minimum winter and maximum summer temperature ranges for ecosystems in Colorado. Boxes represent the middle quartiles, while whiskers show the 10‐90% range. ....................................... 33 Figure 2.8. Projected seasonal average precipitation and mean temperature trajectories for current upland ecosystem ranges in Colorado by mid‐century under a high radiative forcing scenario (RCP8.5). Circles represent current conditions. ......................................................................................................... 38 Figure 2.9. Projected seasonal average precipitation and mean temperature trajectories for current wetland and riparian ecosystem ranges in Colorado by mid‐century under a high radiative forcing scenario (RCP8.5). Circles represent current conditions. ........................................................................... 39 Figure 2.10. STORET stations with July water temperature readings. ..................................................... 151 Figure 2.11. Prediction Standard Error. .................................................................................................... 151 Figure 2.12. Interpolated water temperature 67 ‐ 69°F filled contour, split into North‐West, North‐ Central, South‐West, and South‐Central sections. Colors represent the mean July air temperature coinciding with each contour section. ...................................................................................................... 152 Figure 2.13. Modeled transition line. ....................................................................................................... 154 Figure 2.14. Decision‐tree for exposure criteria applied to rivers and streams. ...................................... 155 Figure 2.15. Category transitions between current and projected (RCP 8.5) conditions for streams and rivers. ........................................................................................................................................................ 165 Figure 2.16. Comparison of current (top) and projected (bottom) stream temperature classification. . 167 Climate Change Vulnerability Assessment for Colorado BLM 21 List of Tables Table 2.1. Ecosystems assessed for vulnerability to climate change. ........................................................ 23 Table 2.2. Criteria for scoring exposure of terrestrial ecosystems. ............................................................ 25 Table 2.3. Description of factors used to assess resilience‐adaptive capacity in terrestrial ecosystems. . 26 Table 2.4. Vulnerability rank summary for all assessed terrestrial ecosystems. ........................................ 36 Table 2.5. Key vulnerabilities, forest and woodland ecosystems. .............................................................. 42 Table 2.6. Key vulnerabilities, shrubland ecosystems. ............................................................................... 84 Table 2.7. Key vulnerabilities, grassland or other herbaceous ecosystems. ............................................ 108 Table 2.8. Key vulnerabilities, riparian and wetland ecosystems. ............................................................ 136 Table 2.9. Freshwater ecosystem targets. ................................................................................................ 150 Table 2.10. Mean and standard deviation (STD) current July air temperature (°F) values for each contour segment within a section. Values in parentheses are °C. ......................................................................... 153 Table 2.11. Criteria for scoring exposure of lakes and reservoirs freshwater ecosystems. ..................... 155 Table 2.12. Description of factors used to assess resilience‐adaptive capacity in freshwater ecosystems. .................................................................................................................................................................. 156 Table 2.13. Factors included in TNC freshwater measures of condition database. ................................. 157 Table 2.14. Key vulnerabilities, freshwater ecosystems. .......................................................................... 158 Table 2.15. Vulnerability rank summary for all assessed freshwater ecosystems. .................................. 160 Table 2.16. Representative fish species for freshwater ecosystems. ....................................................... 163 Table 2.17. Reach length statistics (km) for water temperature categories both statewide and by region. .................................................................................................................................................................. 166 22 Colorado Natural Heritage Program © 2015 TERRESTRIAL ECOSYSTEMS ‐ METHODS Target selection InconsultationwithBLM,CNHPidentified16terrestrialecosystemtypesorgroupsofinterestfor BLMmanagementtobeassessed(Table2.1).Terrestrialecosystemdistributionwasmappedusing SWReGAP(USGS2004)foruplandecosystems,andNationalWetlandInventorymappingfor riparianandwetlandecosystems(USFWS1975‐3013).Thevulnerabilityofecosystemswas assessedundertwoprimaryheadings:exposure‐sensitivity,andresilience‐adaptivecapacity. Scoresforthesetwofactorswerecombinedtoobtainanoverallvulnerabilityrank. Table 2.1. Ecosystems assessed for vulnerability to climate change. Terrestrial Forest and Woodland Grassland or herbaceous Aspen forest Alpine Lodgepole pine forest Montane grassland Mixed conifer forest Semi‐desert grassland Pinyon‐Juniper woodland Shortgrass prairie Ponderosa pine forest Spruce‐Fir forest Riparian & Wetland Riparian woodland & shrubland ‐ Eastern Shrubland Riparian woodland & shrubland ‐ Mountain Desert shrubland Riparian woodland & shrubland ‐ Western Oak & mixed mountain shrubland Wetlands ‐ Eastern Sagebrush shrubland Wetlands ‐ Mountain Sandsage shrubland Wetlands ‐ Western Terrestrial ecosystem responses to climate change Thepredictionofpotentialplantdistributionunderfutureclimateconditionsisbasedonthe ecologicalprinciplethatthepresenceofaspeciesonthelandscapeiscontrolledbyavarietyof bioticandabioticfactors,inthecontextofbiogeographicandevolutionaryhistory.Biotic interactions(e.g.,competition,predation,parasitism,etc.)togetherwithclimateandotherabiotic componentsacttoinfluencethespatialarrangementofspeciesatlocal,regional,andcontinental scales.Abioticfactorsthatinfluenceecosystemprocessesandspeciesdistributionsinclude temperature,water,carbondioxide,nutrients,anddisturbanceregimes(Prenticeetal.1992, Holling1992).Waterbalance,orthedifferencebetweenprecipitationinputsandwaterlossinthe formofevapotranspiration,runoff,anddeepdrainage,isaprimarydeterminantofterrestrial vegetationdistributionintheU.S.(Stephenson1990,Nielsonetal.1992,Nielson1995). Climate Change Vulnerability Assessment for Colorado BLM 23 Becausecompleteandaccurateknowledgeofdrivingfactorsandhistoryisrarely,ifever,available, werelyoncorrelativemodelsthatrelateobservedspeciesdistributionwithpastandrecentlevels ofclimaticvariables.Thepredictiveprocessisfurtherconstrainedbyourinabilitytomeasuresuch variablesaccuratelyonacontinuousspatialortemporalscale.Asaresult,modelingvariablesare usuallyanapproximationoftheenvironmentalfactorsthatcontrolspeciesdistribution,using availabledatathatarelikelyonlysurrogatesfortheactualcontrollingfactors.Furthermore, becausetherateofvegetationresponsetoenvironmentalshiftsislikelytobelowerthantherateof climatechangeitself,andbecauserelictreesmayremainfordecades,predictivemodelsaremore usefulinidentifyingthefuturelocationofsuitablehabitatforaspeciesthaninpredictingtheactual groundcoverataspecifictimeinaparticularlocation.Finally,althoughwecanestimatethe climaticrequirementsofagivenspecies,andextrapolatefromthatestimatetheeventual distributionofanecosystem,itismoredifficulttopredictvegetationdynamicsthataretheresultof disturbanceeventsorecologicalprocesses(e.g.,drought,fire,snowmelt,herbivory,insect outbreaks,etc.).Thesefactorsareaddressednarratively,andevaluatedthroughexpertelicitation. Becauseoftheselimitations,welookedatdegreeofchangeofclimaticvariablesoveran ecosystem’scurrentrangeasameasureofexposuretoclimatechange,ratherthanattemptto predictoverallchangesindistribution. Exposure and sensitivity assessment – terrestrial ecosystems Weusedspatialanalysismethodstoevaluatetheexposureandsensitivitytoclimatechangefor eachecosystem.Weusedensembleaveragesof800mNASAEarthExchange(NEX)Downscaled ClimateProjections(NEX‐DCP30)fortheContinentalUS.Theseaveragesarebasedon34models developedfortheWorldClimateResearchProgramme's(WCRP)CoupledModelIntercomparison ProjectPhase5(CMIP5).IndividualmodelsarelistedinAppendixA. ThereisgeneralagreementthattemperaturesthroughoutColoradoareprojectedtoincrease. Precipitationmodelsaremuchmorevariable,and,onaveragetendtoshowincreasing precipitationformostofColorado.However,hydrologicmodelingfortheColoradoRiverandother basins(e.g.,NashandGleick1991,1993)hasindicatedthat,asageneralizedrule‐of‐thumb,for each1.8°F(1°C)ofwarming,anapproximate5%increaseinprecipitationwouldberequiredfor runofflevelstoremainunchanged(SolidlineinFigure2.1).Withprojectedmid‐century temperaturesincreasing4°Formore,noareasinColoradoareprojectedtoreceivesufficient compensatoryprecipitation.Inordertoaccountforthepotentialeffectsofwarmertemperatures onsoilmoistureavailability,anddeterminetheextenttowhicheachecosystemmaybeexposedto effectivelydrierconditions,wemadeaconservativeapplicationoftheaboverule,toevaluatehow muchofanecosystemmightreceiveatleastapartial(50%)levelofcompensatoryprecipitation (dashedlineinFigure2.1). 24 Colorado Natural Heritage Program © 2015 Figure 2.1. Statewide envelope of projected change in annual mean temperature and precipitation under two emissions scenarios (boxes), in comparison with levels of precipitation increase required to maintain the status quo. Foreachecosystem,wecalculatedtheproportionofacreagewhereprojectedannualmean temperatureformid‐centuryunderRCP8.5wasgreaterthananyannualmeantemperatures currentlyexperiencedbythatecosystemwithinColorado,ANDprojectedfutureprecipitation changeswerelessthan5%increaseovercurrentlevels.Ecosystemswerescoredaccordingtothe scaleshownbelow(Table2.2).Inaddition,anyecosystemwhoseproportionofacreagewith temperatureswithinthenormalrange,butwithmorethan50%ofthatacreagehavingprojected futureprecipitationchangeswithlessthan5%increaseovercurrentlevels,wasbumpedtothe nexthigherexposurecategory. Itisimportanttonotethattheresultingscoresareintendedtogivearelative,notanabsolute indicationofthepotentialimpactoffutureclimateconditionsonanecosystem.Thatis,a“Low” scoredoesnotmeanthatanecosystemisnotvulnerabletoclimatechange,butthattheanalysis indicatesthatitmaybelessvulnerablethanthoseecosystemswithscoresofModerate,High,or VeryHigh.Furthermore,underthescoringsystemweused,“Moderate”isabroadcategory,andall ecosystemswithaModeratevulnerabilityrankarenotnecessarilyequallyvulnerable. Table 2.2. Criteria for scoring exposure of terrestrial ecosystems. Percent Colorado acres with projected temp > max & ppt delta < 5% 36 – 100% 16 – 35% 0 – 15% High Moderate Low Initial Exposure‐Sensitivity Score Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Final Exposure‐Sensitivity Score Yes No Yes No Yes No Very High High High Mod. Mod Low Climate Change Vulnerability Assessment for Colorado BLM 25 Resilience‐adaptive capacity assessment – terrestrial ecosystems Thisscoresummarizesindirecteffectsandnon‐climatestressorsthatmayinteractwithclimate changetoinfluencetheadaptivecapacityandresilienceofanecosystem.Factorsevaluatedare adaptedfromthemethodologyusedbyManometCenterforConservationScienceand MassachusettsDivisionofFishandWildlife(MCCSandMAFW2010),combinedunderfiveheadings (Table2.3).Factorswerescoredonascaleof0(lowresilience)to1(highresilience). Table 2.3. Description of factors used to assess resilience‐adaptive capacity in terrestrial ecosystems. Assessment factor Description Bioclimatic envelope and range This factor summarizes the expected effects of limited elevational or bioclimatic ranges for an ecosystem. Suitable conditions for ecosystems at upper elevations may be eliminated. Ecosystems with narrow bioclimatic envelopes may be more vulnerable to climate change. Finally, ecosystems that are at the southern edge of their distribution in Colorado may be eliminated from the state under warming conditions. Growth form and intrinsic dispersal rate This factor summarizes the overall ability of the ecosystem’s component species to shift their ranges in response to climate change relatively quickly. Characteristics of growth form, seed‐dispersal capability, vegetative growth rates, and stress‐tolerance are considered. Vulnerability to increased impact by biological stressors This factor summarizes whether expected future biological stressors (invasive species, grazers and browsers, pests and pathogens) have had, or are likely to have, an increased effect due to interactions with changing climate. Climate change may result in more frequent or more severe outbreaks of these stressors. Ecosystems that are currently vulnerable to these stressors may become more so under climate change. Vulnerability to increased frequency or intensity of extreme events This factor evaluates characteristics of an ecosystem that make it relatively more vulnerable to extreme events (fire, drought, floods, windstorms, dust on snow, etc.) that are projected to become more frequent and/or intense under climate change. Other indirect effects of non‐ climate stressors – landscape condition This factor summarizes the overall condition of the ecosystem at the landscape level across Colorado, and is derived from a landscape integrity score indexing the degree of anthropogenic disturbance (Rondeau et al. 2011, Lemly et al. 2011). Bioclimatic envelope and range Eachecosystemwasscoredforelevationalrange,southernedgeofrange,annualprecipitation range,andgrowingdegreedaysrange.Ecosystemsrestrictedtohighelevationsreceivedascoreof 0,otherecosystemsscored1.Likewise,ecosystemsatthesouthernedgeoftheircontinentalrange inColoradowereassignedascoreof0,andotherecosystemsscored1.Annualprecipitationand growingdegreedaysrangewerecalculatedastheproportionoftotalvariablerangeinColoradoin whichtheecosystemhadsignificantpresencemapped.Thesefourscoreswereaveragedtoproduce asinglescoreforthisfactor. 26 Colorado Natural Heritage Program © 2015 Growth form and intrinsic dispersal rate Scoresof0(lowresilience),0.5(uncertainormoderateresilience),and1(highresilience)were assignedtoeachecosystembasedongrowthformofthedominantspecies(i.e.,treesscored0, shrubsandherbaceousscored1),andotherinformationderivedfromtheliteratureregardingthe dispersalabilitiesofthosespecies. Vulnerability to increased attack by biological stressors Beginningwithadefaultscoreofone,wesubtracted0.2forvulnerabilitytopotentialincreased effectsofgrazersorbrowsers,and0.3forvulnerabilitytoinvasivespecies.Inaddition,foresttypes withlevelsofinsectmortalitysufficienttocausedramaticstructuralchangesoveralargearea(>1 millionacresinColorado)receivedascoreof0,andforesttypeswithlowerlevelsofinsect mortalityreceivedastartingscoreof0.7.Forestscoringwasbasedoncumulativedamagetotals fromUSFSAerialSurveys(Harris2014). Vulnerability to increased frequency or intensity of extreme events Ecosystemsnotespeciallyvulnerabletoincreasedfrequencyorintensityofabioticstressors receivedadefaultscoreofone.Foresttypesnotadaptedtodryconditionswerescored0.5,to accountforincreasedsusceptibilitytothecombinedeffectsofdroughtandpotentiallyincreased wildfire,whilemoredroughttolerantforesttypesscored0.7.Non‐forestecosystemsvulnerableto droughtwerescored0.5,andecosystemsvulnerableonlytootherabioticstressorsscored0.9. Landscape condition Theaveragevalueacrossthestatewidelandscapeintegritymodels(Rondeauetal.2011,Lemlyet al.2011)foreachecosystemwascalculatedasavaluebetween0and1. Resilience‐adaptive capacity ranking Scoresforthefivefactorsarebasedonbothspatialanalysisandliteraturereview.Rankingsforthis sub‐scoreareoppositetothedirectionoftheexposure‐sensitivityrankingscheme(i.e.,ahigher valueindicates“better”andalowervalueindicates“worse.”)Theroundedaverageofthefivesub‐ scoresdeterminesthefinalResilience‐AdaptiveCapacityscore. Average of Resilience‐Adaptive Capacity Scores Overall Resilience‐Adaptive Capacity Score 0 – 0.50 0.51 – 0.70 0.71 – 1.0 Low Moderate High Vulnerability assessment ranking Overall vulnerability ranking TheExposure‐SensitivityscoreandtheResilience‐AdaptiveCapacityscorearecombined(Figure 2.2)accordingtotheschemepresentedbelow(Comeretal.2012)toproduceanoverall vulnerabilityrankforeachecosystem. Climate Change Vulnerability Assessment for Colorado BLM 27 Exposure‐Sensitivity score / Resilience ‐ Adaptive Capacity score H / H M / H Vulnerability L / H Very High High H / M M / M Moderate L / M Low H / L M / L L / L Figure 2.2. Vulnerability ranking matrix. VeryHigh:Ecosystemshavehighvulnerabilitytoclimatechangewhenexposureand sensitivityarehigh,andadaptivecapacityandresiliencearelow.Underthesecircumstances, transformationoftheecosystemismostlikelytooccurinupcomingdecades. High:Highvulnerabilitytoclimatechangeresultsfromcombiningeitherhighormoderate exposure‐sensitivitywithlowormediumadaptivecapacity‐resilience.Undereither combination,climatechangeislikelytohavenoticeableimpact. Moderate:Moderatevulnerabilitytoclimatechangeresultsfromavarietyofcombinationsfor exposure‐sensitivityandadaptivecapacity‐resilience.Thescoringmatrixisslightlyweighted towardincreasedvulnerabilityinthenumberofpossiblecombinationswhichproducea moderatevulnerabilityranking.Undercircumstanceswherethetwofactorsareessentially balanced,vulnerabilityisthoughttobereduced,butstillofconcern. Low:Lowvulnerabilitytoclimatechangeoccurswhenanecosystemisexpectedtoexperience lowexposureandsensitivityincombinationwithhighormoderateadaptivecapacityand resilience.Fortheseecosystemsclimatechangestressanditseffectsareexpectedtobeleast severeorabsent. 28 Colorado Natural Heritage Program © 2015 TERRESTRIAL ECOSYSTEMS ‐ RESULTS Overview of terrestrial ecosystems Change in temperature and precipitation by mid‐century Underthemostseverescenarioecosystemsevaluatedhereinareprojectedtoexperienceannual meantemperaturesthatare5‐6°Fwarmerthanintherecentpast;atthesametimefuture precipitationlevelsarenotprojectedtoincreasesufficientlytocompensateevenpartiallyfor increasedmoisturelossduetowarmertemperatures(dashedlineinFigure2.3). Figure 2.3. Projected annual change in Colorado for (a) upland ecosystems, and (b) wetland and riparian ecosystems. Ecosystem means are colored to indicate the degree to which the ecosystem is projected to experience conditions that are out of range of those in its current statewide distribution. Resilience factors ResultsforindividualresiliencefactorsareshowninFigure2.4anddiscussedindetailbelow. Climate Change Vulnerability Assessment for Colorado BLM 29 (a) Range & environmental envelope rank (b) Dispersal & growth form rank (c) Biological stressors rank (d) Abiotic stressors & Extreme events rank (e) Landscape condition rank (f) Overall Resilience ‐ Adaptive capacity rank Figure 2.4. Comparison of scores by ecosystem for (a‐e) individual resilience factors, and (f) overall resilience – adaptive capacity score. Background colors reflect the low (red), moderate (orange), and high (green) resilience categories. Elevation range and relative abundance Togetherwithrangeextentandbioclimateenvelope(below),weconsideredelevationasafactor thatmightdetractfromtheresilienceofanecosystem.EcosystemelevationsinColoradorange fromabout3,500fttonearly14,000ft(Figure2.5).Theextremehighestelevationsarenon‐ vegetated.Lowelevationsareoccupiedbygrassland,shrubland,andwoodlandecosystems dominatedbyspeciesadaptedtolowerprecipitationandwarmconditions.Anumberofmontane tosub‐alpineecosystemsareclusteredtogetheratmiddleelevationsfromabout7,000‐10,000ft.At higherelevations,subalpineforestandalpinevegetationoccupyfairlydistinctelevationalzones. 30 Colorado Natural Heritage Program © 2015 Figure 2.5. Area of ecosystems mapped at various elevations in Colorado. Bioclimatic envelope Temperatureandprecipitationvariableswereusedtocharacterizethecurrentbioclimatic envelopeforeachterrestrialecosystem.Acombinedprecipitationandtemperaturespaceisshown foreachofthe14uplandecosystemsinFigure2.6.Becauseprecipitationandtemperatureare highlycorrelatedwithelevation,patternsaresimilartothoseshownunderelevationrangeabove. Desertshrublandoccupiesthedriestbioclimaticenvelope,whilesandsageandshortgrassprairie arethewarmest.Statewide,ponderosa,oak‐shrubandsagebrushshrublandarecloselyrelatedin bioclimaticspace,andshowsubstantialoverlapwiththewarmeranddrierpinyon‐juniperand semi‐desertgrassland.Abovethesewarmeranddrierecosystems,mixedconifer,aspen,and lodgepoleforestshareamid‐elevationenvelopewithmontanegrasslands.Thecoldest,wettest environmentsareoccupiedbyalpinetypes,withspruce‐firforestintermediatebetweenthemiddle groupandthesehabitats. Historictemperaturerangesforwinterminimumsandsummermaximumsforeachupland ecosystemareshowninFigure2.7,andillustratethesamerelationshiptoelevationasdotheother climatevariables.ThegeographicareacurrentlyoccupiedbyeachecosysteminColoradoislikelyto experienceashifttowardwarmertemperatures,withtheresultthatbioclimaticenvelopeswillshift towardhigherelevations.Theacreagethatfallswithinaparticulartemperaturerangewillbe reducedforcoolertemperaturesandincreasedforwarmertemperatures. Climate Change Vulnerability Assessment for Colorado BLM 31 Theoverallelevation,range,andbioclimateenveloperesultsareshowninFigure2.4a. Figure 2.6. Bioclimatic envelope as represented by annual precipitation and mean temperature for ecosystems in Colorado. Error bars represent the 10‐90% range around the mean. 32 Colorado Natural Heritage Program © 2015 Figure 2.7. Minimum winter and maximum summer temperature ranges for ecosystems in Colorado. Boxes represent the middle quartiles, while whiskers show the 10‐90% range. Intrinsic dispersal rate Mostcharacteristicspeciesofforestorwoodlandecosystemsdonotproducelargenumbersof seedlingsorspreadquicklyviavegetativegrowth.WiththeexceptionofaspenandGambeloak, forestandwoodlandtreespeciesaretypicallyslowgrowing,withlimiteddispersalability.Past migrationratesforNorthAmericantreespeciesinthecurrentinterglacialhavebeenestimatedat tenstoseveralhundredsofmetersperyear.Althoughthecurrentlyobserveddistributionofa speciesislikelytolagbehindcurrentclimateconditions,futureconditionsarepredictedtorequire migrationratesonetofivekilometersperyearinorderforspeciestokeepupwithsuitablehabitat conditions(Roberts2013).Shrubandgrass‐dominatedecosystemsaresomewhatbetteradaptedto spreadintoavailablehabitatthroughrelativelyrapidvegetativegrowth.Barrierstoecosystem movementinColoradoareprimarilythoseduetoelevationalgradientsorhabitatfragmentation, althoughsoiltypeislikelytoinfluencedispersalandestablishmentpatternsthroughvariable water‐holdingcapacity.EcosystemranksforthisfactorareshowninFigure2.4b. Climate Change Vulnerability Assessment for Colorado BLM 33 Biological stressors BiologicalstressorsforecosystemsinColoradoincludeforestpestsandpathogens,invasive species,incompatibledomesticlivestockgrazing,andchangesinpatternsofnativeungulate herbivory.EcosystemranksforthisfactorareshowninFigure2.4c. Nativeinsectsthatcausetreedamageandmortalityincludebarkbeetles(Dendroctonusspp.,Ips spp.),westernsprucebudworm(Choristoneuraoccidentalis),andtentcaterpillars(Malacosoma spp.).Armillariarootdiseaseisasignificantcauseofmortalityinconiferspecies.Pinyonare susceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcausesblackstain rootdisease.Five‐needlepines,includinglimberandbristlecone,arethreatenedbywhitepine blisterrust(WPBR)infectioncausedbytheintroducedfungusCronartiumribicola. Exoticinvasiveplantspecieswiththepotentialtoalterecosystemfunctioningthatareregionally widespreadinColoradoincludecheatgrass(Bromustectorum),knapweed(Acroptilonand Centaureaspp.)Russianolive(Elaeagnusangustifolia)leafyspurge(Euphorbiaesula),andtamarisk (Tamarixramosissima).Canadathistle(Cirsiumarvense)andmuskthistle(Carduusnatans)arealso widespread,andother,lessprevalentproblemspeciesincludeoxeyedaisy(Leucanthemum vulgare) andyellowtoadflax(Linariavulgaris).Mountaingrasslands,lowelevationshrubland,and riparian/wetlandecosystemsaremostaffected. Togetherwithlivestockgrazing,overabundanceofnativeungulates(e.g.,deerandelk)andferal burrosorhorsescanaltervegetation,soils,hydrology,andwildlifespeciescompositionand abundancesinwaysthatintensifytheeffectsofclimatechangeontheseresources(Beschtaetal. 2013).Forterrestrialecosystems,theprojectedcombinationofincreasingdrought,higher temperatures,earliersnowmelt,andprecipitationvariabilityinteractingwiththeeffectsof ungulateusecanresultindecreasedbiodiversity,reducedsoilmoisture,acceleratedsoiland nutrientloss,andincreasedsedimentation(Beschtaetal.2013). Extreme events Extremeeventsthatmayincreaseinfrequencyand/orseverityunderchangingclimaticconditions includedrought,wildfire,flooding/erosion,andwindstorms.Ecosystemranksforthisfactorare showninFigure2.4d. ProlongeddroughthasbeenaperiodicinfluenceinthewesternUnitedStates,includingColorado (Woodhouse2004).Ecosystemsoflowerelevationsaregenerallydroughttolerant,although speciescompositionwithinanecosystemislikelytoshiftwithchangingclimatepatterns.Although wescoredvulnerabilitytoabioticeventsasdistinctfrombiologicalstressors,theinteractionof wildfireanddroughtwiththeeffectsofthesefactors,especiallyforestmortalityagentslikebark beetles,blursthedistinctionsomewhat.ThespeciesthatcharacterizeColorado’secosystemshave varyingtolerancetodrought,however,itislikelythatallspeciesarelessresistanttotheeffectsof herbivory,pests,andpathogenswhenunderdroughtstress.Widespreadprevalenceofdrought‐ stressedtreesmayprovideenhancedconditionsforstand‐replacingeventssuchasfireorinsect outbreak(DeRoseandLong2012).Ecosystemsofhigher,wetterelevationshavegenerallybeen “climate‐limited,”withhighfuelloads,butrarelyhavingdryclimateconditionssuitableforfire 34 Colorado Natural Heritage Program © 2015 spread.Lower,moremesicecosystemshavebeencharacterizedas“fuel‐limited,”withconditions frequentlysuitableforfire,butlowfuelloadsunlessprioryearshavebeenwet(Whitlocketal. 2010).Withwarmertemperaturesandmorefrequentdrought,higherelevationforestswith abundantfuelsmayhaveincreasedfirefrequency,whilelowerelevationgrasslandandshrubland ecosystemsbecomemorefuel‐limitedwithreducedbiomassproduction(Arnoldetal.2014). Althoughtherearenooverallprecipitationincreasetrendsassociatedwithrecentwarming,there isevidencethatextremeprecipitationeventshaveincreasedinfrequencyoverthepastseveral decades(Walshetal.2014).Warmerairandoceantemperaturesallowtheatmospheretohold moremoisture,whichcanresultinheavyprecipitation,causingmoreextremefloodinganderosion events,evenifannualprecipitationtotalsdecline.Althoughfuturetrendsinstormoccurrenceare uncertain,anincreaseinfrequencyofseverestormscouldincreasethefrequencyofwindthrow eventsinforestedareas. Non‐climate abiotic stressors Thecombinedeffectsofhumanactionsthatfragmentlandscapes,alternaturalprocesses,reduce biodiversity,anddegradeenvironmentalqualityarelikelytoreducetheresilienceofcomplex adaptiveecosystemstoregimeshiftsunderchangingclimateconditions(Folkeetal.2004).The cumulativeeffectsofanthropogenicdisturbanceinColoradoareduetohabitatfragmentationand conversionduetoagriculturaluseaswellasindustrial,residential,resource,andrecreational developmentactivities.Ourscoringassumesthatecosystemswithhigherlevelsofanthropogenic disturbancearelikelytobelessresilienttodisturbanceofanykindunderfutureclimateconditions. Ecosystemsofthehighestelevations,whicharegenerallyinpublicownership,hadthehighest resilienceratingforthisfactor,whileecosystemsofvalleybottoms,orthoseotherwisefragmented bylandusehadpoorresilienceratings(Figure2.4e). Ecosystem vulnerability ranks Fourofthe20ecosystemsorregionalecosystemsubgroupsassessedhaveanoverallvulnerability rankofHigh,andoneisrankedVeryHigh(Table2.4).Ingeneral,ecosystemsoftheeasternplains havethegreatestexposuretochange,andthoseofhigherelevationshavelowerexposure.Undera longertime‐frame,highelevationareaswouldbesubjecttoincreasedexposure.Mostecosystems wereassessedashavingmoderateresilience.Asummaryofclimatechangevulnerabilityanalysis (CCVA)detailsforeachecosystemisprovidedbelow,beginningonpage42. Climate Change Vulnerability Assessment for Colorado BLM 35 Table 2.4. Vulnerability rank summary for all assessed terrestrial ecosystems. Exposure ‐ Sensitivity final ranking Resilience ‐ Adaptive Capacity final ranking Combined ranks Overall vulnerability rank Aspen forest Low High L/H Low Lodgepole pine forest Low Low L/L Moderate Mixed conifer forest Moderate Moderate M/M Moderate Pinyon‐Juniper woodland Moderate Low M/L High Ponderosa pine forest Moderate Moderate M/M Moderate Low Low L/L Moderate Moderate Moderate M/M Moderate Low High L/H Low Sagebrush shrubland Low Moderate L/M Low Sandsage shrubland High High H/H Moderate Low Moderate L/M Low Moderate High M/H Moderate Semi‐desert grassland Low High L/H Low Shortgrass prairie High Moderate H/M High Riparian woodland & shrubland ‐ east High Moderate H/M High Riparian woodland & shrubland ‐ mountain Low Moderate L/M Low Riparian woodland & shrubland ‐ west High Low H/L Very High Wetlands ‐ east High Moderate H/M High Wetlands ‐ mountain Moderate Moderate M/M Moderate Wetlands ‐ west Moderate Moderate M/M Moderate Ecosystem Target Forest and Woodland Spruce‐Fir forest Shrubland Desert shrubland Oak & mixed mountain shrub Grassland or Herbaceous Alpine Montane grassland Riparian & Wetland Conclusions Allecosystemsarelikelytobeaffectedtosomeextentbyclimatechange.Ecosystemswithlow exposureandhighresiliencecouldbethebeneficiariesoffutureconditions,whilethosewithhigh exposureandlowresiliencearelikelytoexperiencerangecontractionsand/orsignificantchanges inspeciescompositionandoverallcondition.Themajorityofhabitattypeswererankedwithlowor moderatevulnerabilityinouranalysis,however,thegradationsofmoderatelyvulnerable,andthe transitiontohighlyvulnerablearelessclearthantheseparationbetweenlowandmoderate vulnerability.Themethodsusedtocombineestimatedexposureandresiliencescoresleavealarge 36 Colorado Natural Heritage Program © 2015 middlegroundwhichcanbeaffectedbyuncertaintyinclimateprojections,currentknowledge,and ongoingmanagementactions. Bymid‐century,underbothmoderateandhighradiativeforcingscenarios(RCP4.5andRCP8.5),we canexpecttoseewarmertemperaturesstatewide,especiallyontheeasternplains.Warmer temperaturesarelikelytoincludemoreheatwaves,fewercoldsnaps,andgenerallyextendedfrost‐ freeperiods.Althoughtheseconditionscouldbenefitmanyspeciesifprecipitationremains adequate,thewarmingtrendislikelytobeaccompaniedbyeffectivelydrierconditionsinmany areas.Evenifprecipitationlevelsathigherelevationsareessentiallyunchanged,warmer conditionswillleadtomoreprecipitationfallingasraininsteadofsnow,adecreasedsnowpack, earlierrunoff,andearlierdryconditionsinlatesummer(Lucasetal.2014).Allofthesefactorsmay interactwithstressorssuchasfire,forestpestsanddiseases,drought,andanthropogenic disturbancetoalterthefuturetrajectoryofaparticularecosystem. Comparisonoftherecenthistoricalvaluesofclimatevariableswithprojectedvalueswithinthe currentColoradodistributionoftheterrestrialecosystems(Figures2.8and2.9)indicatesseasonal differencesindegreeanddirectionofprojectedchangesintemperatureandprecipitation.For instance,ecosystemsofhigherelevationsareprojectedtoexperienceagreaterincreaseinwinter precipitationthanthoseoflowerelevations,althoughtheamountofwarmingissimilarforall elevations.Projectedchangesinsummerprecipitationaregenerallylessthanforwinter,withsome ecosystemsseeingaslightincreaseandothersaslightdecrease. Theinteractionofclimaticconditionswithotherenvironmentalfactorsandbiogeographichistory shapesthedistributionofecosystemsthatwecurrentlyobserve.Furthermore,thetimelag betweenwhenclimateconditionsbecomesuitableorunsuitableforaspeciesandtheeventual colonizationoreliminationofthatspeciesinanareaaddsanotherlevelofuncertaintyto projectionsoffuturedistribution.Climatechangesoverthepastfewdecadesareprobablyalready facilitatingagradualshiftofecosystemsthatwillbecomemoreapparentbymid‐century. Ouranalysisoftherangeoffutureuncertaintyfocusedon“worstcase”(RCP8.5)outcomesinorder toprovideavulnerabilityprioritizationofkeyecosystemsthatwillfacilitateapragmatic“no‐ regrets”planningstrategyforBLMstaffdealingwiththeongoingeffectsofclimatechangein Colorado. Climate Change Vulnerability Assessment for Colorado BLM 37 Figure 2.8. Projected seasonal average precipitation and mean temperature trajectories for current upland ecosystem ranges in Colorado by mid‐century under a high radiative forcing scenario (RCP8.5). Circles represent current conditions. 38 Colorado Natural Heritage Program © 2015 Figure 2.9. Projected seasonal average precipitation and mean temperature trajectories for current wetland and riparian ecosystem ranges in Colorado by mid‐century under a high radiative forcing scenario (RCP8.5). Circles represent current conditions. Climate Change Vulnerability Assessment for Colorado BLM 39 LITERATURE CITED Arnold,J.D.,S.C.Brewer,andP.E.Dennison.2014.Modelingclimate‐fireconnectionswithintheGreatBasinandUpper ColoradoRiverBasin,westernUnitedStates.FireEcology10:64‐75. Beschta,R.L.,D.L.Donahue,D.A.DellaSala,J.J.Rhodes,J.R.Karr,M.H.O’Brien,T.L.Fleischner,C.D.Williams.2013.Adapting toclimatechangeonwesternpubliclands:addressingtheecologicaleffectsofdomestic,wild,andferalungulates. EnvironmentalManagement51:474‐491. Comer,P.J.,B.Young,K.Schulz,G.Kittel,B.Unnasch,D.Braun,G.Hammerson,L.Smart,H.Hamilton,S.Auer,R.Smyth, andJ.Hak.2012.ClimateChangeVulnerabilityandAdaptationStrategiesforNaturalCommunities:Pilotingmethodsin theMojaveandSonorandeserts.ReporttotheU.S.FishandWildlifeService.NatureServe,Arlington,VA. DeRose,R.J.andJ.N.Long.2012.Drought‐drivendisturbancehistorycharacterizesasouthernRockyMountainsubalpine forest.CanadianJournalofForestResearch42:1649‐1660. Folke,C.,S.Carpenter,B.Walker,M.Scheffer,T.Elmqvist,L.Gunderson,andC.S.Holling.2004.Regimeshifts,resilience, andbiodiversityinecosystemmanagement.AnnualReviewofEcology,Evolution,andSystematics335:557‐581. Holling,D.S.1992.Cross‐scalemorphology,geometry,anddynamicsofecosystems.EcologicalMonographs62:447‐502. Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard. WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado Boulder. ManometCenterforConservationScienceandMassachusettsDivisionofFisheriesandWildlife.2010.ClimateChangeand MassachusettsFishandWildlife:Volumes1‐3.http://www.manomet.org/science‐applications/climate‐change‐energy http://www.mass.gov/dfwele/dfw/habitat/cwcs/pdf/climate_change_habitat_vulnerability.pdf Nash,L.L.andP.H.Gleick.1991.SensitivityofstreamflowintheColoradoBasintoClimaticChanges.JournalofHydrology 125:221‐241. Nash,L.L.andP.H.Gleick.1993.TheColoradoRiverBasinandClimaticChange:Thesensitivityofstreamflowandwater supplytovariationsintemperatureandprecipitation.EPA230‐R‐93‐009.PreparedfortheU.S.EnvironmentalProtection Agency,OfficeofPolicy,Planning,andEvaluation,ClimateChangeDivisionbyPacificInstituteforStudiesinDevelopment, Environment,andSecurity.Oakland,CA. Roberts,D.R.2013.BiogeographichistoriesandgeneticdiversityofwesternNorthAmericantreespecies:implicationsfor climatechange.PhDthesis.DepartmentofRenewableResources,UniversityofAlberta,Edmonton. Prentice,I.C.,W.Cramer,S.P.Harrison,R.Leemans,R.A.Monserud,andA.M.Solomon.1992.Aglobalbiomemodelbased onplantphysiologyanddominance,soilpropertiesandclimate.J.ofBiogeography19:117‐134. Stephenson,N.L.1990.Climaticcontrolofvegetationdistribution:theroleofthewaterbalance.AmericanNaturalist135: 649‐670. TheNatureConservancy[TNC].2012.FreshwatermeasuresofconditionforColorado.Geodatabase. U.S.FishandWildlifeService.1975‐2013.ColoradoNWImapping,vectordigitaldata.NationalWetlandsInventory website.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.C.http://www.fws.gov/wetlands/ USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. 40 Colorado Natural Heritage Program © 2015 Walsh,J.,D.Wuebbles,K.Hayhoe,J.Kossin,K.Kunkel,G.Stephens,P.Thorne,R.Vose,M.Wehner,J.Willis,D.Anderson,S. Doney,R.Feely,P.Hennon,V.Kharin,T.Knutson,F.Landerer,T.Lenton,J.Kennedy,andR.Somerville,2014:Ch.2:Our ChangingClimate.ClimateChangeImpactsintheUnitedStates:TheThirdNationalClimateAssessment,J.M.Melillo,T.C. Richmond,andG.W.Yohe,Eds.,U.S.GlobalChangeResearchProgram,19‐67.doi:10.7930/J0KW5CXT. Whitlock,C.,P.E.Higuera,D.B.McWethy,andC.E.Briles.2010.Paleoecologicalperspectivesonfireecology:revisitingthe fire‐regimeconcept.TheOpenEcologyJournal3:6‐23. Woodhouse,C.A.2004.ApaleoperspectiveonhydroclimaticvariabilityinthewesternUnitedStates.AquaticSciences 66:349‐356. Climate Change Vulnerability Assessment for Colorado BLM 41 TERRESTRIAL ECOSYSTEM CCVA SUMMARIES Forest and Woodland Table 2.5. Key vulnerabilities, forest and woodland ecosystems. Habitat Climate factor(s) Consequences Other considerations Aspen Warmer and dry conditions Aspen decline, especially at lower elevations May benefit from fire increase, small patches in conifer forest may expand after conifer mortality Lodgepole Drought, warmer temperatures Fire and insect outbreak; range contraction Mixed Conifer Warmer and dry conditions Change in relative species Diverse species composition abundance or conversion to makes it likely that some other type species will thrive Pinyon‐juniper Warmer and dry conditions Change in relative species Soil types affect distribution abundance favoring juniper; fire and insect outbreak; reduced pinyon pine cone production Ponderosa Drought Fire and insect outbreak Wildland‐Urban Interface complicated management Spruce‐fir Drought Fire and insect outbreak Slow dispersal, short growing season increases vulnerability over time 42 Colorado Natural Heritage Program © 2015 ASPEN Forestsandwoodlandsdominatedbyquakingaspen extent exaggerated for display R. Rondeau Climate Vulnerability Rank: Low Vulnerability summary Key Vulnerabilities: Hot and dry conditions are likely to lead to aspen decline and mortality at the lowest elevations. However, small aspen patches in conifer forest may benefit from fire increase and expand following conifer mortality. Overallexposuretowarmerandeffectivelydrierconditionsis lowforthisecosysteminColorado;standsatlowerelevationsare mostatrisk.Theseforestsaremoderatelyresilient,andin generallygoodcondition.Aspendynamicsarevariableacrossthe west,dependingonbothspatialandtemporalscales (Kulakowski,Kaye,andKashian2013);asaresultthereismuch uncertaintyaboutthefuturedistributionofthisspecies.Low elevationstandsimpactedbydroughtarelikelytoexperience dieback,butinotherareastheinteractionofchangingclimate anddisturbanceregimesmayfavoraspen(Kulakowski, Matthews,Jarvis,andVeblen2013). Distribution Quakingaspen(Populustremuloides)hasthelargestdistributionofanytreenativetoNorth America(Little1971).Therangeofthisspecieshasexpandeddramaticallysincetheendofthelast glacialmaximum,duringwhichthegreaterpartofitsrangewascoveredbytheCordilleranand Laurentideicesheets.ThiswidespreadecosystemoccursthroughoutmuchofthewesternU.S.and Climate Change Vulnerability Assessment for Colorado BLM 43 northintoCanada,althoughitismorecommoninthemontaneandsubalpinezonesofthesouthern andcentralRockyMountains.Theseareuplandforestsandwoodlandsdominatedbyquaking aspen,orforestsofmixedaspenandconifer,occurringasamosaicofvaryingplantassociations andadjacenttoadiversearrayofotherecosystems,includingmontanegrasslandsandshrublands, wetlands,andconiferousforests.InColoradothissystemrangesinelevationfromabout7,500to 10,500feet,andisquitecommononthewestslope,withsmallerstandsrepresentedontheeast slope. Characteristic species Theseforestshaveasomewhatclosedcanopyoftreesof15‐65ft(5‐20m)tall,dominatedby quakingaspen.Afewconifersmaybepresentincludingwhitefir(Abiesconcolor),subalpinefir (Abieslasiocarpa),Engelmannspruce(Piceaengelmannii),bluespruce(Piceapungens),ponderosa pine(Pinusponderosa,)andDouglas‐fir(Pseudotsugamenziesii).Ifconifersmakeupmorethan 15%ofthetreecanopytheoccurrenceisgenerallyconsidereamixedconiferstand. Theaspencanopytypicallyallowssufficientlightpenetrationforthedevelopmentofalush understory.Understoriesarehighlyvariableandmaybedominatedbyshrubs,graminoids,or forbs.CommonshrubsincludeRockyMountainmaple(Acerglabrum),Saskatoonserviceberry (Amelanchieralnifolia),mountainbigsagebrush(Artemisiatridentatassp.vaseyana),common juniper(Juniperuscommunis),chokecherry(Prunusvirginiana),Wood’srose(Rosawoodsii),russet buffaloberry(Shepherdiacanadensis),mountainsnowberry(Symphoricarposoreophilus),andthe dwarf‐shrubscreepingbarberry(Mahoniarepens)andwhortleberry(Vacciniumspp.).Common graminoidsincludepinegrass(Calamagrostisrubescens),dryspikesedge(Carexsiccata),Geyer's sedge(Carexgeyeri),Ross'sedge(Carexrossii),bluewildrye(Elymusglaucus),slenderwheatgrass (Elymustrachycaulus),Thurberfescue(Festucathurberi),andneedle‐and‐thread(Hesperostipa comata).ExoticgrassessuchastheperennialsKentuckybluegrass(Poapratensis)andsmooth brome(Bromusinermis)andtheannualcheatgrass(Bromustectorum)areoftencommonin occurrencesdisturbedbygrazing.Associatedforbsmayincludecommonyarrow(Achillea millefolium),Engelmann'saster(Eucephalusengelmannii),larkspur(Delphiniumspp.),Richardson's geranium(Geraniumrichardsonii),commoncowparsnip(Heracleummaximum),Porter'slicorice‐ root(Ligusticumporteri),silverylupine(Lupinusargenteus),sweetcicely(Osmorhizaberteroi), westernbrackenfern(Pteridiumaquilinum),Fendler'smeadow‐rue(Thalictrumfendleri),western valerian(Valerianaoccidentalis),Americanvetch(Viciaamericana),mule‐ears(Wyethia amplexicaulis),andmanyothers. Environment Rangewideelevationsgenerallyrangefrom5,000‐10,000feet(1,525to3,050m),butcanbelower insomeregions.Topographyisvariable,sitesrangefromleveltosteepslopes.Occurrencesathigh elevationsarerestrictedbycoldtemperaturesandarefoundonwarmersouthernaspects.Atlower elevationsoccurrencesarerestrictedbylackofmoistureandarefoundoncoolernorthaspectsand mesicmicrosites.Thesoilsaretypicallydeepandwelldevelopedwithrockoftenabsent,and texturerangesfromsandyloamtoclayloams.Parentmaterialsarevariableandmayinclude sedimentary,metamorphicorigneousrocks,butthistypeappearstogrowbestonlimestone, basalt,andcalcareousorneutralshales(Mueggler1988). 44 Colorado Natural Heritage Program © 2015 Distributionofaspenforestisprimarilylimitedbyadequatesoilmoisturerequiredtomeetitshigh evapotranspirationdemand,andsecondarilyislimitedbythelengthofthegrowingseasonorlow temperatures.Climateistemperatewitharelativelylonggrowingseason,typicallycoldwinters anddeepsnow.Meanannualprecipitationisgreaterthan15in(38cm)andtypicallygreaterthan 20in(50cm),exceptinsemi‐aridenvironmentswhereoccurrencesarerestrictedtomesic micrositessuchasseepsorareasthataccumulatelargesnowdrifts. Dynamics Aspenisextremelyshadeintolerant,andabletoestablishquicklyoveradisturbedopenareadueto itsabilitytoreproducebyvegetativesprouting(Howard1996).Thetuftedseedcapsulesproduced bymatureaspentreesareamenabletowinddispersaloveraconsiderabledistance.Although quakingaspenestablishmentfromseediscommoninAlaska,northernCanadaandeasternNorth America,thisislesstrueinthewesternUS,probablybecausegerminatedseedlingsdonotreceive sufficientmoistureforsurvival(Kay1993).Thereisconflictingevidenceforthefrequencyof seedlingestablishmentinthewesternUS,however,andquakingaspenmayestablishfromseed morefrequentlythanpreviouslythought(Howard1996,Rommeetal.1997). Thereissomeevidenceforsynchronousaspenstandestablishmenteventsoveralargeareaofthe intermountainwest.Kaye(2011)identifiedtwopeakperiodsofestablishmentviasexual reproduction,thefirstintheperiod1870‐1890,andtheotherin1970‐1980.Shespeculatesthatthe earlierestablishmenteventmaybethelegacyofthelastlargefireeventsbeforewidespreadfire suppressionintheintermountainwest.Thesecondestablishmentpeakcorrespondswithimproved moistureconditionsduetoashiftinthePacificDecadalOscillationandtheAtlanticMultidecadal Oscillation.ElliotandBaker(2004)foundthataspenstandsintheSanJuanMountainsare regeneratingandincreasingindensity.Furthermore,theybelievethataspenincreaseattreelineis occurringasaresultofestablishmentfromseed.Althoughquakingaspenproducesabundantseeds, seedlingsurvivalisrarebecausethelongmoistconditionsrequiredtoestablishthemarerarein thesehabitats.Superficialsoildryingwillkillseedlings(Knight1994). Aspenforestsandwoodlandsoftenoriginatefrom,andarelikelymaintainedby,stand‐replacing disturbancessuchascrownfire,diseaseandwindthrow,orclearcuttingbymanorbeaver.The stemsofthesethin‐barked,clonaltreesareeasilykilledbygroundfires,buttheycanquicklyand vigorouslyresproutindensitiesofupto30,000stemsperhectare(Knight1994).Thestemsare relativelyshort‐lived(100‐150years),andtheoccurrencewillsucceedtolonger‐livedconifer forestifundisturbed.Occurrencesarefavoredbyfireintheconiferzone(Mueggler1988).With adequatedisturbanceaclonemaylivemanycenturies. Althoughaspenisnotfiretolerant,itishighlycompetitiveinburnedareasifotherconditionsare suitable.Aspenclonessurviveintheunderstoryofcool,moistmixedconiferandlowelevation spruce‐fir,andcanrespondquicklytodisturbances.Instandsaffectedbymultipledisturbance types(e.g.fire,blowdown,beetle‐kill),aspenregenerationmaybefavoredoverthatofconifers (Kulakowski,Matthews,Jarvis,andVeblen2013). Climate Change Vulnerability Assessment for Colorado BLM 45 CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0.2% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (36.0%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofaspenforestin Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About36%ofaspenforestecosysteminColoradowillbeexposedtoeffectivelydrierconditions evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Quakingaspenisabletogrowonawidevarietyofsites,bothdryandmesic(Mueggler1988). Climaticconditions,inparticularminimumwintertemperaturesandannualprecipitationamounts arevariableovertherangeofthespecies(Howard1996).Ingeneral,quakingaspenisfoundwhere annualprecipitationexceedsevapotranspiration,andthelowerlimitofitsrangecoincideswitha meanannualtemperatureof45°F(Perala1990).InthecentralRockyMountains,quakingaspen distributionishighlycorrelatedwithelevation,duetoitsinfluenceontemperatureand precipitationpatterns.IntheRockyMountainsstandsgenerallyoccurwhereannualprecipitationis greaterthan14.9in(38cm)peryear(MorelliandCarr2011)andsummertemperaturesare moderate. Resilience and Adaptive Capacity Rank Overall Score: 0.71 Rank: High Bioclimatic envelope and range Averagedcategoryscore:0.76 Aspenforestsarenotfoundatalpineelevations,butstandsarecommonthroughoutcentraland westernColoradoatmontanetosubalpineelevations.Aspenforestshavesignificantpresencein 63%ofColorado’soverallprecipitationrange,andin40%ofthestate’sgrowingdegreedaysrange. QuakingaspenisverywidelydistributedinNorthAmerica,andthesouthernlimitofitsrangeis currentlywelltothesouthofColorado. Growth form and intrinsic dispersal rate Score:0.50 46 Colorado Natural Heritage Program © 2015 Quakingaspenisarelativelyfastgrowingspecies,andabletoquicklycolonizedisturbedareasby vegetativereproduction.However,duetoitstreegrowthform,anduncertaintyaboutseed dispersalrates,thisecosystemwasscoredashavingintermediateresilienceinthiscategory. Vulnerability to increased attack by biological stressors Score:0.8 Vulnerabilityofaspentopathogensandherbivores,andsubsequentaspenmortalitymaybe increasedbyclimatechangeifdroughtandwarmerconditionsincreaseenvironmentalstress (MorelliandCarr2011).Heavygrazingbyelkincombinationwithdroughtappearstobeleadingto declineinsomeareas(MorelliandCarr2011).Stressfromgrazingcouldbemitigatedby managementactions.Cankerinfections,gypsymoth,andforesttentcaterpillaroutbreaksare tightlyassociatedwithdrierandwarmerconditions(CryerandMurray1992,Johnston2001,Logan 2008,Hoggetal.2001). Vulnerability to increased frequency or intensity of extreme events Score:0.7 Aspenshaveincreasedsusceptibilitytoepisodicdeclineatlowerelevations,underwarmanddry conditions(Worralletal.2008).Thisaspendieback(sometimescalledSuddenAspenDecline) appearstoberelatedtodroughtstress,andistypicallygreatestonthehotteranddrierslopes, whichareusuallyatthelowestelevationsofastand(Rehfeldtetal.2009).Standsmayundergo thinning,butthenrecover.Increasingdroughtwithclimatechangeisbelievedtobetheprimary vulnerabilityofthisecosystem(Worralletal.2013),andsubstantiallossofthistypecanbe expected.Theeffectsofdroughtarelikelytointeractwithotherstressorssuchasoutbreaksof pestsanddisease,snowmelttiming,andungulateherbivory. Theinteractionofclimatechangewithnaturaldisturbancemayalsoaffectthefuturedistributionof aspen.Althoughaspenisnotfiretolerant,itislikelytoestablishinadjacentforeststhathave burned,ifotherconditionsaresuitable. Other indirect effects of non‐climate stressors – landscape condition Score:0.77 AspenforestsinColoradoareingoodconditionandnothighlythreatened.MuchofColorado’s aspenforestisonfederallandsmanagedbytheU.S.ForestService.Primaryhumanactivitiesinthis ecosystemincludecattleandsheepgrazing,recreation,andhunting.Someaspenstandsarecutfor timberproducts.Threatstotheaspenforestsandwoodlandsarecomparativelylow. Literature Cited Cryer,D.H.andJ.E.Murray.1992.Aspenregenerationandsoils.Rangelands14(4):223‐226. Elliot,G.P.andW.L.Baker.2004.Quakingaspen(PopulustremuloidesMichx.)attreeline:acenturyofchangeintheSan JuanMountains,Colorado,USA.JournalofBiogeography31:733‐745. Climate Change Vulnerability Assessment for Colorado BLM 47 Hogg,E.H.2001.ModelingaspenresponsestoclimaticwarmingandinsectdefoliationinwesternCanada.In:Shepperd, W.D.;Binkley,D.;Bartos,D.L.;Stohlgren,T.J.;Eskew,L.G.,comps.Sustainingaspeninwesternlandscapes:symposium proceedings.Gen.Tech.Rep.RMRS‐P‐18.FortCollins,CO:U.S.DepartmentofAgriculture,USFS,RockyMountainResearch Station.460p. Howard,J.L.1996.Populustremuloides.In:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture, ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis Johnston,B.C.2001.MultipleFactorsAffectAspenRegenerationontheUncompahgrePlateau,West‐CentralColorado. Pages395‐414.In:Shepperd,W.D.,D.Binkley,D.L.Bartos,T.J.Stohlgren,andL.G.Eskew,compilers.Sustainingaspenin westernlandscapes:symposiumproceedings.USDAForestServiceProceedingsRMRS‐P‐18.GrandJunction,CO.460p. Kay,C.E.1993.AspenseedlingsinrecentlyburnedareasofGrandTetonandYellowstoneNationalParks.Northwest Science.67(2):94‐104. Kaye,M.W.2011.MesoscalesynchronyinquakingaspenestablishmentacrosstheinteriorwesternUS.ForestEcology andManagement262:389‐397. Knight,D.H.1994.Mountainsandplains:EcologyofWyominglandscapes.YaleUniversityPress,NewHaven,MA.338pp. Kulakowski,D.,M.W.Kaye,andD.M.Kashian.2013.Long‐termaspencoverchangeinthewesternUS.ForestEcologyand Management299:52‐59. Kulakowski,D.,C.Matthews,D.Jarvis,andT.T.Veblen.2013.Compoundeddisturbancesinsub‐alpineforestsinwestern Coloradofavorfuturedominancebyquakingaspen(Populustremuloides).JournalofVegetationScience24:168‐176. Little,E.L.,Jr.1971.AtlasoftheUnitedStatestrees.Volume1.Conifersandimportanthardwoods.Misc.Publ.1146. Washington,DCU.S.DepartmentofAgriculture,ForestService.320p. Logan,J.2008.GypsyMothRiskAssessmentintheFaceofaChangingEnvironment:ACaseHistoryApplicationinUtah andtheGreaterYellowstoneEcosystem.RestoringtheWest2008:FrontiersinAspenRestoration,UtahStateUniversity, Logan,Utah. Morelli,T.L.andS.C.Carr.2011.Areviewofthepotentialeffectsofclimatechangeonquakingaspen(Populus tremuloides)intheWesternUnitedStatesandanewtoolforsurveyingsuddenaspendecline.Gen.Tech.Rep.PSW‐GTR‐ 235.Albany,CA:U.S.DepartmentofAgriculture,ForestService,PacificSouthwestResearchStation.31p. Mueggler,W.F.1988.AspencommunitytypesoftheIntermountainRegion.USDAForestServiceGeneralTechnical ReportINT‐250.IntermountainResearchStation,Ogden,Utah.135pp. Perala,D.A.1990.PopulustremuloidesMichx.quakingaspen.Pp555‐569In:Burns,RussellM.;Honkala,BarbaraH., technicalcoordinators.SilvicsofNorthAmerica:Volume2,Hardwoods.AgricultureHandbook654.Washington,DC:U.S. DepartmentofAgriculture,ForestService.Available:http://www.srs.fs.usda.gov/pubs/misc/ag_654_vol2.pdf Rehfeldt,G.E.,D.E.Ferguson,andN.L.Crookston.2009.Aspen,climate,andsuddendeclineinwesternUSA.ForestEcology andManagement258:2353–2364 Romme,W.H.,Turner,M.G.,Gardner,R.H.,Hargrove,W.W.,Tuskan,G.A.,Despain,D.G.,andRenkin,R.A.1997.ARare EpisodeofSexualReproductioninAspen(PopulustremuloidesMichx.)Followingthe1988YellowstoneFires.Natural AreasJournal.17:17‐25. WorrallJ.J.,L.Egeland,T.Eager,R.Mask,E.Johnson,etal.2008.RapidmortalityofPopulustremuloidesinsouthwestern Colorado,USA.ForestEcologyandManagement255(3‐4):686‐696.http://dx.doi.org/10.1016/j.foreco.2007.09.071. 48 Colorado Natural Heritage Program © 2015 Worrall,J.J.,G.E.Rehfeldt,A.Hamann,E.H.Hogg,S.B.Marchetti,M.Michaelian,andL.K.Gray.2013.Recentdeclinesof PopulustremuloidesinNorthAmericalinkedtoclimate.ForestEcologyandManagement229:35‐51. Climate Change Vulnerability Assessment for Colorado BLM 49 LODGEPOLE Forestsdominatedbylodgepolepine R. Rondeau extent exaggerated for display Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Warmer and drier conditions are likely to increase the impact of fire and insect outbreaks in lodgepole forests. Lodgepole stands near the southern end of the range may be lost. Lodgepolepineforestisrankedmoderatelyvulnerabletothe effectsofclimatechangebymid‐century.Primaryfactors contributingtothisrankingareitsvulnerabilitytoforest disturbancesthatmayincreaseinthefuture,andthefactthatitis atthesouthernedgeofitsdistributioninColorado.Lodgepole forestsinColoradohaveexperiencedsignificantmortalitydueto themountainpinebeetle,andtheinteractionofthisfactorwith increasedfireanddroughtfrequencyandintensitycouldleadto conspicuouschangesinthefutureextentandformofthese forests. Distribution ThismatrixformingsystemiswidespreadinuppermontanetosubalpineelevationsoftheRocky Mountains,Intermountainregion,andnorthintotheCanadianRockies.Lodgepolepinereachesthe southernextentofitsrangeataboutthemiddleoftheupperGunnisonBasin(Johnston1997),so thisecosystemisnotfoundinsouthernColorado. 50 Colorado Natural Heritage Program © 2015 Characteristic species TheseforestsaredominatedbyRockyMountainlodgepolepine(Pinuscontortavar.latifolia)with shrub,grass,orbarrenunderstories.Manystandsconsistofonlylodgepolepine,butothersare intermingledwithmixedconiferorquakingaspenstands(thelatteroccurringwithinclusionsof deeper,typicallyfine‐texturedsoils).Shrubandherbaceouslayersareoftenpoorlydevelopedin lodgepolepineforests,andplantspeciesdiversityislow.Somecommonunderstoryshrubsinclude kinnikinnick(Arctostaphylosuva‐ursi),snowbrushceanothus(Ceanothusvelutinus),twinflower (Linnaeaborealis),creepingbarberry(Mahoniarepens),antelopebitterbrush(Purshiatridentata), dwarfbilberry(Vacciniumcaespitosum),whortleberry(Vacciniummyrtillus),grousewhortleberry (Vacciniumscoparium),andcurrant(Ribesspp.). Environment Soilssupportingtheseforestsaretypicallywell‐drained,gravelly,havecoarsetextures,areacidic, andrarelyformedfromcalcareousparentmaterials.InColorado,lodgepolepineforestsgenerally occurbetween8,000‐10,000feetongentletosteepslopesonallaspects.Somelodgepoleforests persistonsitesthataretooextremeforotherconiferstoestablish.Theseincludeexcessivelywell‐ drainedpumicedeposits,glacialtillandalluviumonvalleyfloorswherethereiscoldair accumulation,warmanddroughtyshallowsoilsoverfracturedquartzitebedrock,andshallow moisture‐deficientsoilswithasignificantcomponentofvolcanicash. Dynamics Lodgepolepineisanaggressivelycolonizing,shade‐intolerantconifer.Establishmentisepisodic andlinkedtostand‐replacingdisturbances,primarilyfire.ThefrequencyofnaturalfiresinRocky Mountainlodgepolepinestandsrangesfromafewyearsto200ormoreyears(Davisetal.1980). Lowtomoderateserveritysurfacefiresarelikelytohaveareturnintervalontheorderofafew decades,whilestand‐replacingfiresaregenerallylessfrequent(Crane1982). Lodgepolepinesproducebothopenandclosed,serotinouscones,andcanreproducequicklyaftera fire.Followingstand‐replacingfires,lodgepolepinerapidlycolonizesanddevelopsintodense, even‐agedstands(sometimesreferredtoas“doghair”stands).Thisfire‐adaptedspecieshasthe potentialtomoveintoareaswherespruce‐firforestsburn.Theproductionofserotinousconesisa highlyheritabletraitamongRockyMountainlodgepolepinepopulations(Parchmanetal.2012). Serotinousconesappeartobestronglyfavoredbyfire,andallowrapidcolonizationoffire‐cleared substrates(BurnsandHonkala1990),butserotinyisalsoselectedagainstbycontinuousremoval ofthecanopyseed‐bankbyactiveseedpredators(BenkmanandSiepielski2004).Treeswith serotinousconesarefavoredunderconditionsofhighfirefrequencyandlowpredation,but nonserotinyhasanadvantageunderveryhighseedpredation,regardlessoffirefrequency(Talluto andBenkman2014). Climate Change Vulnerability Assessment for Colorado BLM 51 CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (7.3%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeoflodgepolepine forestinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum. Exposure to precipitation change About7%oflodgepoleforestecosysteminColoradowillbeexposedtoeffectivelydrierconditions evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Lodgepolepineistolerantofverylowwintertemperatures,andinmanylodgepoleforestssummer temperaturescanfallbelowfreezing,sothereisnotruefrost‐freeseason(LotanandPerry1983). Lodgepolepineisalsoabletotakeadvantageofwarmgrowingseasontemperatures,andalonger growingseasonduetowarmerfalltemperaturescouldfavorthegrowthoflodgepolepine(Villalba etal.1994,Chhinetal.2008).InsouthernColorado,whitefir(Abiesconcolor)appearstotakethe placeoflodgepolepineinconiferousforestsofsimilarelevations.Whitefirappearstotolerate warmertemperaturesthanlodgepolepine(Thompsonetal.2000);underwarmerconditionsit maybeabletomoveintoareascurrentlyoccupiedbylodgepoleforest. Lodgepolepineisanorthernspeciesthatdoesexceptionallywellinverycoldclimatesandcan tolerateawiderangeofannualprecipitationpatterns,fromfairlydrytofairlywet,butgenerally growsonlywhereannualprecipitationisatleast18‐20inches(Mason1915,LotanandPerry 1983).Lodgepolepineforestsarefoundondriersitesthanspruce‐firforest,althoughsnowfallis typicallyheavyintheseforests.Summersareoftenquitedry,andlodgepolepineisdependenton snowmeltmoistureformostofthegrowingseason.Inlowsnowpackyears,growthisreduced(Hu etal.2010). Resilience and Adaptive Capacity Rank Overall Score: 0.35 Rank: Low Bioclimatic envelope and range Averagedcategoryscore:0.50 52 Colorado Natural Heritage Program © 2015 LodgepolepinesubspeciesarewidelydistributedinNorthAmerica,butRockyMountainlodgepole reachesthesouthernedgeofitsdistributioninsouth‐centralColorado.Lodgepoleforestsarenot foundatthehighestelevations,butrangefrommontanetosubalpine.Statewide,theannual averageprecipitationrangeforlodgepoleforestcoversabout64%ofColorado’soverall precipitationrange.Growingseasonlengthforlodgepolebroadlyoverlapsthatofthewarmerend ofthespruce‐firdistribution,andcoversabout35%ofthestatewiderangeofgrowingdegreedays. Growth form and intrinsic dispersal rate Score:0 Thetreegrowthformandslowdispersalrateoflodgepolepinegivethisecosystemalowresilience scoreinthiscategory. Vulnerability to increased attack by biological stressors Score:0 Althoughinvasivespeciesaregenerallynotathreat,lodgepoleforestsarevulnerabletothepest outbreaksthatappeartoincreasewithwarmer,drier,drought‐proneclimates.Biologicalstressors thatinteractwithfiredynamicsoflodgepoleforestincludeinfestationsoflodgepolepinedwarf‐ mistletoeandmountainpinebeetle(Anderson2003).Dwarfmistletoereducestreegrowthand coneproduction,andgenerallyleadstoearliermortality(HawksworthandJohnson1989). AlthoughlodgepoleforestsarestillcommonacrossColorado,mosthaveexperiencedwidespread damagefromasevereoutbreakofmountainpinebeetle.Thepinebeetleisanativespecies,and periodicoutbreaksofthisinsectarepartofthenaturalcyclethatmaintainsColorado’smountain forests.LodgepoleforestsareexpectedtopersistinColorado(Kaufmannetal.2008),although foreststructuremaydifferfromwhathasbeenpresenthistorically. Vulnerability to increased frequency or intensity of extreme events Score:0.5 Warmingtemperaturesandeffectivelydrierconditionsareexpectedtohaveaneffectonfire frequencyandseverity.Firesuppressioneffectsinlodgepolepineforestsareevidentatalandscape levelinanoveralllackofvarietyinsuccessionalstages.Individuallodgepolestandsmaynotbe outsidethenaturalrangeofvariation,butatalandscapelevelfiresuppressionhasprobablyledto larger,denser,morehomogenouspatchesthataremorefavorableforlargefireandheavy infestationsofmountainpinebeetle(Keaneetal.2002).Thecurrentoutbreakofmountainpine beetleappearstobesubsiding,leavingthepotentialforlargefireswithextremebehaviortooccur inthekilledforests(Kaufmannetal.2008). Other indirect effects of non‐climate stressors – landscape condition Score:0.75 LodgepoleforestlandscapesinColoradoaregenerallyingoodcondition.Althoughlarge,intact patchesoflodgepoleforestpersistinColorado,thismaychangeastheeffectsofextensivemountain pinebeetlemortalityandincreasedfireextentandfrequencyreshapethelodgepolematrix. Climate Change Vulnerability Assessment for Colorado BLM 53 Developmentofexurbanorrecreationalareasisaminorsourcesofdisturbanceandfragmentation inlodgepoleforests,asaretheassociatedroadsandutilitycorridors.TimberharvestinColorado’s lodgepoleforestshasdeclinedsignificantlysincethelate19thcentury,butarecentincreaseinthe useofbeetle‐killwoodhadmaintainedasmallmarketforthisspecies.Woodharvestactivitiesarea minorsourceofdisturbanceinthishabitattype,butextensivesalvageloggingandthinningmay havelocallysevereimpacts. Literature Cited Anderson,M.D.2003.Pinuscontortavar.latifolia.In:FireEffectsInformationSystem,[Online].U.S.Departmentof Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ Benkman,C.W.andA.M.Siepielski.2004.Akeystoneselectiveagent?Pinesquirrelsandthefrequencyofserotinyin lodgepolepine.Ecology85:2082‐2087. Burns,R.M.,andB.H.Honkala,technicalcoordinators.1990a.SilvicsofNorthAmerica:Volume1.Conifers.USDAForest Service.AgricultureHandbook654.Washington,DC.675pp. Chhin,S.,E.H.Hogg,V.J.Lieffers,andS.Huang.2008.Influencesofclimateontheradialgrowthoflodgepolepinein Alberta.Botany86:167‐178. Crane,M.F.1982.FireecologyofRockyMountainRegionforesthabitattypes.USDAForestServicefinalreport.272pp. Davis,KathleenM.;Clayton,BruceD.;Fischer,WilliamC.1980.FireecologyofLoloNationalForesthabitattypes.INT‐79. Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainForestandRangeExperimentStation.77p. Hawksworth,F.G.andD.W.Johnson.1989.BiologyandmanagementofdwarfmistletoeinlodgepolepineintheRocky Mountains.Gen.Tech.Rep.RM‐169.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountain ForestandRangeExperimentStation.38p. Hu,J.,D.J.P.Moore,S.P.Burns,andR.K.Monson.2010.Longergrowingseasonsleadtolesscarbonsequestrationbya subalpineforest.GlobalChangeBiology16:771‐783. JohnstonB.C.1997.EcologicaltypesoftheUpperGunnisonBasin.Reviewdraft.USDA,ForestService,Gunnison,CO.539 pp. KaufmannM.R.,G.H.Aplet,M.Babler,W.L.Baker,B.Bentz,M.Harrington,B.C.Hawkes,L.StrohHuckaby,M.J.Jenkins,D.M. Kashian,R.E.Keane,D.Kulakowski,C.McHugh,J.Negron,J.Popp,W.H.Romme,T.Schoennagel,W.Shepperd,F.W.Smith, E.KennedySutherland,D.Tinker,andT.T.Veblen.2008.Thestatusofourscientificunderstandingoflodgepolepineand mountainpinebeetles–afocusonforestecologyandfirebehavior.TheNatureConservancy,Arlington,VA.GFItechnical report2008‐2. Lotan,J.E.andD.A.Perry.1983.Ecologyandregenerationoflodgepolepine.Agric.Handb.606.Washington,DC:U.S. DepartmentofAgriculture,ForestService.51p. Mason,D.T.1915.LifehistoryoflodgepolepineintheRockyMountains.Bulletin154.Washington,DC:U.S.Departmentof Agriculture,ForestService.35p. ParchmanT.L.,Z.Gompert,J.Mudge,F.D.Schilkey,C.W.Benkman,andC.A.Buerkle.2012.Genome‐wideassociation geneticsofanadaptivetraitinlodgepolepine.MolecularEcology21:2991–3005. 54 Colorado Natural Heritage Program © 2015 Talluto,M.V.andC.W.Benkman.2014.Conflictingselectionfromfireandseedpredationdrivesfine‐scaledphenotypic variationinawidespreadNorthAmericanconifer.PNAS111:9543‐9548. Thompson,R.S.,K.H.Anderson,andP.J.Bartlein.2000.Atlasofrelationsbetweenclimaticparametersanddistributions ofimportanttreesandshrubsinNorthAmerica.U.S.GeologicalSurveyProfessionalPaper1650‐A. Villalba,R.,T.T.Veblen,andJ.Ogden.1994.ClimaticinfluencesonthegrowthofsubalpinetreesintheColoradoFront Range.Ecology75:1450‐1462. Wheeler,N.C.andW.B.Critchfield.1985.Thedistributionandbotanicalcharacteristicsoflodgepolepine:biogeographical andmanagementimplications.In:Baumgartner,D.M.,R.G.Krebill,J.T.Arnott,andG.F.Weetman,compilersandeditors. Lodgepolepine:Thespeciesanditsmanagement:Symposiumproceedings;1984May8‐10;Spokane,WA;1984May14‐ 16;Vancouver,BC.Pullman,WA:WashingtonStateUniversity,CooperativeExtension:1‐13. Climate Change Vulnerability Assessment for Colorado BLM 55 MIXED CONIFER Dry‐mesicandmesicforestsorwoodlandsofDouglasfir,whitefir,otherconiferspecies,and occasionalaspenstands R. Rondeau extent exaggerated for display Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Warmer and drier conditions can be expected to change the relative tree species abundance in mixed conifer forests. Although some stands may convert to other types, the diverse species composition of these forests increases the likelihood that some species will benefit under future conditions. Novel mixed conifer types may appear. Theecotonalnatureofmixedconiferstandsincreasesthe difficultyofinterpretingtheirvulnerabilitytoclimatechange,and theircapacitytomoveintonewareas.Thediversityofspecies withinmixedconiferforestmayincreaseitsflexibilityintheface ofclimatechange.Changingclimateconditionsarelikelytoalter therelativedominanceofoverstoryspecies,overallspecies compositionandrelativecover,primarilythroughtheactionof fire,insectoutbreak,anddrought.Droughtanddisturbance tolerantspecieswillbefavoredoverdroughtvulnerablespecies. Speciessuchasbluesprucethatareinfrequentandhavea narrowbioclimaticenvelopearelikelytodeclineormoveupin elevation.AbundantspeciesthathaveawidebioclimaticenvelopesuchasGambeloakandaspen arelikelytoincrease.Outcomesforparticularstandswilldependoncurrentcompositionand location.Currentstandsofwarm,drymixedconiferbelow8,500ftmaybeathigherriskormay converttopureponderosapinestandsasfutureprecipitationscenariosfavorrainratherthan snow.Upwardmigrationintonewareasmaybepossible. 56 Colorado Natural Heritage Program © 2015 Distribution InColoradothesemixed‐coniferforestsoccuronallaspectsatelevationsrangingfrom4,000to 10,800ft(1,200‐3,300m).Thecompositionandstructureofoverstoryisdependentuponthe temperatureandmoisturerelationshipsofthesite,andthesuccessionalstatusoftheoccurrence. Thesecomplexforestandwoodlandcommunitiesareoftenintermingledwithotherforesttypes, includingponderosapine,aspen,lodgepole,andspruce‐fir,dependingonelevation,andmaybe adjacenttoshrublandandripariantypesaswell. Thesimilarenvironmentaltolerancesofmixed‐coniferandaspenforestmeansthatthetwoforest typesaresomewhatintermixedinmanyareas.Theseforestsappeartorepresentabiophysical spacewhereanumberofdifferentoverstoryspeciescanbecomeestablishedandgrowtogether. Localconditions,biogeographichistory,andcompetitiveinteractionsovermanydecadesareprime determinantsofstandcomposition. Characteristic species Severalsub‐typesorphases,representingacontinuumfromwarm‐drytocold‐wethavebeen describedfortheseforests(Rommeetal.2009),andspeciescomposition,standstructure,andsite characteristicsvaryaccordingly. Thesemixed‐speciesforestsmayincludeDouglas‐fir(Pseudotsugamenziesii),whitefir(Abies concolor),ponderosapine(Pinusponderosa),quakingaspen(Populustremuloides),bluespruce (Piceapungens),Engelmannspruce(Piceaengelmannii),subalpinefir(Abieslasiocarpa),andlimber pine(Pinusflexilis),whichreachesthesouthernlimitofitsdistributionintheSanJuanmountains. Warm‐drysitesarecharacterizedbyDouglas‐fir,oftenwithponderosapineandGambeloak (Quercusgambelii).Cool‐moiststandsarelikelytobedominatedbyDouglasfir,whitefir,blue spruceandsomequakingaspen.TypicalunderstoryshrubspeciesincludeRockyMountainmaple (Acerglabrum),Saskatoonserviceberry(Amelanchieralnifolia),kinnikinnick(Arctostaphylosuva‐ ursi),rockspirea(Holodiscusdumosus),fivepetalcliffbush(Jamesiaamericana),commonjuniper (Juniperuscommunis),creepingbarberry(Mahoniarepens),Oregonboxleaf(Paxistimamyrsinites), mountainninebark(Physocarpusmonogynus),mountainsnowberry(Symphoricarposoreophilus), thimbleberry(Rubusparviflorus),andwhortleberry(Vacciniummyrtillus).Wheresoilmoistureis favorable,theherbaceouslayermaybequitediverse. CharacteristicanimalspeciesinmixedconiferforestincludeRuby‐crownedkinglet,Hermitthrush, Hammond’sflycatcher,Williamson’ssapsucker,Yellow‐rumpedwarbler,Pinesiskin,Red‐breasted nuthatch,Townsend’ssolitaire,Westerntanager,Browncreeper,Cassin’sfinch,Redcrossbill,Olive‐ sidedflycatcher,Mountainchickadee,Junco,Snowshoehare,Lynx,andPinemarten. Environment Thecompositionandstructureofoverstoryisdependentuponthetemperatureandmoisture relationshipsofthesite,andthesuccessionalstatusoftheoccurrence(DeVeliceetal.1986, Muldavinetal.1996).Driersites,oftenonsoutherlyaspects,maybesimilartoponderosapine forest,butwithDouglas‐firandwhitefirasimportantcanopycomponents.Historically,these standsweresubjecttofairlyfrequentlowtomoderateintensityfire,whichhelpedtomaintaina Climate Change Vulnerability Assessment for Colorado BLM 57 relativelyopenstructure(Rommeetal.2009).Moremesicstandsarefoundincoolravinesandon north‐facingslopes,lackponderosapine,andarelikelytobedominatedbyDouglas‐firandwhite firwithbluespruceorquakingaspenstands,andoccasionalinclusionsofEngelmannspruceor subalpinefir.Thesecool‐moiststandswouldhavelessfrequentfires,andsoilmoistureconditions thatallowthegrowthofdensestandsthateventuallyburninahigh‐intensityfire(Rommeetal. 2009). Soilsofthisecosystemarevariable,andmaybederivedfromparentmaterialsofigneous, metamorphic,orsedimentaryorigin.Moreopenwoodlandcommunitiesaretypicallyfoundonsoils thatareshallow,rocky,andwell‐drained. Dynamics Long‐termecologicaldynamicsofmixedconiferforestsarerelativelyunderstudied(Rommeetal. 2009).Therehasbeenconsiderablerecentdebateabouthistoricrangeofvariationforstand densityandhigh‐severityfireincidenceinmixedconiferforests(WilliamsandBaker2012,Fuleet al.2013,WilliamsandBaker2014).Naturalfireprocessesinthissystemareprobablyhighly variableinbothreturnintervalandseverity,dependingonstandcomposition,siteconditions, biogeographichistory,andshort‐andlong‐termclimatepatterns.Forinstance,droughtandhigh temperaturespriortofireinitiationareassociatedwithlargerburnedareaasfinefuelsbecomedry (Littelletal.2009). Althoughcoolmoistmixed‐coniferforestsaregenerallywarmeranddrierthanspruce‐firforests, thesestandsareofteninrelativelycool‐moistenvironmentswherefireswerehistorically infrequentwithmixedseverity.Whenstandsareseverelyburned,aspenoftenresprouts.Warm‐ drymixedconiferforestshadahistoricfire‐regimethatwasmorefrequent,withmixedseverity.In areaswithhighseverityburns,aspenorGambeloakoftenresproutsanddominatesthesitefora relativelylongperiodoftime.Insomelocations,muchoftheseforestshavebeenloggedorburned duringEuropeansettlement,andpresent‐dayoccurrencesaresecond‐growthforestsdatingfrom fire,logging,orotheroccurrence‐replacingdisturbances(MaukandHenderson1984,Chappellet al.1997). Additionaldisturbancesinmixedconiferforestsmaybeduetowindstormsorinsect‐pathogen outbreaks.Sprucebudworminfestationsareamajorsourceoftreemortalityandcanaffect landscape‐scaledynamicsinmixedconiferforest(Rommeetal.2009). CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0.1% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Yes (61.0%) Final Exposure‐Sensitivity Rank Moderate 58 Colorado Natural Heritage Program © 2015 Exposure to temperature change Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofmixedconifer forestinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum. Exposure to precipitation change About61%ofmixedconiferforestecosysteminColoradowillbeexposedtoeffectivelydrier conditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Withthevariationfromwarm‐drytypestocool‐moisttypes,mixedconiferforestshaveabroad ecologicalamplitude,andvariationbetweenstandsisobviouslyinfluencedbybothtemperature andprecipitation.Theeffectsofclimaticfactorsontheecosystemasawhole,however,arelittle known,especiallyinColorado.GenerallywarmingconditionsduringtheearlyHoloceneallowedfor theexpansionofsomemixedconiferforesttreespeciesincludingDouglas‐fir,ponderosapine,and Gambeloak,andthedevelopmentofmixedconiferforestsinareaspreviouslycharacterizedby subalpinespecies(Andersonetal.2008). StudiesfromthesouthwesternUSindicatethatfactorscontrollingthedistributionandpersistence ofthecomponenttreespeciesinmixedconiferforestsarecomplexandnoteasilyexplainedata broadclimaticlevel.Forinstance,KaneandKolb(2014)foundthatalthoughdroughtwasan importantdriverforaspenmortalityinmixedconifer,therewasnosimilareffectforthemuch slower‐growinglimberpine.Douglas‐firandwhitefirmortalityduringthedroughtwasmoderately associatedwithpreviousgrowthrate(i.e.,sitequality),indicatingthatlonger‐termprocessessuch ascompetitionanddisturbancehistorymayalsoplayarole.Cool‐moistmixedconiferforestsof higherelevationsmaybelesssusceptibletodrought(AdamsandKolb2005),butarenot completelyprotectedbygenerallycooler,wetterconditions(Kaneetal.2014). Resilience and Adaptive Capacity Rank Overall Score: 0.60 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.78 Mixedconiferforestsoccuratfoothillandmontaneelevationsthroughoutcentralandwestern Colorado,andhaveafairlywideecologicalamplitude.Theseforestshavesignificantpresencein 60%ofColorado’soverallprecipitationrange,andin51%ofthestate’sgrowingdegreedaysrange. Thehighlyvariableandecotonalnatureofmixedconiferforestscontributestothehigherresilience scoreinthiscategory. Growth form and intrinsic dispersal rate Score:0 Climate Change Vulnerability Assessment for Colorado BLM 59 Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema lowresiliencescoreinthiscategory. Vulnerability to increased attack by biological stressors Score:0.7 StandsinthesouthernpartofColoradohavebeenimpactedbythewesternsprucebudwormand drought.Budwormoutbreaksarepartofanaturalcycleinmixedconiferforest,butmaybe intensifiedbyincreasingdroughtfrequencyandthegenerallyhighertemperaturesprojectedin comingdecades. Vulnerability to increased frequency or intensity of extreme events Score:0.7 Inareasadjacenttodevelopment,mixedconiferstandsmaybepartofthewildland‐urbaninterface, wheretheyaremostlikelytobethreatenedbytheeffectsoffiresuppression.Theabsenceofa naturalfireregimeintheseforestshasresultedinincreasedtreedensityandthebuildupofduff andlitter,whichmayincreasetheseverityoffirewhenitdoesoccur.Asyear‐roundtemperatures increaseandprecipitationshiftsmoretowardraininsteadofsnow,conditionsfavorablefor increasingareaburnedmaydevelop(Littelletal.2009).However,manymixedconiferstandsin Coloradoarenotasseverelyimpactedbyfiresuppression. Other indirect effects of non‐climate stressors – landscape condition Score:0.81 MixedconiferforestlandscapesinColoradoaregenerallyinverygoodcondition.Exurban developmentandrecreationalareadevelopmentareathreattotheseforestsalongtheFrontRange andI‐70corridorinmountainareas.Roadsandutilitycorridorsareasourceofdisturbanceand fragmentationinmixedconiferforeststatewide,butthesestandsnaturallyoccurinsmallerpatches thansomeotherforesttypes,sothreatsareminor.Anumberoftreespeciesinmixedconiferare suitablefortimberharvest,sologgingisanongoingsourceofdisturbanceintheseforests.Threats fromlivestockgrazingandhuntingorrecreationalactivitiesareminimalformixedconiferforests. Miningandminetailingsareasmallsourceofdisturbance. Literature Cited Adams,H.D.andT.E.Kolb.2005.Treegrowthresponsetodroughtandtemperatureinamountainlandscapeinnorthern Arizona,USA.JournalofBiogeography32:1629‐1640. Anderson,R.S.,R.B.Jass,J.L.Toney,C.D.Allen,L.M.Cisneros‐Dozal,M.Hess,J.Heikoop,J.Fessenden.2008.Developmentof themixedconiferforestinnorthernNewMexicoanditsrelationshiptoHoloceneenvironmentalchange.Quaternary Research69:263‐275. Chappell,C.,R.Crawford,J.Kagan,andP.J.Doran.1997.Avegetation,landuse,andhabitatclassificationsystemforthe terrestrialandaquaticecosystemsofOregonandWashington.UnpublishedreportpreparedforWildlifehabitatand speciesassociationswithinOregonandWashingtonlandscapes:Buildingacommonunderstandingformanagement. PreparedbyWashingtonandOregonNaturalHeritagePrograms,OlympiaWA,andPortland,OR.177pp. 60 Colorado Natural Heritage Program © 2015 Crane,M.F.1982.FireecologyofRockyMountainRegionforesthabitattypes.USDAForestServicefinalreport.272pp. DeVelice,R.L.,J.A.Ludwig,W.H.Moir,andF.Ronco,Jr.1986.AclassificationofforesthabitattypesofnorthernNew MexicoandsouthernColorado.USDAForestService,RockyMountainForestandRangeExperimentStation.General TechnicalReportRM‐131.FortCollins,CO.59pp. Kane,J.M.andT.E.Kolb.2014.Short‐andlong‐termgrowthcharacteristicsassociatedwithtreemortalityinsouthwestern mixed‐coniferforests.CanadianJournalofForestResearch44:1227‐1235. Kane,J.M.,T.E.Kolb,andJ.D.McMillin.2014.Stand‐scaletreemortalityfactorsdifferbysiteandspeciesfollowingdrought insouthwesternmixedconiferforests.ForestEcologyandManagement330:171‐182. Littell,J.S.,D.McKenzie,D.L.Peterson,andA.L.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021. Mauk,R.L.andJ.A.Henderson.1984.ConiferousforesthabitattypesofnorthernUtah.USDAForestService,Gen.Tech. ReportINT‐170,Ogden,Utah.89p. Muldavin,E.H.,R.L.DeVelice,andF.Ronco,Jr.1996.AclassificationofforesthabitattypessouthernArizonaandportions oftheColoradoPlateau.USDAForestServiceGeneralTechnicalReportRM‐GTR‐287.RockyMountainForestandRange ExperimentStation,FortCollins,CO.130pp. Pfister,R.D.1977.EcologicalclassificationofforestlandinIdahoandMontana.Pages329‐358in:Proceedingsof EcologicalClassificationofForestLandinCanadaandNorthwesternUSA,UniversityofBritishColumbia,Vancouver. Romme,W.H.,Floyd,M.L.,Hanna,D.,2009.Historicalrangeofvariabilityandcurrentlandscapeconditionanalysis:South CentralHighlandssection,SouthwesternColoradoandNorthwesternNewMexico.Col.For.Rest.Inst.,FortCollins,CO. Steele,R.,R.D.Pfister,R.A.Ryker,andJ.A.Kittams.1981.ForesthabitattypesofcentralIdaho.USDAForestService GeneralTechnicalReportINT‐114.IntermountainForestandRangeExperimentStation,Ogden,UT.138pp. Climate Change Vulnerability Assessment for Colorado BLM 61 PINYON‐JUNIPER Woodlandsandshrublandsdominatedbypinyonpineandjuniperspecies S. Kettler extent exaggerated for display Climate Vulnerability Rank: High Vulnerability summary Key Vulnerabilities: Hot and dry conditions are likely to increase the impact of fire and insect outbreaks, and favor juniper over pinyon pine. Substrates play a key role in determining soil moisture availability for individual stands. Variabledisturbanceandsiteconditionsacrossthedistribution ofthisecosystemhaveresultedinadynamicmosaicof interconnectedcommunitiesandsuccessionalstagesacrossthe landscape.Sincethelastmajorglacialperiod,thedistribution andrelativeabundanceofpinyonandjuniperhasfluctuatedwith changingclimaticconditions.Warmingconditionsduringthe pasttwocenturies,togetherwithchangingfireregime,livestock grazing,andatmosphericpollutionincreasedtheabilityofthis ecosystemtoexpandintosomeneighboringcommunities,at bothhigherandlowerelevations.However,precipitationand temperaturepatternsareprojectedtochangeinadirectionthat islessfavorableforpinyon,sothatjunipermaybecomemoredominant,andthesehabitatsare unabletopersistorexpandintheircurrentform.Primaryfactorscontributingtothehighranking arethevulnerabilityofthesewoodlandstotheinteractionofdrought,fire,andinsect‐caused mortality,whichislikelytoincreaseunderchangingclimate,andtheextenttowhichthecurrent landscapeconditionofthehabitathasbeenimpactedbyanthropogenicdisturbance. 62 Colorado Natural Heritage Program © 2015 Distribution TheNorthAmericandistributionofthisecosystemiscenteredintheColoradoPlateau,generally southwestofColorado.Pinyon‐juniperformsthecharacteristicwoodlandofColorado’swestern mesasandvalleys,whereitistypicallyfoundatlowerelevations(rangingfrom4,900‐8,000ft)on drymountainsandfoothills.Pinyonandjunipermayformsparseshrublandsorwoodlandson rockytablelandswherevegetationislargelyconfinedtosmallsoilpocketsinexposedbedrock. Pinyon‐juniperwoodlandsalsooccurondrymountainsandfoothillsinsouth‐centralandsouth‐ easternColorado,inmountainsandplateausofnorthernNewMexicoandArizona,andextendout ontoshalebreaksintheGreatPlains.Inthecanyonsandtablelandstothesoutheast,pinyonis absent,andjuniperaloneformswoodlandsandsavannas.Standsareoftenadjacenttoand intermingledwithoak,sagebrush,orsaltbushshrubland. Characteristic species Pinyonpine(Pinusedulis)andjuniperformthecanopy.Inwesternpinyon‐juniperwoodlandsof lowerelevations,Utahjuniper(Juniperusosteosperma)isprevalentandRockyMountainjuniper(J. scopulorum)maycodominateorreplaceitathigherelevations.Insoutheasternpinyon‐juniper woodlandsone‐seedjuniper(Juniperusmonosperma) replacesUtahjuniper.Theunderstoryis highlyvariable,andmaybeshrubby,grassy,sparselyvegetated,orrocky.Comeretal.(2003) separateColorado’spinyon‐juniperintofourecologicalsystems:ColoradoPlateauPinyon‐Juniper Woodland,ColoradoPlateauPinyon‐JuniperShrubland,ColoradoPlateauMixedBedrockCanyon andTableland,andSouthernRockyMountainPinyon‐JuniperWoodland. Pinyon‐juniperwoodlandassociationsarecharacterizedbystandswith25‐60%canopycoverof treesthataretypically10‐30ft(3‐10m)inheight.Ondryrockymesatopsandslopesthesecanopy dominantsmaybedwarfed(<3mtall),formingtallshrublands.Onsteepclifffaces,narrow canyons,andopentablelandsofpredominantlysedimentarysandstone,shale,andlimestone, pinyonandjunipermayformverysparseshrublandsincracksandpocketswheresoilhas accumulated.Pinyon‐juniperstandsmaybesolelydominatedbypinyonpine,ormaybeco‐ dominatedbyjuniperspecies.Dependingonsubstrate,theunderstorycanrangefromarelatively richmixtureofevergreenand/ordeciduousshrubs,toasparsetomoderatelydenseherbaceous layerdominatedbyperennialgrasses(withorwithoutshrubs),tonovegetationatall(Reidetal. 1999). Characteristicshrubsanddwarf‐shrubsincludeblacksagebrush(Artemisianova),bigsagebrush (Artemisiatridentata),Utahserviceberry(Amelanchierutahensis),littleleafmountainmahogany (Cercocarpusintricatus),mountainmahogany(Cercocarpusmontanus),yellowrabbitbrush (Chrysothamnusviscidiflorus),mormon‐tea(Ephedraviridis),broomsnakeweed(Gutierrezia sarothrae),Stansburycliffrose(Purshiastansburiana),antelopebitterbrush(Purshiatridentata), Gambeloak(Quercusgambelii),andmountainsnowberry(Symphoricarposoreophilus). Perennialgraminoidsarethemostabundantspeciesinthesparsetomoderatelydenseherbaceous layer.CharacteristicspeciesincludeIndianricegrass(Achnatherumhymenoides),sideoatsgrama (Boutelouacurtipendula),bluegrama(Boutelouagracilis),threeawn(Aristidaspp.),Arizonafescue (Festucaarizonica),needle‐and‐thread(Hesperostipacomata),bluebunchwheatgrass Climate Change Vulnerability Assessment for Colorado BLM 63 (Pseudoroegneriaspicata),muttongrass(Poafendleriana),James'galleta(Pleuraphisjamesii),and westernwheatgrass(Pascopyrumsmithii).Theforblayermaybediverse(andmayincludea numberofrarespecies),butcontributeslittlecover. Pinyonjay,Plumbeousvireo,Junipertitmouse,Grayflycatcher,Black‐throatedgraywarbler,and Bushtitaregoodindicatorsfortheecosystem. Environment Dependingonsubstrate,pinyon‐juniperstandsarevariableinstructureandcomposition.Stands occuronavarietyofaspectsandslopes.Slopemayrangefromnearlyleveltosteep(upto80%). Soilsvaryintexturerangingfromstony,cobbly,gravellysandyloamstoclayloamorclay.Parent materialslikewisevarywidelyfromgranite,basalt,limestone,andsandstonetomixedalluvium (Springfield1976).Soildepthsmayrangefromshallowtodeep. Mesicareasaregenerallypinyon‐dominated,whilejunipersareabletodominateondriersites (Gottfried1992).Standsvaryconsiderablyinappearanceandcomposition,bothaltitudinallyand geographically.Junipertendstobemoreabundantatthelowerelevations,pinyontendstobemore abundantatthehigherelevations,andthetwospeciessharedominancewithinabroadmiddle‐ elevationzone(WoodinandLindsey1954,Heiletal.1993).Standsmayrangefromeven‐agedto uneven‐agedstands. Dynamics Pinyon‐juniperwoodlandsareinfluencedbyclimate,fires,insect‐pathogenoutbreaks,andlivestock grazing(West1999,Eager1999).Althoughitisclearthatthestructureandconditionofmany pinyon‐juniperwoodlandshasbeensignificantlyalteredsinceEuropeansettlement(Tausch1999), inrecentyearstherehasbeenanemergingrecognitionthatnotallofthesewoodlandsare dramaticallychangedbyanthropogenicinfluence.Increasingdensityofpinyonjuniperwoodlands andexpansionintoadjacentgrasslandorshrublandarewelldocumentedinsomeareas,butisnota universalphenomenoninthewesternU.S.(Rommeetal.2009).Furthermore,thetree‐dominated landscapecharacteristicofpinyon‐juniperwoodlandtodayisnotnecessarilyrepresentativeofthe typicallandscapeofthepastfewmillennia(Tausch1999).Rommeetal.(2009)distinguishthree pinyon‐junipertypes(persistentwoodlands,savannas,andwoodedshrublands),using characteristicsofbasedcanopystructure,understory,anddisturbancehistory.Localsiteconditions mayresultinafine‐scalemixtureoftypewithinalargermatrixofonetype.Thedifferences betweenthesetypeshaveimportantimplicationsformanagementactions,andeffortstomaintain orrestorenaturalprocessesinpinyon‐juniperhabitats. Bothpinyonpineandjuniperarefairlyslowgrowing,andcanliveforhundredsofyears,alifecycle thatiswelladaptedtoxerichabitats,butislesssuitableforquicklychangingconditions.Although individualsofbothspeciesbecomereproductiveafterafewdecades,mostseedproductionisdue tomaturetreesof75yearsofageorolder(Gottfried1992).Bothspeciesreproduceonlyfrom seeds,anddonotresproutafterfire.Coneproductionofmaturepinyonpinetakesthreegrowing seasons,andthelargeseedshaveafairlyshortlifespanof1‐2years(Ronco1990).Junipercones (oftencalledberries)mayrequire1‐2yearsofripeningbeforetheycangerminate(Gottfried1992). 64 Colorado Natural Heritage Program © 2015 Thesmallerseedsofjuniperaregenerallylong‐lived,survivingaslongas45years.Birdsare importantdispersersofbothpinyonpineandjuniperseed(Gottfried1992). Theeffectsoffireinalltypesofpinyon‐juniperdependinpartonfuelprovidedbybothcanopyand understory,andbyweatherconditionsduringafire(Rommeetal.2009).Sparsewoodlandswith littleunderstoryvegetationwouldtypicallyhavelimitedfirespreadandlittletreemortality.Astree densityorunderstorycover(especiallyshrubs)increasesfirespreadisfacilitated,andtree mortalitybecomesmorelikely.Rommeetal.(2009)concludedthatspreading,low‐intensity surfacefireshavehistoricallyhadalimitedroleinthisecosystem,andthatinsteadthedominant fireeffectismortalityofmosttreesandtop‐killofmostshrubswithintheburnedarea,regardless oftreeorshrubsize.AtMesaVerdeNationalPark,wherepinyon‐juniperwoodlandshaveburnedin fivelargefiressince1930,treeshavenotyetre‐established.Itisnotknownwhytreeshavenot beensuccessfulintheseareas,whicharenowoccupiedbyshrubland(Floydetal.2000). Formanypinyon‐juniperwoodlands,climatefluctuationandinsectordiseaseoutbreakaremore importantinshapingstandstructurethanfire.Insectanddiseasemortalityisanaturalongoing process,usuallyatalowlevel,butoccasionallyasmoresevereepisodicoutbreaks.Weather patternsmayenhancepatternsofmortalityorrecruitment,shiftingstandcompositionand structureonalocalorregionalscale(Eisenhart2004,Breshearsetal.2005,Shawetal.2005). CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 20.9% Initial Exposure‐Sensitivity Rank Moderate Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (43.5%) Final Exposure‐Sensitivity Rank Moderate Exposure to temperature change Underprojectedmid‐centurytemperatures,about23%ofthecurrentrangeofpinyon‐juniper woodlandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum. Exposure to precipitation change About64%ofpinyon‐juniperwoodlandinColoradowillbeexposedtoeffectivelydrierconditions evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Theseevergreenwoodlandsareadaptedtocoldwinterminimumtemperaturesandlowrainfall, andareoftentransitionalbetweengrasslandordesertshrublandandmontaneconiferecosystems (Brown1994,Peet2000).Thepinyon‐juniperecosystemhaslargeecologicalamplitude;warmer conditionsmayallowexpansion,ashasalreadyoccurredinthepastcenturies,aslongasthereare periodiccooler,wetteryearsforrecruitment.Increaseddroughtmaydrivefiresandinsect Climate Change Vulnerability Assessment for Colorado BLM 65 outbreaks,fromwhichthesewoodlandswouldbeslowtorecover.A40%declineinpinyonpine coneproductionwasassociatedwithanaverage2.3°FincreaseinsummertemperaturesinNew MexicoandOklahomasites(Redmondetal.2012).Warmingtemperaturesmayreducerecruitment forpinyonpine,andmightincreasemortalityindrought‐stressedtrees(Adamsetal.2009). Bargeretal.(2009)foundthatpinyonpinegrowthwasstronglydependentonsufficient precipitationpriortothegrowingseason(winterthroughearlysummer),andcoolerJune temperatures.Bothofthesevariablesarepredictedtochangeinadirectionthatislessfavorablefor pinyonpine.Droughtcanresultinwidespreadtreedie‐off,especiallyofthemoresusceptible pinyonpine(Breshearsetal.2008).Cliffordetal.(2013)detectedastrongthresholdat23.6in(60 cm)cumulativeprecipitationoveratwo‐yeardroughtperiod(i.e.,essentiallynormalannual precipitationforpinyonpine).Sitesabovethisthresholdexperiencedlittlepinyondie‐off,while sitesreceivinglessprecipitationincludedareaswithhighlevelsofmortality.Mortalityofpinyon treeswasextensiveintheareaduringthe2002‐2003droughtandbarkbeetleoutbreak,butin areaswherejuniperandshrubspeciesprovidemicrositesforseedlingestablishment,pinyonmay beabletopersist(RedmondandBarger2013).Patternsofprecipitationandtemperature(i.e.,cool, wetperiods)appeartobemoreimportantinrecruitmenteventsthanhistoryoflivestockgrazing (Bargeretal.2009). Resilience and Adaptive Capacity Rank Overall Score: 0.41 Rank: Low Thestatewiderangeofannualaverageprecipitationisabout10‐23in(25‐60cm),withameanof 16in(40cm),similartosagebrushshrubland.Growingseasontemperaturesaregreaterinthe rangeofpinyon‐juniperthanformanyotherwoodyvegetationtypesinColorado. Extendeddroughtcanincreasethefrequencyandintensityofinsectoutbreaksandwildfire.Pinyon aresusceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcausesblack stainrootdisease,andtoinfestationsofthepinyonipsbarkbeetle(Ipsconfusus)(KearnsandJacobi 2005).Thedifferentialsusceptibilityofpinyonandjunipertodroughtandinsectoutbreakscould eventuallyresultinthesewoodlandsbeingdominatedbyjuniper. Bioclimatic envelope and range Averagedcategoryscore:0.76 TheNorthAmericandistributionofthisecosystemiscenteredintheColoradoPlateau,generally southwestofColorado.Pinyon‐juniperwoodlandsoccuratfoothillandlowermontaneelevations throughoutcentralandwesternColorado,andhaveafairlywideecologicalamplitude.Statewide, theannualaverageprecipitationrangeforpinyon‐juniperwoodlandincludesabout44%of Colorado’soverallprecipitationrange.Growingseasonlengthforthesewoodlandsofwarm,dry areascoversabout60%ofthestatewiderangeofgrowingdegreedays. Growth form and intrinsic dispersal rate Score:0 66 Colorado Natural Heritage Program © 2015 Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema lowresiliencescoreinthiscategory.Pinyonpinestandsareslowtorecoverfromintensefires;the speciesreproducesonlyfromshort‐livedseedsandrecoveryisdependentonseedsourcesand/or adequatedispersal,aswellassuitablemicrosites(e.g.,undercoveroftreesorshrubs)for establishment(Floydetal.2015).Junipersarealsoslow‐growing,andsusceptibletobeingkilledby fire. Vulnerability to increased attack by biological stressors Score:0 PinyonaresusceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcauses blackstainrootdisease(primarilyonmoremesicsites),andtoinfestationsofthepinyonipsbark beetle(Ipsconfusus)(KearnsandJacobi2005),whichhascausedextensivemortalityinpinyon‐ juniperhabitatsinsouthernColorado.Extendeddroughtcanincreasethefrequencyandintensity ofinsectoutbreaks. Vulnerability to increased frequency or intensity of extreme events Score:0.7 Pinyonpinestandsareslowtorecoverfromintensefires;thespeciesreproducesonlyfromseed andrecoveryisdependentonseedsourcesand/oradequatedispersal.Juniperarealsoslow‐ growing,andsusceptibletobeingkilledbyfire.Extendeddroughtcanincreasethefrequencyand intensityofbothinsectoutbreaksandwildfire. Other indirect effects of non‐climate stressors – landscape condition Score:0.59 Pinyon‐juniperhabitatsinColoradohavebeenmoderatelyimpactedbyanthropogenicdisturbance. Ongoingbutlimitedthreatsfromurban,exurban,andcommercialdevelopmentareprimarilyinthe southcentralandsouthwesternportionsofColorado,wheretowns,roads,andutilitycorridorsare oftenincloseproximitytopinyon‐juniperwoodlands.Aswithotherhabitatsinthewildland‐urban interface,areasneardevelopedareasaremostlikelytobethreatenedbytheeffectsoffire suppression,whilemoreremoteareasaregenerallyingoodcondition.Livestockgrazinghas degradedtheunderstorygrassesofsomestands,andinvasivecheatgrass(Bromustectorum)has becomeestablishedinsomeareas.Treeremovalbychaining,orcuttingforfirewoodisaminor sourceofdisturbancewithinthesewoodlands,butmaydramaticallychangethehabitatwhereit hasoccurred.MilitarytrainingactivitiesareasourceofdisturbancetothishabitatatFortCarson andPinyonCanyonManeuverSite.Oilandgasdevelopment,withassociatedroads,pipeline corridors,andinfrastructure,isanongoingsourceofdisturbanceandfragmentationformost pinyon‐juniperhabitats. Climate Change Vulnerability Assessment for Colorado BLM 67 Literature Cited Adams,H.D.,M.Guardiola‐Claramonte,G.A.Barron‐Gafford,J.CamiloVillegas,D.D.Breshears,C.B.Zou,P.A.Troch,T.E. Huxman,andH.A.Mooney.2009.Temperaturesensitivityofdrought‐inducedtreemortalityportendsincreasedregional die‐offunderglobal‐change‐typedrought.PNAS106:7063‐7066. Barger,N.N.,H.D.Adams;C.Woodhouse,J.C.Neff,andG.P.Asner.2009.Influenceoflivestockgrazingandclimateonpiñon pine(Pinusedulis)dynamics.RangelandEcologyandManagement62:531–539. Betancourt,J.L.,E.A.Pierson,K.Aasen‐Rylander,J.A.Fairchild‐Parks,andJ.S.Dean.1993.Influenceofhistoryand climateonNewMexicopinyon‐juniperwoodlands.In:E.F.AldronandD.W.Shaw[EDS.].Managingpinyon‐juniper ecosystemsforsustainabilityandsocialneeds:proceedingsofthesymposium;26–30April1993;SantaFe,NM,USA. Washington,DC,USA:USDepartmentofAgriculture,ForestService,GeneralTechnicalReportRM‐236.p.42–62. Bradley,A.F.,N.V.NosteandW.C.Fischer.1992.FireecologyofforestsandwoodlandsinUtah.USDAForestService GeneralTechnicalReportINT‐287.IntermountainResearchStation.Ogden,UT.128pp. Breshears,D.D.,N.S.Cobb,P.M.Rich,K.P.Price,C.D.Allen,R.G.Balice,W.H.Romme,J.H.Kastens,M.L.Floyd,J.Belnap,J.J. Anderson,O.B.Myers,andC.W.Meyer.2005.Regionalvegetationdie‐offinresponsetoglobal‐change‐typedrought. ProceedingsoftheNationalAcademyofSciences102:15144–15148. Breshears,D.D.,O.B.Myers,C.W.Meyer,F.J.Barnes,C.B.Zou,C.D.Allen,N.G.McDowell,andW.T.Pockman.2008.Treedie‐ offinresponsetoglobalchange‐typedrought:mortalityinsightsfromadecadeofplantwaterpotentialmeasurements. FrontiersinEcologyandtheEnvironment7:185‐189. Brown,D.E.1994.GreatBasinConiferWoodland.InBioticcommunities:southwesternUnitedStatesandnorthwestern Mexico.D.E.Brown,ed.UniversityofUtahPress,SaltLakeCity,UT. Clifford,M.J.,P.D.Royer,N.S.Cobb,D.D.Breshears,andP.L.Ford.2013.Precipitationthresholdsanddrought‐inducedtree die‐off:insightsfrompatternsofPinusedulismortalityalonganenvironmentalstressgradient.NewPhytologist200:413‐ 421. Comer,P.,S.Menard,M.Tuffly,K.Kindscher,R.Rondeau,G.Jones,G.Steinuaer,andD.Ode.2003.UplandandWetland EcologicalSystemsinColorado,Wyoming,SouthDakota,Nebraska,andKansas.Reportandmap(10hectareminimum mapunit)totheNationalGapAnalysisProgram.Dept.ofInteriorUSGS.NatureServe. Eager,T.J.1999.Factorsaffectingthehealthofpinyonpinetrees(Pinusedulis)inthepinyon‐juniperwoodlandsof westernColorado.Page397inS.B.MonsenandR.Stevens,eds.,Proceedings:ecologyandmanagementofpinyon‐juniper communitieswithintheInteriorWest.U.S.Dept.Agric.,ForestService,RockyMountainResearchStation,Proc.RMRS‐P‐9 Ogden,UT. Eisenhart,K.S.,2004.Historicrangeofvariabilityofpiñon‐juniperwoodlandsontheUncompahgrePlateau,western Colorado.Ph.D.Dissertation,UniversityofColorado,Boulder,CO. Floyd,M.L.,W.H.Romme,andD.D.Hanna.2000.FirehistoryandvegetationpatterninMesaVerdeNationalPark, Colorado,USA.EcologicalApplications10:1666‐1680. Floyd,M.L.,W.H.Romme,M.E.Rocca,D.P.Hanna,andD.D.Hanna.2015.Structuralandregenerativechangesinold‐ growthpiñon‐juniperwoodlandsfollowingdrought‐inducedmortality.ForestEcologyandManagement341:18‐29. Gottfried,G.J.1992.Ecologyandmanagementofthesouthwesternpinyon‐juniperwoodlands.Pp78‐86In:Ffolliott,P.F., G.JGottfried,D.ABennett[andothers],technicalcoordinators.Ecologyandmanagementofoaksandassociated woodlands:perspectivesintheSWUnitedStatesandMexico:Proceedings;1992April27‐30;SierraVista,AZ.Gen.Tech. Rep.RM‐218.U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation,Fort Collins,CO. 68 Colorado Natural Heritage Program © 2015 Heil,K.D.,Porter,J.M.,Fleming,R.andRomme,W.H.1993.VascularfloraandvegetationofCapitolReefNationalPark, Utah.NationalParkServiceTechnicalReportNPS/NAUCARE/NRTR‐93/01. Kearns,H.S.J.andW.R.Jacobi.2005.Impactsofblackstainrootdiseaseinrecentlyformedmortalitycentersinthepiñon‐ juniperwoodlandsofsouthwesternColorado.Can.J.For.Res.35:461‐471. Peet,R.K.2000.ForestsandmeadowsoftheRockyMountains.Chapter3inNorthAmericanTerrestrialVegetation, secondedition.M.G.BarbourandW.D.Billings,eds.CambridgeUniversityPress. Redmond,M.D.,F.Forcella,andN.N.Barger.2012.Declinesinpinyonpineconeproductionassociatedwithregional warming.Ecosphere 3:120. http://dx.doi.org/10.1890/ES12-00306.1 Redmond,M.D.andN.N.Barger.2013.Treeregenerationfollowingdrought‐andinsect‐inducedmortalityinpiñon‐ juniperwoodlands.NewPhytologist200:402‐412. Reid,M.S.,K.A.Schulz,P.J.Comer,M.H.Schindel,D.R.Culver,D.A.Sarr,andM.C.Damm.1999.Analliancelevel classificationofvegetationofthecoterminouswesternUnitedStates.AreporttotheUniversityofIdahoCooperativeFish andWildlifeResearchUnitandNationalGapAnalysisPrograminfulfillmentofcooperativeagreement1434‐HQ‐97‐AG‐ 01779.TheNatureConservancy,WesternConservationScienceDepartment,BoulderCO.Compactdisk. Romme,W.H.,C.D.Allen,J.D.Bailey,W.L.Baker,B.T.Bestelmeyer,P.M.Brown,K.S.Eisenhart,M.L.Floyd,D.W.Huffman, B.F.Jacobs,R.F.Miller,E.H.Muldavin,T.W.Swetnam,R.J.Tausch,andP.J.Weisberg.2009.Historicalandmodern disturbanceregimes,standstructures,andlandscapedynamicsinpiñon‐junipervegetationofthewesternUnitedStates. RangelandEcologyandManagement62:203‐222. Ronco,F.P.,Jr.1990.PinusedulisEngelm.pinyon.In:Burns,RussellM.;Honkala,BarbaraH.,technicalcoordinators.Silvics ofNorthAmerica.Volume1.Conifers.Agric.Handb.654.Washington,DC:U.S.DepartmentofAgriculture,ForestService: 327‐337 Shaw,J.D.,B.E.Steed,andL.T.Deblander.2005.Forestinventoryandanalysis(FIA)annualinventoryanswersthe question:whatishappeningtopinyonjuniperwoodlands?JournalofForestry103:280–285. Springfield,H.W.1976.Characteristicsandmanagementofsouthwesternpinyon‐juniperColoradoStateUniversity,Fort Collins,CO.181pp. TauschR.J.1999.Historicpinyonandjuniperwoodlanddevelopment.In:S.B.MonsenandR.Stevens[eds.].Proceedings oftheConferenceonEcologyandManagementofPinyon‐JuniperCommunitieswithintheInteriorWest.Ogden,UT,USA: USDepartmentofAgriculture,ForestService,RockyMountainResearchStation.p.12–19. Woodin,H.E.,andA.A.Lindsey.1954.Juniper‐pinyoneastoftheContinentalDivide,asanalyzedbythepine‐strip method.Ecology35:473‐489. West,N.E.1999.Distribution,composition,andclassificationofcurrentJuniper‐Pinyonwoodlandsandsavannasacross westernNorthAmerica.Pages20‐23inS.B.MonsenandR.Stevens,eds.,Proceedings:ecologyandmanagementof pinyon‐junipercommunitieswithintheInteriorWest.U.S.Dept.Agric.,ForestService,RockyMountainResearchStation, Proc.RMRS‐P‐9Ogden,UT. Climate Change Vulnerability Assessment for Colorado BLM 69 PONDEROSA Forestsandwoodlandsdominatedbyponderosapine S. Neid extent exaggerated for display Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Increased drought intensity and/or frequency is likely to increase the impact of fire and insect outbreaks in ponderosa forests. Areas in the wildland‐urban interface are most problematic. Ponderosapineforestsandwoodlandsarerankedmoderately vulnerabletotheeffectsofclimatechangebymid‐century. Primaryfactorscontributingtothisrankingaretheexposureof largeareasofthishabitattowarmertemperaturesthatarelikely tointeractwithforeststressors(mountainpinebeetle,drought, andfire)thatare,inturn,exacerbatedbywarm,dryconditions. Distribution ThiswidespreadecosystemismostcommonthroughoutthecordilleraoftheRockyMountains,but isalsofoundintheColoradoPlateauregion,westintoscatteredlocationsintheGreatBasin,and northintosouthernBritishColumbia.Thesematrix‐formingwoodlandsoccuratthelower treeline/ecotonebetweengrasslandorshrublandandmoremesicconiferousforests,typicallyin warm,dry,exposedsites. 70 Colorado Natural Heritage Program © 2015 Characteristic species Ponderosapine(Pinusponderosa)isthepredominantconifer;Douglas‐fir(Pseudotsugamenziesii), pinyonpine(Pinusedulis),andjuniper(Juniperusspp.)mayalsobepresentinthetreecanopy.The understoryisusuallyshrubby,withSaskatoonservicebery(Amelanchieralnifolia),blacksagebrush (Artemisianova),bigsagebrush(Artemisiatridentata),kinnikinnick(Arctostaphylosuva‐ursi), mountainmahogany(Cercocarpusmontanus),chokecherry(Prunusvirginiana),antelope bitterbrush(Purshiatridentata),Gambeloak(Quercusgambelii),andmountainsnowberry (Symphoricarposoreophilus)beingcommonspecies.Bunchgrassesincludingbluebunchwheatgrass (Pseudoroegneriaspicata)andspeciesofneedle‐and‐thread(Hesperostipa),needlegrass (Achnatherum),fescue(Festuca),muhly(Muhlenbergia),andgrama(Bouteloua)arecommon understorygrasses. Grace'swarbler,Pygmynuthatch,andFlammulatedowlareindicatorsofahealthyponderosapine woodland. Environment Thisecosystemoccursatthelowertreeline/ecotonebetweengrasslandorshrublandandmore mesicconiferousforeststypicallyinwarm,dry,exposedsitesatelevationsrangingfrom6,500‐ 9,200ft(1,980‐2,800m).Itcanoccuronallslopesandaspects,however,itcommonlyoccurson moderatelysteeptoverysteepslopesorridgetops.Thisecosystemoccursonsoilsderivedfrom igneous,metamorphic,andsedimentarysubstrates(YoungbloodandMauk1985).Characteristic soilfeaturesincludegoodaerationanddrainage,coarsetextures,circumneutraltoslightlyacidpH, anabundanceofmineralmaterial,andperiodsofdroughtduringthegrowingseason.Surface texturesarehighlyvariableinthisecosystemrangingfromsandtoloamandsiltloam.Exposed rockandbaresoilconsistentlyoccurtosomedegreeinalltheassociations.Annualprecipitationis 8‐24in(25‐60cm),mostlythroughwinterstormsandsomemonsoonalsummerrains.Typicallya seasonaldroughtperiodoccursthroughoutthissystemaswell. Dynamics Ponderosapineisadrought‐resistantandshade‐intolerantconiferwhichoftenformsthelower treelineinthemajormountainrangesofthewesternUnitedStates.Historically,groundfiresand droughtwereinfluentialinmaintainingopen‐canopyconditionsinthesewoodlands.With settlementandsubsequentfiresuppression,occurrenceshavebecomedenser.Presently,many occurrencescontainunderstoriesofmoreshade‐tolerantspecies,suchasDouglas‐firand/orwhite fir(Abiesconcolor)aswellasyoungercohortsofponderosapine.Thesestructuralchangeshave affectedfuelloadsandalteredfireregimes.Presettlementfireregimeswereprimarilyfrequent(5‐ 15yearreturnintervals),low‐intensitygroundfirestriggeredbylightningstrikesordeliberately setfiresbyNativeAmericans.Withfiresuppressionandincreasedfuelloads,fireregimesarenow lessfrequentandoftenbecomeintensecrownfires,whichcankillmatureponderosapine(Reidet al.1999). Climate Change Vulnerability Assessment for Colorado BLM 71 CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0.9% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Yes (69.4%) Final Exposure‐Sensitivity Rank Moderate Exposure to temperature change Underprojectedmid‐centurytemperatures,about1%ofthecurrentrangeofponderosawoodland inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About70%ofponderosapinewoodlandinColoradowillbeexposedtoeffectivelydrierconditions evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Ponderosapineoccupiesrelativelydry,nutrient‐poorsitescomparedtoothermontaneconifers, butshowswideecologicalamplitudethroughoutitsdistribution.Rehfeldtetal.(2012)wereableto predictthedistributionofponderosapinelargelythroughtheuseofsummerandwinter precipitation,andsummertemperatures(asgrowingdegreedays>5°C).Althoughperiodic seasonaldroughtischaracteristicacrosstherangeofponderosapine,thisspeciesisgenerally foundwhereannualprecipitationisatleast13inches(Barrettetal.1980,Thompsonetal.2000). PonderosastandstothesouthofColoradowereprimarilyreliantonwinterprecipitation (Kerhoulasetal.2013),whilegrowthofFrontRangestandswascorrelatedwithspringandfall moisture(LeagueandVeblen2006),indicatingsomevariabilityintheabilityofponderosapineto takeadvantageofseasonalwateravailability,dependingonsitefactorsandstandhistory. Consequently,vulnerabilityofponderosaforeststochangesinprecipitationpatternsmaydiffer accordingtotheirlocationinColorado. Ponderosapineisabletotoleratefairlywarmtemperaturesaslongasthereisenoughmoisture, especiallyinthegrowingseason.Optimalgerminationandestablishmentconditionsoccurwhen temperaturesareabove50°Fandmonthlyprecipitationisgreaterthan1inch(Shepperdand Battaglia2002).Significantrecruitmenteventsmayoccuronburnedareaswhenconditionsare wetterthannormalafterafireyear,butnormalprecipitationmayalsobesufficientforseedling establishmentinsuchcases(Mastetal.1998).Inlowerelevationponderosawoodlandsofthe ColoradoFrontRange,episodicrecruitmentofponderosapinewasassociatedwithhighspringand fallmoistureavailabilityduringElNiñoevents(LeagueandVeblen2006).Acorrelationbetween droughtandlowratesofponderosaseedlingrecruitmenthasalsobeenidentifiedthroughoutthe westernGreatPlains(Kayeetal.2010).Droughtincombinationwithfutureprojectedhigher temperaturesislikelytoreduceponderosapineregeneration,especiallyindrier,lowerelevation areas.TheworkofBrownandWu(2005)suggeststhatcoincidentconditionsofsufficientmoisture 72 Colorado Natural Heritage Program © 2015 andfewerfiresareimportantforwidespreadrecruitmentepisodesofponderosapine;such conditionsmaybecomelesslikelyunderfutureclimatescenarios. Increaseddroughtmaydrivefiresandinsectoutbreaks.Relativeproportionsofassociatedspecies (e.g.,otherconifers,aspen,understoryshrubsandgrasses)inponderosastandsmaychange.This ecosystemiswelladaptedtowarm,dryconditionsifprecipitationisnottoomuchreduced,and maybeabletoexpandintohigherelevations. Althoughclimatechangemayalterfireregimesslightlybyaffectingthecommunitystructure,fireis notexpectedtohaveasevereimpactinthefutureforthesestands,andmayactuallybebeneficial insomeareasifitrestoressomepre‐settlementconditions(CovingtonandMoore1994).These forestsaresusceptibletooutbreaksofthemountainpinebeetleandmistletoeinfestations,bothof whichmaybeexacerbatedbyincreaseddrought.Impactsofnativegrazersordomesticlivestock couldalsoalterunderstorystructureandcomposition,andhavethepotentialtonegativelyimpact soilstability(Allenetal.2002).Whileponderosapineforestsmaybeabletoexpandupwardsin elevationorremaininthesamevicinityifprecipitationdoesn’tdrasticallychange,thedensityof somestandsmaydecreaseduetoareductioninavailablesoilmoisture.Standsoflowerelevations andsouthwestern‐facingslopesaremostlikelytoexperiencereducedextentofponderosapine forests,withthepotentialforreplacementbygrassland,shrublandorpinyon‐juniperwoodland. Resilience and Adaptive Capacity Rank Overall Score: 0.54 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.76 Ponderosawoodlandsarenotfoundathighelevations,butinsteadformabroadzoneofconiferous forestalongthesouthernflankoftheSanJuanMountains,aswellasalongtheeasternmountain front,generallyatelevationsbetween6,000and9,000ft.Thesewoodlandsareinwithinthecentral portionoftheirNorthAmericandistributioninColorado.Annualprecipitationissimilartothatfor oakshrubland,andponderosaforestsarefoundin50%ofColorado’soverallprecipitationrange. Ponderosaoccursin50%ofgrowingseasonlengthsacrossthestate. Growth form and intrinsic dispersal rate Score:0 Thetreegrowthformandslowdispersalrateofponderosapinegivethisecosystemalow resiliencescoreinthiscategory.Althoughseedsaretypicallynotdispersedveryfar,ponderosa pineisoftenpresentinmixedconiferstands;theseareasmayprovideaseedbankforregeneration orashifttoponderosapine.Recruitmentisepisodic,dependingonprecipitationanddisturbance patterns. Vulnerability to increased attack by biological stressors Score:0.7 Climate Change Vulnerability Assessment for Colorado BLM 73 Theseforestsaresusceptibletooutbreaksofthemountainpinebeetle(Dendroctonusponderosae) andmistletoeinfestations,bothofwhichmaybeexacerbatedbyincreaseddrought.Mountainpine beetlehascausedextensivemortalityinponderosapinehabitatsthroughoutColorado,although thecurrentoutbreakappearstobesubsiding.Impactsofnativegrazersordomesticlivestock,and thespreadofinvasivegrassescouldalsoalterunderstorystructureandcomposition,withthe potentialtonegativelyimpactsoilstability(Allenetal.2002). Vulnerability to increased frequency or intensity of extreme events Score:0.7 Ponderosapineiswelladaptedtosurvivefrequentsurfacefires,andmixed‐severityfiresare characteristicinthesecommunities(Arno2000).Althoughclimatechangemayalterfireregimes slightlybyaffectingthecommunitystructure,fireisnotexpectedtohaveasevereimpactinthe futureforthesestands,andmayactuallybebeneficialinsomeareasifitrestoressomepre‐ settlementconditions(CovingtonandMoore1994).Aprojectedincreaseinthefrequencyof droughtconditionsislikelytoexacerbatebothfireandinsectoutbreaks,andchangethestructure andcompositionofponderosawoodlands. Other indirect effects of non‐climate stressors – landscape condition Score:0.54 PonderosapinelandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic activities.Urbanandexurbandevelopmentareaprimarythreattoponderosapinehabitat, especiallyalongtheFrontRange,butalsoinotherpartsofthestate.Increasingdevelopmenthas ledtoanextensivewildland‐urbaninterfaceinponderosahabitat,aswellasfragmentationof standsinexurbanareasduetohousing,roads,andutilitycorridors;thistrendislikelytocontinue (Theobald2005).Oilandgasdevelopment,mining,andloggingareminorsourcesofdisturbance andfragmentationinponderosahabitat. Ponderosaforestandwoodlandhistoricallyexperiencedrelativelyfrequentlowintensityfiresthat controlledthedensity,age,andstructureofstands.Withfiresuppression,ponderosahasincreased intofoothillsgrassland,standshavegreatlyincreasedindensity,andopenponderosasavanna habitathasdecreased.Increasedtreedensityandfuelaccumulationhasresultedinmoresevere firesinthishabitat,aswellasincreasedoccurrenceofmountainpinebeetleanddwarfmistletoe infestation.Thealterationofnaturalfireregimesthroughfiresuppressionisanongoingthreatfor ponderosahabitatwhereitisneardevelopedareas. Literature Cited Allen,C.D.,M.Savage,D.A.Falk,K.F.Suckling,T.W.Swetnam,T.Schulke,P.B.Stacey,P.Morgan,M.Hoffman,AndJ.T. Klingel.2002.Ecologicalrestorationofsouthwesternponderosapineecosystems:abroadperspective.Ecological Applications12:1418–1433. Arno,S.F.2000.Fireinwesternforestecosystems.Chapter5inBrown,J.K.andJ.K.Smith,eds.Wildlandfirein ecosystems:effectsoffireonflora.Gen.Tech.Rep.RMRS‐GTR‐42‐vol.2.Ogden,UT:U.S.DepartmentofAgriculture,Forest Service,RockyMountainResearchStation.257p. 74 Colorado Natural Heritage Program © 2015 Barrett,J.W.,P.M.McDonald,F.RoncoJr,andR.A.Ryker.1980.Interiorponderosapine.In:Eyer,F.H.,ed.Forestcover typesoftheUnitedStatesandCanada.Washington,DC:U.S.DepartmentofAgriculture,ForestService:114‐115. Brown,P.M.andR.Wu.2005.Climateanddisturbanceforcingofepisodictreerecruitmentinasouthwesternponderosa pinelandscape.Ecology86:3030‐3038. Covington,W.W.andM.M.Moore.1994.Southwesternponderosaforeststructure:changessinceEuro‐American settlement.JournalofForestry92:39–47. KayeM.W.,C.A.WoodhouseandS.T.Jackson.2010.Persistenceandexpansionofponderosapinewoodlandsinthewest‐ centralGreatPlainsduringthepasttwocenturies.JournalofBiogeography37:1668‐1683. Kerhoulas,L.P.,T.E.Kolb,andG.W.Koch.2013.Treesize,standdensity,andthesourceofwaterusedacrossseasonsby ponderosapineinnorthernArizona.ForestEcologyandManagement289:425‐433. League,K.andT.Veblen.2006.ClimaticvariabilityandepisodicPinusponderosaestablishmentalongtheforest‐ grasslandecotonesofColorado.ForestEcologyandManagement228:98‐107. Mast,J.N.,T.T.Veblen,andY.B.Linhart.1998.Disturbanceandclimaticinfluencesonagestructureofponderosapineat thepine/grasslandecotone,ColoradoFrontRange.JournalofBiogeography.25:743‐755. Rehfeldt,G.E.,N.L.Crookston,C.Saenz‐Romero,andE.M.Campbell.2012.NorthAmericanvegetationmodelforland‐use planninginachangingclimate:asolutionoflargeclassificationproblems.EcologicalApplications22:119‐141. Reid,M.S.,K.A.Schulz,P.J.Comer,M.H.Schindel,D.R.Culver,D.A.Sarr,andM.C.Damm.1999.Analliancelevel classificationofvegetationofthecoterminouswesternUnitedStates.UnpublishedfinalreporttotheUniversityofIdaho CooperativeFishandWildlifeResearchUnitandNationalGapAnalysisProgram,infulfillmentofCooperativeAgreement 1434‐HQ‐97‐AG‐01779.TheNatureConservancy,WesternConservationScienceDepartment,Boulder,CO. Shepperd,W.D.andM.A.Battaglia.2002.Ecology,Silviculture,andManagementofBlackHillsPonderosaPine.General TechnicalReportRMRS‐GTR‐97.USDAForestServiceRockyMountainResearchStation,FortCollins,CO.112 Theobald,D.M.2005.LandscapepatternsofexurbangrowthintheUSAfrom1980to2020.EcologyandSociety10:32 Thompson,R.S.,K.H.Anderson,andP.J.Bartlein.2000.Atlasofrelationsbetweenclimaticparametersanddistributionsof importanttreesandshrubsinNorthAmerica.U.S.GeologicalSurveyProfessionalPaper1650‐A. Youngblood,A.P.,andR.L.Mauk.1985.ConiferousforesthabitattypesofcentralandsouthernUtah.USDAForest Service,IntermountainResearchStation.GeneralTechnicalReportINT‐187.Ogden,UT.89pp Climate Change Vulnerability Assessment for Colorado BLM 75 SPRUCE‐FIR Dry‐mesicandmesicforestsdominatedbyEngelmannspruceandsubalpinefir R. Rondeau extent exaggerated for display Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Increased drought intensity and/or frequency is likely to increase the impact of fire and insect outbreaks in subalpine forests. These forests recover slowly due to slow dispersal and a short growing season. Climatechangeprojectionsindicateanincreaseindroughtsand fastersnowmelt,whichcouldincreaseforestfirefrequencyand extent,aswellasinsectoutbreakswithinthisecosystem.Itisnot knownifspruce‐firforestswillbeabletoregenerateundersuch conditions,especiallyinlowerelevationstands,andthereisa potentialforareductionorconversiontootherforesttypes, dependingonlocalsiteconditions. Thevulnerabilityoftheseforeststowarmertemperatures, drought,andincreasedmortalityfrominsectoutbreaksare primaryfactorscontributingtovulnerability.Therestrictionof thishabitattohigherelevationsanditsrelativelynarrow biophysicalenvelope,slow‐growth,andpositionnearthe southernendofitsdistributioninColoradoareadditional factors.However,theremaybealagtimebeforetheeffectsof changingclimateareevident. 76 Colorado Natural Heritage Program © 2015 Thelagtimeofthecurrenttreelinepositionbehindclimatechangeisestimatedtobe50‐100+ years,duetotherarityofrecruitmentevents,theslowgrowthandfrequentsetbacksfortreesin theecotone,andcompetitionwithalreadyestablishedalpinevegetation(Körner2012).However, onthebasisofhistoricevidence,treelinecanbeexpectedtomigratetohigherelevationsas temperatureswarm,aspermittedbylocalmicrositeconditions(Smithetal.2003,Richardsonand Friedland2009,Grafiusetal.2012).Thegradualadvanceoftreelineisalsolikelytodependon precipitationpatterns,particularlythebalanceofsnowaccumulationandsnowmelt(Rochefortet al.1994).Ouranalysisindicatedthatspruce‐firforestsinColoradohavemoderatevulnerabilityto theeffectsofclimatechangebymid‐century. Distribution Spruce‐firdry‐mesicandmoist‐mesicforestecosystemsformtheprimarymatrixsystemsofthe montaneandsubalpinezonesoftheSouthernRockyMountainsecoregion,andaccountfora substantialpartofthesubalpineforestsoftheCascadesandRockyMountainsfromsouthern BritishColumbiaeastintoAlberta,southintoNewMexicoandtheIntermountainregion.Spruce‐fir forestalsoshowschangeswithlatitudeincludingtreelineelevation,speciescomposition,and dominance.Subalpinefir(Abieslasiocarpa)decreasesinimportancerelativetoEngelmannspruce (Piceaengelmannii)withincreasingdistancefromtheregionofMontanaandIdahowheremaritime airmassesinfluencetheclimate.Firincreasesinimportancewithincreasinglatitude,andshares dominancewithspruceattreelineoverthenorthernhalfoftheSouthernRockyMountains ecoregion.Treelineoccursatover12,450ft(3800m)atthesouthernendoftheSouthernRocky Mountainecoregion,butdoesnotexceed11,150ft(3400m)atthenorthernend(Peet1978). Individualcommunitytypesmaybematrixorlargepatchincharacter,thoughmosttypicallyoccur asamosaicoflargepatchesacrossthelandscape.Spruce‐firdominatedstandsoccuronallbutthe mostxericsitesabove10,000ft(3,100m),andincool,shelteredvalleysatelevationsaslowas 8,200ft(2,500m).Therelativedominanceofthetwocanopytreespeciesandtheunderstory compositionvarysubstantiallyoveragradientfromexcessivelymoisttoxericsites(Peet1981). Themesicspruce‐firtypeoccursoncool,sheltered,butwell‐drainedsitesabove8,850ft(2,700m). Openslopesabove9,850ft(3,000m)aretypicallycharacterizedbyamorexericspruce‐firtype, withvaryingamountsoflodgepoleandlimberpine. Characteristic species Engelmannspruceandsubalpinefirdominatethecanopy,eithertogetheroralone.Lodgepolepine (Pinuscontorta)iscommoninmanyoccurrencesasaremixedconifer/quakingaspen(Populus tremuloides)stands.UnderstoryspeciesmayincludeGeyer'ssedge(Carexgeyeri),commonjuniper (Juniperuscommunis),creepingbarberry(Mahoniarepens),Jacob's‐ladder(Polemonium pulcherrimum)orwhortleberry(Vacciniumspp.).Moremesicunderstorymayincludered baneberry(Actaearubra),sprucefirfleabane(Erigeroneximius),thimbleberry(Rubusparviflorus), yellowdotsaxifrage(Saxifragabronchialis),oralpineclover(Trifoliumdasyphyllum),amongother species. Climate Change Vulnerability Assessment for Colorado BLM 77 Pinemartensareprimarilyaspruce‐firobligatespeciesthatrequireahealthyandsizeable occurrenceofmatureforestandareanindicatorofahealthyandviableoccurrenceofthespruce‐fir ecosystem Environment Thesearethematrixforestsofthesubalpinezone,withrangewideelevationsrangingfrom5,000‐ 11,000ft(1,525to3,355m).Sitesarecoldyear‐round,andprecipitationispredominantlyinthe formofsnow,whichmaypersistuntillatesummer.Moist‐mesicoccurrencesaretypicallyfoundin locationswithcold‐airdrainageorponding,orwheresnowpackslingerlateintothesummer,such asnorth‐facingslopesandhigh‐elevationravines.Theycanextenddowninelevationbelowthe subalpinezoneinplaceswherecold‐airpondingoccurs;northerlyandeasterlyaspects predominate.Theseforestsarefoundongentletoverysteepmountainslopes,high‐elevation ridgetopsandupperslopes,highplateaus,basins,alluvialterraces,well‐drainedbenches,and inactivestreamterraces. Dynamics Fire,spruce‐beetleoutbreaks,avalanches,andwindthrowallplayanimportantroleinshapingthe dynamicsofspruce‐firforests.Firesinthesubalpineforestaretypicallystandreplacing,resulting intheextensiveexposureofmineralsoilandinitiatingthedevelopmentofnewforests.Stand replacingfiresareestimatedtooccuratintervalsofabout300yearsfordry‐mesicareas,and longer(350‐400years)formoremesicsites(RommeandKnight1981).Firereturnintervals, intensity,andextentnaturallydependonavarietyoflocalenvironmentalfactors.Dependingon siteconditions,spruceorlodgepolepinemayinitiallydominatethepost‐firesite,incombination withlimberpine,andquakingaspen(DonneganandRebertus1999).Firisgenerallytheleast abundantforseveraldecadesafterfire,butisabletoestablishinlow‐lightconditionsonforest litter,andgraduallyincreasesinabundance(Veblenetal.1991). Sprucebeetle(Dendroctonusrufipennis)outbreaksmaybeevenmoresignificantthanfireinthe developmentofspruce‐firforests(Weedetal.2013).Whenlargersprucetreesarekilledbyspruce beetleinfestation,smallerdiametersprucetreesandsubalpinefirtreesareabletoincreasegrowth andcontinuetodominatethestand(Veblenetal.1991).Inadditiontofiresandbeetlekill,wind disturbanceinspruce‐firforestshasbeenwelldocumented(Schauppetal.1999).Blowdowns involvingmultipletreefallsaddtothemosaicofspruce‐firstands.Underanaturaldisturbance regime,subalpineforestswereprobablycharacterizedbyamosaicofstandsinvariousstagesof recoveryfromdisturbance,withold‐growthjustonepartofthelargerforestmosaic(Peet1981). 78 Colorado Natural Heritage Program © 2015 CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0.2% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (40.8%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofspruce‐firforestin Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About41%ofspruce‐firforestinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Spruce‐firforesttypicallydominatesthewettestandcoolesthabitatsbelowtreeline.Theseareas arecharacterizedbylong,coldwinters,heavysnowpack,andshort,coolsummerswherefrostis common(Uchytil1991).BothEngelmannspruceandsubalpinefiraredependentonsnowmelt waterformostofthegrowingseason,andinlowsnowpackyearsgrowthisreduced(Huetal. 2010). Thelengthofthegrowingseasonisparticularlyimportantforbothalpineandsubalpinezones,and forthetransitionzonebetweenalpinevegetationandclosedforest(treeline).Treeline‐controlling factorsoperateatdifferentscales,rangingfromthemicrositetothecontinental(Holtmeierand Broll2005).Onaglobalorcontinentalscale,thereisgeneralagreementthattemperatureisa primarydeterminantoftreeline.Körner(2012)attributesthedominanceofthermalfactorsatthis scaletotherelativeconsistencyofatmosphericconditionsoverlargeareas,especiallyin comparisontomorelocalinfluenceofsoilandmoisturefactors.Furthermore,thereappearstobea criticaldurationoftemperaturesadequateforthegrowthoftreesinparticular(e.g.,individuals >3mtall)thatdeterminesthelocationoftreeline.Atmorelocalscales,soilproperties,slope,aspect, topography,andtheireffectonmoistureavailability,incombinationwithdisturbancessuchas avalanche,grazing,fire,pests,disease,andhumanimpactsallcontributetotheformationof treeline(RichardsonandFriedland2009,Körner2012).Patternsofsnowdepthandduration, wind,insolation,vegetationcover,andtheautecologicaltolerancesofeachtreespeciesinfluence theestablishmentandsurvivalofindividualswithinthetreelineecotone(Moiretal.2003, HoltmeierandBroll2005,Smithetal.2009).IntheRockyMountains,treeestablishmentwas significantlycorrelatedwithwarmerspring(Mar‐May)andcool‐season(Nov‐Apr)minimum temperaturesaswell(Elliott2012). Spruce‐firforestscurrentlyoccupycoldareaswithhighprecipitation;warmeranddrierclimate conditionspredictedbymostmodelscouldresultinanupwardmigrationoftheseforestsintothe Climate Change Vulnerability Assessment for Colorado BLM 79 alpinezone.However,inCanadianspruce‐firforests,warmerthanaveragesummertemperatures ledtoadecreaseingrowththefollowingyear(HartandLaroque2013).Sincespruce‐firmaybe abletotoleratewarmersummertemperatures,thelowerextentofthishabitattypecouldremainat currentlevelsforsometime,evenifgrowthisreduced. Thecurrentlocationoftreelineisaresultoftheoperationofclimaticandsite‐specificinfluences overthepastseveralhundredyears,anddoesnotexactlyreflectthecurrentclimate(Körner2012). Thetreelinepositionlagtimebehindclimatechangeisestimatedtobe50‐100+years,duetothe rarityofrecruitmentevents,theslowgrowthandfrequentsetbacksfortreesintheecotone,and competitionwithalreadyestablishedalpinevegetation(Körner2012).Nevertheless,onthebasisof historicevidence,treelineisgenerallyexpectedtomigratetohigherelevationsastemperatures warm,aspermittedbylocalmicrositeconditions(Smithetal.2003,RichardsonandFriedland 2009,Grafiusetal.2012).Infact,treelineadvancehasalreadybeendocumentedatsitesintheSan JuanMountains(Finketal.2014). Furthermore,thelagtimeofdecadesorlongerfortreelinetorespondtowarmingtemperatures mayallowthedevelopmentofnovelvegetationassociations(ChapinandStarfield1997),andmake itdifficulttoidentifytemperatureconstraintsonthedistributionofthishabitat(Grafiusetal. 2012).Thegradualadvanceoftreelineisalsolikelytodependonprecipitationpatterns.Seedling establishmentandsurvivalaregreatlyaffectedbythebalanceofsnowaccumulationandsnowmelt. Soilmoisture,largelyprovidedbysnowmelt,iscrucialforseedgerminationandsurvival.Although snowpackinsulatesseedlingsandshieldssmalltreesfromwinddesiccation,itspersistence shortensthegrowingseasonandcanreducerecruitment(Rochefortetal.1994). Resilience and Adaptive Capacity Rank Overall Score: 0.34 Rank: Low Bioclimatic envelope and range Averagedcategoryscore:0.30 Spruce‐firforestsinColoradohaveawideelevationalrange,extendingfromabout8,900ftupto over12,000ft.Althoughnotasrestrictedasalpinehabitats,spruce‐firforestsaregenerallylimited tohigher,coolerelevations,andarealsonearthesouthernextentoftheircontinentalrangein Colorado.Statewide,annualaverageprecipitationisonlyslightlylowerthanthatofalpine,and theseforestshavesignificantpresencein82%ofColorado’soverallprecipitationrange.Spruce‐fir requiresalongergrowingseasonthanalpinehabitat,butissuccessfulatmuchcoolertemperatures thanmostotherforesttypes,coveringonly38%ofthestate’sgrowingdegreerange.Thesefactors combinetoproducearelativelypoorresiliencescoreinthiscategory. Growth form and intrinsic dispersal rate Score:0 Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema lowresiliencescoreinthiscategory.Subalpinefirseedsrequirecold‐moistconditionstotrigger 80 Colorado Natural Heritage Program © 2015 germination(Uchytil1991),andthereissomeindicationthatEngelmannspruceseedsgerminate fasteratrelativelylowtemperatures(Smith1985),givingitacompetitiveadvantageoverlesscold‐ tolerantspecies.Underwarmerconditions,however,currentspruce‐fircommunitiesmaybe graduallyreplacedbyamixed‐coniferforest.Therearenoobviousbarrierstothegradualdispersal ofseedlingsintoadjacent,newlysuitablehabitat,althoughthedominantspeciesaregenerally slow‐growing. Vulnerability to increased attack by biological stressors Score:0 Althoughthesesubalpineforestsarenotsusceptibletoincreasedprevalenceofinvasivespecies, theyarevulnerabletooutbreaksofthenativepestspeciessprucebudwormandsprucebeetle. Warmertemperatures(bothwinterandsummer)arelikelytofacilitatetheseinfestations.Warmer wintersarecorrelatedwithreducedbeetlemortality,whilehighersummertemperaturesallowa greaterproportionofthesprucebeetlepopulationtocompleteagenerationinasingleyear,witha correspondinglyhigherprobabilityofpopulationoutbreak(Bentzetal.2010).Thecurrent distributionofspruce‐firhabitatisthereforelikelytobeatincreasedriskofsignificantmortality. Insectoutbreaksarealsotypicallyassociatedwithdroughts. Vulnerability to increased frequency or intensity of extreme events Score:0.5 Historicnaturalfire‐returnintervalsintheseforestshavebeenontheorderofseveralhundred years,andthetreespeciesarenotadaptedtomorefrequentfires.Withanincreaseindroughtsand fastersnowmelts,wecanexpectanincreaseinforestfirefrequencyandextentwithinthiszoneas ignitionofheavyfuelloadsbecomeslesslimitedbycool,wetconditions.Itisnotknownifspruce‐ firforestswillbeabletoregenerateundersuchconditions,especiallyinlowerelevationstands,and thereisapotentialforareductioninspruce‐firforests,atleastintheshortterm. Other indirect effects of non‐climate stressors – landscape condition Score:0.89 Spruce‐firforestlandscapesinColoradoaregenerallyinverygoodcondition,wellprotected,and minimallyimpactedbyanthropogenicdisturbance.Becausenaturalfirereturnintervalsinthese habitatsarelong,firesuppressionhasnothadwidespreadeffectsontheconditionofspruce‐fir habitat.Atalandscapescale,however,agestructuresofspruce‐firforestareprobablysomewhat alteredfrompre‐settlementconditions.Spruce‐firforestsaresubjecttodisturbancebyrecreational use,hunting,livestockgrazing,mining,andlogging,butingeneral,threatsfromhousing,roads,and recreationaldevelopmentandsimilaranthropogenicdisturbanceareminorforspruce‐firhabitats. Literature Cited Alexander,R.R.1987.Ecology,silviculture,andmanagementoftheEngelmannspruce‐subalpinefirtypeinthecentral andsouthernRockyMountains.Agric.Handb.659.Washington,DC:U.S.DepartmentofAgriculture,ForestService.144p. Climate Change Vulnerability Assessment for Colorado BLM 81 Bentz,B.J.,J.Régnière,C.J.Fettig,E.M.Hansen,J.L.Haynes,J.A.Hicke,R.G.Kelsey,J.F.Negrón,andS.J.Seybold.2010. ClimatechangeandbarkbeetlesofthewesternUnitedStatesandCanada:directandindirecteffects.BioScience60:602‐ 613. Chapin,F.S.andA.M.Starfield.1997.Timelagsandnovelecosystemsinresponsetotransientclimaticchangeinarctic Alaska.Climaticchange35:449‐461. Donnegan,J.A.andA.J.Rebertus.1999.Ratesandmechanismsofsubalpineforestsuccessionalonganenvironmental gradient.Ecology80:1370‐1384. Elliott,G.P.2012.ExtrinsicregimeshiftsdriveabruptchangesinregenerationdynamicsatuppertreelineintheRocky Mountains,USA.Ecology93:1614‐1625. Fink,M.,R.Rondeau,andK.Decker.2014.TreelinemonitoringintheSanJuanMountains.ColoradoNaturalHeritage Program,ColoradoStateUniversity,FortCollins,CO. Grafius,D.R.,G.P.Malanson,andD.Weiss.2012.SecondarycontrolsofalpinetreelineelevationsinthewesternUSA. PhysicalGeography33:146‐164. Hart,S.J.andC.P.Laroque.2013.Searchingforthresholdsinclimate‐radialgrowthrelationshipsofEngelmannspruceand subalpinefir,JasperNationalPark,Alberta,Canada.Dendrochronologia31:9‐15. Holtmeier,F‐K.andG.Broll.2005.Sensitivityandresponseofnorthernhemispherealtitudinalandpolartreelinesto environmentalchangeatlandscapeandlocallevels.GlobalEcologyandBiogeography14:395‐410. Hu,J.,D.J.P.Moore,S.P.Burns,andR.K.Monson.2010.Longergrowingseasonsleadtolesscarbonsequestrationbya subalpineforest.GlobalChangeBiology16:771‐783. Körner,C.2012.Alpinetreelines:functionalecologyoftheglobalhighelevationtreelimits.Springer,Basel,Switzerland. Moir,W.H.,S.G.Rochelle,andA.W.Schoettle.1999.Microscalepatternsoftreeestablishmentnearuppertreeline,Snowy Range,Wyoming.Arctic,Antarctic,andAlpineResearch31:379‐388. Peet,R.K.1978.LatitudinalvariationinsouthernRockyMountainforests.JournalofBiogeography5:275‐289. Peet,R.K.1981.ForestvegetationoftheColoradoFrontRange–Compositionanddynamics.Vegetatio45:3‐75. Richardson,A.D.andA.J.Friedland.2009.Areviewofthetheoriestoexplainarcticandalpinetreelinesaroundtheworld. JournalofSustainableForestry28:218‐242. Rochefort,R.M.,R.L.Little,A.Woodward,andD.L.Peterson.1994.Changesinsub‐alpinetreedistributioninwestern NorthAmerica:areviewofclimaticandothercausalfactors.TheHolocene4:89‐100. Romme,W.H.andD.H.Knight.1981.Firefrequencyandsubalpineforestsuccessionalongatopographicgradientin Wyoming.Ecology62:319‐326. SchauppW.C.J.F.M.andS.Johnson.1999.Evaluationofthesprucebeetlein1998withintheRouttDivideblowdownof October1997,ontheHahnsPeakandBearsEarsRangerDistricts,RouttNationalForest,Colorado.USDAForestService, RenewableResources,RockyMountainRegion,Lakewood,CO.15pp. Smith,W.K.1985.Westernmontaneforests.Chapter5inChabot,R.F.andH.A.Money,eds.,PhysiologicalEcologyofNorth AmericanPlantCommunities.ChapmanandHall,NewYork,351pp. Smith,W.K.,M.J.Germino,T.E.Hancock,andD.M.Johnson.2003.Anotherperspectiveonaltitudinallimitsofalpine timberlines.TreePhysiology23:1101‐1112. 82 Colorado Natural Heritage Program © 2015 Uchytil,R.J.1991.PiceaengelmanniiandAbieslasiocarpa.In:FireEffectsInformationSystem,[Online].U.S.Departmentof Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ Veblen,T.T.1986.AgeandsizestructureofsubalpineforestsintheColoradoFrontRange.BulletinoftheTorreyBotanical Club113(3):225‐240. Veblen,T.T.,K.S.Hadley,M.S.Reid,andA.J.Rebertus.1991.Theresponseofsubalpineforeststosprucebeetleoutbreakin Colorado.Ecology72:213‐231. Weed,A.S.,M.P.Ayres,andJ.A.Hicke.2013.ConsequencesofclimatechangeforbioticdisturbancesinNorthAmerica forests.EcologicalMonographs83:441‐470. Climate Change Vulnerability Assessment for Colorado BLM 83 Shrubland Table 2.6. Key vulnerabilities, shrubland ecosystems. Habitat Climate factor(s) Consequences Other considerations Desert shrubland Soil moisture Conversion to other type Highly altered Oak & mixed mtn. shrub Drought, last frost date variability Dieback with drought and late frost; may increase by resprouting after fire Anthropogenic disturbance Sagebrush Drought Increase in invasive species such as cheatgrass; fire Variable by subspecies Sandsage Extended drought Soil mobilization Loss of native biodiversity 84 Colorado Natural Heritage Program © 2015 DESERT SHRUBLAND Shrubland,shrub‐steppe,dwarf‐shrubland,andsparselyvegetatedareascharacterizedbysaltbush, rabbitbrush,winterfat,andotherxericshrubspecies extent exaggerated for display CNHP Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: The interaction of soil types and precipitation patterns largely determines the composition and extent of these shrublands, which may undergo conversion to other types under future climate conditions. The altered condition of many stands is a confounding factor. Theprimaryfactorcontributingtothemoderatevulnerability rankingofdesertshrublandsinColoradoistheextenttowhich standshavebeenimpactedbyanthropogenicdisturbance,with greatlyalteredspeciescompositioninmanyinstances.The resiliencescoreforthisecosystemisotherwisehigh,and,since thesearecommunitiesofaridlandscapes,theycouldbeless vulnerabletoclimatechangewherestandsareingoodcondition. However,changingsoilmoisturepatternsmayeventuallyfavor semi‐desertgrasslandinareascurrentlyoccupiedbydesert shrubland. Distribution DesertshrublandcommunitiesoccurthroughouttheintermountainwesternU.S.,andaretypically open‐canopiedshrublandsdominatedbysaltbushspeciesorothershrubstolerantofsalineor alkalinesoilstypicallyderivedfrommarineshales,siltstonesandclay.Forthisassessment,we groupedshrub‐steppe,mixedsaltdesertshrub,matsaltbushshrublands,andsparselyvegetated shalebadlandstogetherasdesertshrubland.Thesesparsetomoderatelydenselow‐growing Climate Change Vulnerability Assessment for Colorado BLM 85 shrublandsarewidespreadatlowerelevationsinColorado’swesternvalleys,butalsooccurtoa smallerextentontheeasternplains.Desertshrublandsarefoundprimarilybetween4,500and 7,000feet,althoughshrub‐steppemayextendupto9,500feetinsomeareas.Shrub‐steppedoes notformextensivestandsinColoradoexceptintheSanLuisValley.Pinyon‐juniperwoodlandsand sagebrushshrublandscommonlyareadjacentattheupperelevations. Characteristic species Matsaltbushshrublandtypicallysupportsrelativelypurestandsoflow‐growingmatsaltbush (Atriplexcorrugata)orGardner'ssaltbush(Atriplexgardneri).Otherdwarf‐shrubspeciesthatmay bepresentincludebudsagebrush(Picrothamnusdesertorum)andshortspinehorsebrush (Tetradymiaspinosa).Scatteredperennialforbsoccur,suchasdesertprincesplume(Stanleya pinnata),eveningprimrose(Oenotheraspp.),andphacelia(Phaceliaspp.).Indianricegrass (Achnatherumhymenoides)andalkalisacaton(Sporobolusairoides)maybepresentinswales. Annualsmayincludedeserttrumpet(Eriogonuminflatum),andintroducedspeciessuchasAfrican mustard(Malcolmiaafricana)andcheatgrass(Bromustectorum).Someareasareessentially barren,orverysparselyvegetated. Mixedsaltdesertscrubischaracterizedbythetallersaltbushspeciesshadscalesaltbush(Atriplex confertifolia)orfourwingsaltbush(Atriplexcanescens),andmayincludewinterfat (Krascheninnikovialanata),paledesert‐thorn(Lyciumpallidum),horsebrush(Tetradymia canescens),andvarioussagebrush(Artemisia)species.Grassesandforbsaresparsetomoderately dense,anddominatedbyspeciestolerantoftheharshsoils.Typicalperennialgrassesinclude Indianricegrass,bluegrama(Boutelouagracilis),thickspikewheatgrass(Elymuslanceolatusssp. lanceolatus),westernwheatgrass(Pascopyrumsmithii),James’galleta(Pleuraphisjamesii), Sandbergbluegrass(Poasecunda),oralkalisacaton. Colorado’sshrub‐steppesaregrass‐dominatedareaswithanopenshrublayer.Typicalgrass speciesincludebluegrama,needle‐and‐thread(Hesperostipacomata),James’galleta,saltgrass (Distichlisspicata),Indianricegrass,andalkalisacaton.Historically,theshrublayerwasdominated bywinterfat,butthisspecieshasdecreasedundergrazingpressureinmanyareas.Winterfathas largelybeenreplacedbyrabbitbrush(EricameriaandChrysothamnus)speciesandotherwoody shrubs. Environment Desertshrublandclimateisgenerallyaridorsemi‐aridwithextremetemperaturedifferences betweensummerandwinter.ForoccurrencesinsouthernColorado,themonsoonalperiodofmid‐ tolatesummernormallyprovidesmostoftheannualmoisture;innorthernareasprecipitationis moreevenlyspreadthroughouttheyear,includingduringthecoldestmonths.Inthesecolddesert shrublands,however,theyeartoyearvariationofprecipitationislikelytobegreaterthanseasonal variablity,withresultanteffectsoninterannualvariabilityingrowthandreproductionofshrubland species(BlaisdellandHolmgren1984). Desertshrublandsubstratesaregenerallyshallow,typicallysalineoralkaline,fine‐texturedsoils developedfromshaleoralluvium.Suchsoilsarepoorlydeveloped,duetothearidclimate,with 86 Colorado Natural Heritage Program © 2015 verylowinfiltrationrates(West1983).Unvegetatedsubstrateiscommon,and,ifundisturbed,is oftencoveredbyabiologicalsoilcrust.Althoughperennialspeciestendtosortoutalonga moisture/salinitygradientaccordingtoindividualspeciestolerances(West1983),theredonot appeartobeanyexceptionallynarrowtolerancesorrequirementsforapartcularsoilfactor presentintypicaldesertshrublandplants(BlaisdellandHolmgren1984). Dynamics Thenaturallysparseplantcovermakestheseshrublandsespeciallyvulnerabletowaterandwind erosion,especiallyifvegetationhasbeenimpactedbygrazingordisturbancesincludingfire. Historically,saltdesertshrublandshadlowfirefrequency(Simonin2001),andarecharacterized bylowfuelmassandlowsoilmoisture,whichtendstomitigatefireimpacts(Allenetal.2011). However,increasedextentofintroducedannualgrasses,especiallycheatgrass,hasfacilitatedthe spreadoffirebyprovidingcontinuoussurfacefuelsinmanyareas(West1994,).IntheGreatBasin, cheatgrasshasdemonstrablyincreasedfireactivityinsagebrushshrublands(Balchetal.2013),but lessisknownaboutfire‐sensitivityofsalinedeserttypes.FiretoleranceofAtriplexspeciesisvaried; mostsurvivingindividualsareabletoresprout.FourwingsaltbushinNewMexicohadsevere mortalityfromfire(62%killed),butsurvivingshrubsquicklyresproutedandeventuallyrecovered prefirestature(Parmenter2008).Shadscaleisgenerallykilledbyfireandreliesonseedfor revegetationofburnedareas(West1994).Althoughtheirstudydidnotincludeungrazedplotsfor comparison,Haubensaketal.(2009)notedthat,afterfire,grazeddesertshrublandshad significantlylowervegetationcover,andweremoreinvadedbynon‐nativespeciesincomparison withunburnedplots. Manyofthedominantshrubsarepalatabletodomesticlivestock,sograzingcanalterspecies compositionaswellasincreasingerosionpotential.Incombinationwithclimaticvariability,these disturbancesacttochangefloristiccompositionofdesertshrublandsovertime.Forexample, winterfatwashistoricallyatypicaldominantinsemi‐desertshrubsteppe.Thispalatableshrubis consideredadecreaserunderdomesticlivestockgrazing.Asaconsequenceofanthropogenically inducedchangesingrazingpatterns,Greene'srabbitbrush(Chrysothamnusgreenei)isnow dominantinSanLuisValleyshrubsteppe,althoughthewetterareasstillhavesignificantamounts ofwinterfat. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 30.6% Initial Exposure‐Sensitivity Rank Moderate Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (48.0%) Final Exposure‐Sensitivity Rank Moderate Climate Change Vulnerability Assessment for Colorado BLM 87 Exposure to temperature change Underprojectedmid‐centurytemperatures,about37%ofthecurrentrangeofdesertshrublandin Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About79%ofdesertshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Thedominantdesertshrubsareabletogrowwhenevertemperaturesarefavorable,butonlyif thereissufficientsoilmoisture.Soilmoistureaccumulationisprimarilyinwinter,andinfluences theamountofspringplantgrowth.Ifnoadditionalmoistureisreceivedinspring,growthends,and plantsbecomedormant.Laterrainsduringthewarmseasonmayre‐inducegrowth(Blaisdelland Holmgren1984).Soilsaturationmaycausemortalityofthedominantshrubs(Ewingand Dobrowolski1992).Thecharacteristicinterannualvariabilityofprecipitationindesertshrubareas, andthedifferentlifehistorystrategies/phenologyofthecomponentspeciescanproducedramatic differencesinshrublandappearancefromoneyeartothenext(BlaisdellandHolmgren1984). Munsonetal.(2011)founddecreasedcanopycoverinAtriplexshrublandswithincreasing temperature,whichtheyattributedtoincreasedevaporationandreducedwateravailabilityinthe shale‐derivedsoils.Thus,theseshrublandsmaybeabletotoleratehighertemperaturesonlywhen precipitationisadequate.However,insomesemi‐aridandaridsystems,temporalvariationin wateravailabilitymaycreatepositivefeedbacksthatfacilitateencroachmentofC3woodyplant speciesintoareasformerlydominatedbyC4grasses.Otherdesertshrubspecieswithdeeperroot systems(e.g.,blackbrush,greasewood,mormontea,sagebrush)arebetteradaptedtoexpandinto grassyareasthanrelativelyshallow‐rootedAtriplexspecies(Munsonetal.2011).Further differentiationbetweenshrubspeciesintheabilitytoutilizerainfallduringparticularseasons(Lin etal.1996)mayleadtochangesinspeciescompositionintheseshrublands.Shadscalesaltbush(A. confertifolia)andotherdesertshrubsaretypicallydependentonspringsoilmoistureforgrowth, andhavelowmetabolicactivityduringsummerasthesoildries(Mata‐Gonzálezetal.2014). Resilience and Adaptive Capacity Rank Overall Score: 0.69 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.72 Desertshrublandsaregenerallyconfinedtowarm,dryhabitatswithinColorado,occupying31%of Colorado’soverallprecipitationrangeand57%ofthestatewiderangeofgrowingdegreedays. Theseshrublandsarenotlimitedbyelevationalconstraints,andarenotatthesouthernedgeof theirrangeinColorado,whichgivesthemagoodresiliencescoreinthiscategory. Growth form and intrinsic dispersal rate Score:0.5 88 Colorado Natural Heritage Program © 2015 Althoughthedominantshrubspeciesarelikelytobefairlyfastgrowing,lackofinformationabout thedispersalratesofthesespeciesgivesthisecosystemanintermediateresiliencescoreforthis category. Vulnerability to increased attack by biological stressors Score:0.7 Increasedinvasionbynon‐nativeannualgrassesandconsequentincreaseinfirefrequencyislikely todepressrecruitmentofsaltdesertshrubspecies(Haubensaketal.2009). Vulnerability to increased frequency or intensity of extreme events Score:1 Theseshrublandsarewelladaptedtodrought,sohaveahighresiliencescoreforthiscategory. Increasedfireeffectsarescoredinthepreviouscategoryasbeingmediatedbycheatgrassinvasion. Other indirect effects of non‐climate stressors – landscape condition Score:0.51 DesertshrublandlandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic activities.Significantportionshavebeenconvertedtoagriculturaluse,especiallyinvalleybottoms whereirrigationisavailable.Remainingstandsaregenerallyingoodcondition,exceptforaltered speciescompositioninareaswheregrazinghasreducedoreliminatedsomenativebunchgrasses. Ongoinglimitedthreatsfromexurbandevelopmentorconversiontoagricultureareaminorsource ofdisturbance,fragmentation,andhabitatlossintheremainingextentoftheseshrublands.Oiland gasdevelopment,withassociatedroads,pipelinecorridors,andinfrastructureistheprimary ongoingsourceofanthropogenicdisturbance,fragmentation,andlossinthishabitat.Livestock grazinghasalteredpre‐settlementspeciescomposition,andthistrendislikelytocontinueata reducedrate.Roadsandutilitycorridors,includingthoseassociatedwithsolarenergydevelopment intheSanLuisValleyareanongoingsourceofdisturbance,andcanfacilitatethespreadofinvasive plantspecies,whichhavebecomeestablishedinsomeareas. Literature Cited Allen,E.B.,R.J.Steers,andS.J.Dickens.2011.Impactsoffireandinvasivespeciesondesertsoilecology.Rangeland EcologyandManagement64:450‐462. Balch,J.K.,B.A.Bradley,C.M.D’Antonio,andJ.Gómez‐Dans.2013.Introducedannualgrassincreasesregionalfireactivity acrossthearidwesternUSA(1980‐2009).GlobalChangeBiology19:173‐183. Blaisdell,J.P.andR.C.Holmgren.1984.ManagingIntermountainrangelands‐salt‐desertshrubranges.USDAForest ServiceGeneralTechnicalReportINT‐163.IntermountainForestandRangeExperimentStation,Ogden,Utah.52pp Haubensak,K.,C.D’Antonio,andD.Wixon.2009.Effectsoffireandenvironmentalvariablesonplantstructureand compositioningrazedsaltdesertshrublandsoftheGreatBasin(USA).JournalofAridEnvironments73:643‐650. Climate Change Vulnerability Assessment for Colorado BLM 89 Lin,G.S.L.Phillips,andJ.R.Ehleringer.1996.Monsoonalprecipitationresponsesofshrubsinacolddesertcommunityon theColoradoPlateau.Oecologia106:8‐17. Mata‐GonzálezR.,T.L.Evans,D.W.Martin,T.McLendon,J.S.Noller,C.Wan,andR.E.Sosebee.2014.PatternsofWaterUse byGreatBasinPlantSpeciesUnderSummerWatering.AridLandResearchandManagement28:428‐446. Munson,S.M.,J.Belnap,C.D.Schelz,M.Moran,andT.W.Carolin.2011.Onthebrinkofchange:plantresponsestoclimate ontheColoradoPlateau.Ecosphere2:art68. Parmenter,R.R.2008.Long‐TermEffectsofaSummerFireonDesertGrasslandPlantDemographicsinNewMexico. RangelandEcologyandManagement61:156–168. Simonin,K.A.2001.Atriplexconfertifolia.In:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture, ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ West,N.E.1983.Intermountainsaltdesertshrublands.Pages375‐397in:N.E.West,editor.Temperatedesertsandsemi‐ deserts.Ecosystemsoftheworld,Volume5.ElsevierPublishingCompany,Amsterdam. West,N.E.1994.Effectsoffireonsalt‐desertshrubrangelands.InMonsen,S.B.,S.G.Kitchen,comps.1994.Proceedings‐ ecologyandmanagementofannualrangelands;1992May18‐21;Boise,ID.Gen.Tech.RepINT‐GTR‐313.Ogden,UT:U.S. DepartmentofAgriculture,ForestService,IntermountainResearchStation.416p. 90 Colorado Natural Heritage Program © 2015 OAK & MIXED MOUNTAIN SHRUB ShrublandsdominatedbyGambeloakorserviceberryandothermontaneshrubspecies S. Kettler extent exaggerated for display Climate Vulnerability Rank: Low Vulnerability summary Key Vulnerabilities: Oak shrublands are most vulnerable to drought and variability of late frosts. The vulnerability of other mountain shrub species is not well known. The ability to resprout after disturbance increases shrub resilience. Oakandmixedmountainshrublandsarerankedashavinglow vulnerabilitytotheeffectsofclimatechangebymid‐century. Primaryfactorscontributingtothisrankingarethewide ecologicalamplitudeoftheseshrublandsinColorado,andtheir abilitytowithstandorrecoverfromdisturbancerelatively quickly,whichoffsetsthelowerlandscapeconditionscoredueto pastanthropogenicdisturbancelevels. Distribution Thislargepatchecosystemoccursinthemountains,plateaus,andfoothillsintheSouthernRocky MountainsandColoradoPlateauecoregions.Oakandmixedmountainshrublandsarewidespread inthewesternhalfofColorado,andalongthesouthernstretchofthemountainfront.These shrublandsaremostcommonlyfoundalongdryfoothillsandlowermountainslopesfrom approximately6,500to9,500ft(2,000‐2,900m)inelevation,oftensituatedabovepinyon‐juniper woodlands,andadjacenttoponderosawoodlands.Theremaybeinclusionsofothermesicmontane Climate Change Vulnerability Assessment for Colorado BLM 91 shrublandswithGambeloak(Quercusgambelii)absentorasarelativelyminorcomponent.This ecosystemintergradeswiththelowermontane‐foothillsshrublandsystemandsharesmanyofthe samesitecharacteristics. Characteristic species StandsdominatedbyGambeloakarecommoninthesouthernpartofColorado,butarecompletely interspersedwithstandsdominatedbyothershrubspecies,especiallyserviceberry(Amelanchier spp.)andmahogany(Cercocarpusspp.)athigherelevations.Thevegetationistypicallydominated byGambeloakaloneorcodominantwithSaskatoonserviceberry(Amelanchieralnifolia),Utah serviceberry(Amelanchierutahensis),bigsagegrush(Artemisiatridentata),mountainmahogany (Cercocarpusmontanus),chokecherry(Prunusvirginiana),Stansburycliffrose(Purshia stansburiana),antelopebitterbrush(Purshiatridentata),mountainsnowberry(Symphoricarpos oreophilus),orroundleafsnowberry(Symphoricarposrotundifolius).Vegetationtypesinthissystem mayoccurassparsetodenseshrublandscomposedofmoderatetotallshrubs.Occurrencesmaybe multi‐layered,withsomeshortshrubbyspeciesoccurringintheunderstoryofthedominant overstoryspecies.Occurrencescanrangefromdensethicketswithlittleunderstorytorelatively mesicmixed‐shrublandswitharichunderstoryofshrubs,grassesandforbs.Theseshrubsoften haveapatchydistributionwithgrassgrowinginbetween.Scatteredtreesareoccasionallypresent instandsandtypicallyincludespeciesofpineorjuniper.Annualgrassesandforbsareseasonally present,andweedyannualsareoftenpresent,atleastseasonally. Non‐oakdominatedmontaneshrublandsareofvariablespeciescomposition,dependingonsite conditionssuchaselevation,slope,aspect,soiltype,moistureavailability,andpasthistory.Species presentmayincludemountainmahogany(Cercocarpusmontanus),skunkbushsumac(Rhus trilobata),clifffendlerbush(Fendlerarupicola),antelopebitterbrush(Purshiatridentata),wildcrab apple(Peraphyllumramosissimum),snowberry(Symphoricarposspp.),andserviceberry (Amelanchierspp.).Mostofthesespeciesreproducebothvegetativelyandbyseedlingrecruitment, aswellasresproutingeasilyafterfire.Variabledisturbancepatternsmayaccountforthelocal dominanceofaparticularspecies(Keeley2000).Althoughfireisanobvioussourceofdisturbance intheseshrublands,snowpackmovements(creep,glide,andslippage)mayalsoprovidesignificant disturbanceinslide‐proneareas(Jamiesonetal.1996). Spottedtowhee,Virginiawarblers,Green‐tailedtowhee,Blue‐graygnatcatcher,Turkey,blackbear, deer,elk,andmountainlionarecharacteristicoftheseshrublands. Environment Thisecosystemtypicallyoccupiesthelowerslopepositionsofthefoothillandlowermontanezones whereitmayoccuronleveltosteepslopes,cliffs,escarpments,rimrockslopes,rockyoutcrops,and screeslopes.Climateissemi‐aridandcharacterizedbymostlyhot‐drysummerswithmildtocold wintersandannualprecipitationof10‐27in(25‐70cm).Mostprecipitationoccursaswintersnow butlatesummermonsoonalrainmaybesignificantinsouthernstands.Substratesarevariableand includesoiltypesrangingfromcalcareous,heavy,fine‐grainedloamstosandyloams,gravelly loams,clayloams,deepalluvialsand,orcoarsegravel.Soilsaretypicallypoorlydeveloped,rockyto veryrocky,andwell‐drained.Parentmaterialsincludealluvium,colluvium,andresiduumderived 92 Colorado Natural Heritage Program © 2015 fromigneous,metamorphic,orsedimentaryrockssuchasgranite,gneiss,limestone,quartz, monzonite,rhyolite,sandstone,schist,andshale. Dynamics Theseshrublandsarehighlyfiretolerant.Firecausesdie‐backofthedominantshrubspeciesin someareas,promotesstumpsproutingofthedominantshrubsinotherareas,andcontrolsthe invasionoftreesintotheshrublandsystem.DensityandcoverofGambeloakandserviceberry oftenincreaseafterfire.Naturalfirestypicallyresultinasystemwithamosaicofdenseshrub clustersandopeningsdominatedbyherbaceousspecies.Historicnaturalfirereturnintervalswere ontheorderof100yearsinMesaVerde(Floydetal.2000);undersuchconditionsoflowfire frequency,vulnerablenewlysproutedstemsareabletopersistandformdensethickets. InsectpestsaffectingGambeloakincludethewoodborer(Agrilusquercicola)andtheoakleafroller (Archipssemiferana).Thewesterntentcaterpillar(Malacosomacalifornicum)isacommon defoliatorofshrubspecies.Largeoutbreaksoftheseinsectshavehistoricallybeeninfrequentin Coloradooakandmixedmountainshrublands(USDAForestService2010). Oakandmixedmountainshrublandsareimportanthabitatforwildlife,especiallymuledeer, turkey,andblackbear(Jesteretal.2012).Becauseoakisgenerallyunpalatabletocattle,livestock grazingcanfacilitatetheincreaseofoakcoverattheexpenseofunderstorygrasses(Mandanyand West1983).Nativemuledeer,however,browseoakandmixedmountainshrubspeciesduring mostseasons(Kufeldetal.1973). CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 1.8% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (47.0%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about2%ofthecurrentrangeofoak‐mixedmountain shrublandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum. Exposure to precipitation change About49%ofoak‐mixedmountainshrublandinColoradowillbeexposedtoeffectivelydrier conditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Ingeneral,theupperandlowerelevationallimitsofGambeloakshrublandarebelievedtobe controlledbytemperatureandmoisturestress.NeilsonandWullstein(1983)foundthatseedling Climate Change Vulnerability Assessment for Colorado BLM 93 mortalitywasprimarilyduetospringfreezing,grazing,orsummerdroughtstress.Atmore northernlatitudes,thezoneoftolerablecoldstressisfoundatlowerelevations,but,atthesame time,theareaswheresummermoisturestressistolerableareathigherelevations.Neilsonand Wullstein(1983)hypothesizethatthenortherndistributionallimitofGambeloakcorrespondsto thepointwherethesetwoopposingfactorsconverge.Oakshrublandsaretypicallyfoundinareas withmeanannualtemperaturesbetween45and50F(7‐10C;Harperetal.1985).Athigher, coolerelevations,acornproductionmaybelimitedbytheshortnessofthegrowingseason,and mostreproductionislikelytobevegetative(Christensen1949).Warmingtemperaturesmay increasebothacornproductionandseedlingsurvival. Althoughoaksaremostlikelytodowellunderclimatechange,droughtsmayreducethefrequency ofestablishmentthroughseedlingrecruitmentbyreducingseedlingsurvival(Neilsonand Wullstein1983).Thelargeracorn‐producingstemsalsoappeartobemorevulnerabletodrought inducedmortality. Resilience and Adaptive Capacity Rank Overall Score: 0.85 Rank: High Bioclimatic envelope and range Averagedcategoryscore:0.76 OakandmixedmountainshrublandsarewidespreadinwesternColorado,andhavearelatively broadecologicalamplitude.Theseshrublandsarenotconfinedtohighelevations,andarenotatthe southernedgeoftheirrangeinColorado.Oakandmixedmountainshrublandshavesignificant presencein52%ofColorado’soverallprecipitationrange,and53%ofthestate’sgrowingdegree dayrange,resultinginafairlyhighresiliencescoreforthiscategory Growth form and intrinsic dispersal rate Score:1 Theshrubgrowthformofthedominantspecies,andabilitytoquicklycolonizenewareasgivethis ecosystemahighresiliencescoreforthiscategory.Gambeloakreproducesprimarilybysprouting ofnewstems,especiallyafterdisturbancessuchasbrushcontrol,fire,andgrazing,although recruitmentfromseedlingsdoesoccur(Brown1958,Harperetal.1985).Theextensiveclonalroot systemofGambeloakisaprimarycontributortoitsabilitytosurviveduringperiodswhenseedling establishmentisimpossible. Vulnerability to increased attack by biological stressors Score:1 Ingeneraloakandmixedmountainshrublandsarenothighlyvulnerabletoincreasedeffectsof biologicalstressors.Insomeareas,oakstandsarevulnerabletoincreasedprevalenceofinvasive speciessuchascheatgrass(Bromustectorum)andknapweeds(Centaureaspp.).Livestockgrazing 94 Colorado Natural Heritage Program © 2015 hasdegradedtheunderstorygrasscommunityofsomeoakstands,andcheatgrassandknapweed havebecomeestablishedinsomeareas.Mixedmountainshrublandsarelessimpactedbyinvasives. Vulnerability to increased frequency or intensity of extreme events Score:1 Theseshrublandsarehighlyfiretolerant.Itispossibleforthissystemtomoveupinelevation, especiallyiffiresopenupsomeoftheadjacentforestedecosystems. Other indirect effects of non‐climate stressors – landscape condition Score:4.9 OakandmixedmountainshrublandlandscapesinColoradohavebeenmoderatelyimpactedby anthropogenicactivities.Ongoingbutlimitedthreatsfromurban,exurban,commercial,andenergy developmentareprimarilyinthesouthernandwesternportionsofColorado,wheretowns,roads, andutilitycorridorsareoftenincloseproximitytooakshrublands.Mixedmountainshrublandsare somewhatlessimpactedbydevelopments,primarilythoseassociatedwithrecreationareasor exurbanhousing.Fireisasourceofdisturbanceintheseshrublands,andtheyarehighlyfire tolerant.Aswithotherhabitatsinthewildland‐urbaninterface,areasneardevelopedareasare mostlikelytobethreatenedbytheeffectsoffiresuppression,whilemoreremoteareasare generallyingoodcondition. Literature Cited Brown,H.E.1958.Gambeloakinwest‐centralColorado.Ecology39:317‐327. Christensen,E.M.1949.Theecologyandgeographicdistributionofoakbrush(Quercusgambelii)inUtah.Thesis.70p. UniversityofUtah,SaltLakeCity,UT. Floyd,M.L.,W.H.Romme,andD.D.Hanna.2000.FirehistoryandvegetationpatterninMesaVerdeNationalPark, Colorado,USA.EcologicalApplications10:1666‐1680. Harper,K.T.,F.J.Wagstaff,andL.M.Kunzler.1985.BiologymanagementoftheGambeloakvegetativetype:aliterature review.Gen.Tech.Rep.INT‐179.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainForestand RangeExperimentStation.31p. Jamieson,D.W.,W.H.Romme,andP.Somers.1996.Bioticcommunitiesofthecoolmountains.Chapter12inTheWestern SanJuanMountains:TheirGeology,Ecology,andHumanHistory,R.Blair,ed.UniversityPressofColorado,Niwot,CO. Jester,N.,K.Rogers,andF.C.Dennis.2012.Gambeloakmanagement.NaturalResourcesSeries‐ForestryFactSheetNo. 6.311.ColoradoStateUniversityExtension,FortCollins,Colorado. Keeley,J.E.2000.Chaparral.Chapter6inNorthAmericanTerrestrialVegetation,secondedition.M.G.BarbourandW.D. Billings,eds.CambridgeUniversityPress. Kufeld,R.C.,O.C.Wallmo,andC.Feddema,.1973.FoodsoftheRockyMountainmuledeer.Res.Pap.RM‐111.FortCollins, CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation.31p. Madany,M.H.andN.E.West.1983.Livestockgrazing‐fireregimeinteractionswithinmontaneforestsofZionNational Park,Utah.Ecology64:661‐667. Climate Change Vulnerability Assessment for Colorado BLM 95 Neilson,R.P.andL.H.Wullstein.1983.BiogeographyoftwosouthwestAmericanoaksinrelationtoatmospheric dynamics.JournalofBiogeography10:275‐297. 96 Colorado Natural Heritage Program © 2015 SAGEBRUSH Shrublandandsteppecharacterizedbysagebrush,includingthreesubspeciesofbigsagebrush, blacksagebrush,Bigelowsage,andlittlesagebrush R. Rondeau extent exaggerated for display Climate Vulnerability Rank: Low Vulnerability summary Key Vulnerabilities: Increased drought intensity and/or frequency is likely to increase the impacts of fire in sagebrush shrublands, as well as play a role in the spread of invasive species. The vulnerability of sagebrush shrublands is expected to be variable by subspecies. Sagebrushshrublandsarerankedashavinglowvulnerabilityto theeffectsofclimatechangebymid‐century.Theprimaryfactor contributingtothisrankingisthecomparativelylowprojected exposuretowarmeranddrierfutureconditionsinthepartof Coloradowherethegreaterportionofthishabitatisfound.The combinationofthethreebigsagebrushsubspeciesinour analysiscollectivelygivesthishabitattypeawideecological amplitude.Underalongertimeframe,theseshrublandsmay havehighervulnerability,similartotheassessmentofPocewicz etal.(2014)forsagebrushhabitatsinWyoming.Inparticular,the degradedconditionofsomeareas,andthevulnerabilityofthis ecosystemtopotentialincreasesinfirefrequencyandseverity, couldincreasethevulnerabilitytoclimatechange. Distribution Asevaluatedherein,thethreesubspeciesofbigsagebrush(basinbigsagebrush,Artemisia tridentatassp.tridentata,mountainbigsagebrush,A.tridentatassp.vaseyana,andWyomingbig Climate Change Vulnerability Assessment for Colorado BLM 97 sagebrush,A.tridentatassp.wyomingensis)arecombinedasthesagebrushecosystem.Ingeneral, Wyomingbigsagebrushisfoundindrier,warmerareaswhereprecipitationismorelikelytobein theformofrain,whilemountainbigsagebrushisfoundathigher,coolerelevationswheresnowis thedominantformofprecipitation(Howard1999,Johnson2000).Changesintemperatureand precipitationpatternsmayresultinshiftsintherelativeabundanceanddistributionofthethree subspecies. ThismatrixformingecosystemoccursthroughoutthemuchofwesternU.S.InColorado,thelargest occurrencesareinthewesternhalfofthestate,butthissystemcanalsobefoundineastern Colorado.NorthwesternColorado,NorthPark,MiddlePark,andtheupperGunnisonBasinhave largeandcontinuousstandsofsagebrushshrublands. Characteristic species Sagebrushshrublandsoflower,drierelevationsaredominatedbybasinbigsagebrushand/or Wyomingbigsagebrush.Additionalshrubspeciespresentmayincludesilversagebrush(Artemisia cana),rabbitbrush(ChrysothamnusorEricameriaspp.),winterfat(Krascheninnikovialanata),and antelopebitterbrush(Purshiatridentata).Understoriesaretypicallygrassy,andcommon graminoidspeciesincludeIndianricegrass(Achnatherumhymenoides),bluegrama(Bouteloua gracilis),Geyer’ssedge(Carexgeyeri),thickspikewheatgrass(Elymuslanceolatus),Idahofescue (Festucaidahoensis),Thurberfescue(F.thurberi),needle‐and‐thread(Hesperostipacomata),basin wildrye(Leymuscinereus),westernwheatgrass(Pascopyrumsmithii),James’galleta(Pleuraphis jamesii),Sandbergbluegrass(Poasecunda),orbluebunchwheatgrass(Pseudoroegneriaspicata). Perennialforbspeciestypicallycontributelessthan25%vegetativecover. Montanesagebrushshrublandorsteppeischaracterizedbymountainbigsagebrush,andavariety ofothershrubsincludingSaskatoonserviceberry(Amelanchieralnifolia),littlesagebrush (Artemisiaarbuscula),prairiesagewort(Artemisiafrigida),rubberrabbitbrush(Ericameria nauseosa),yellowrabbitbrush(Chrysothamnusviscidiflorus),mountainsnowberry(Symphoricarpos oreophilus),antelopebitterbrush,waxcurrant(Ribescereum),andWoods’rose(Rosawoodsii),may bepresent.Bothforbsandgrassesaretypicallywellrepresentedintheunderstory.Common graminoidsincludeIdahofescue,Thurberfescue,timberoatgrass(Danthoniaintermedia),Parry’s oatgrass(Danthoniaparryi),squirreltail(Elymuselymoides),slenderwheatgrass(Elymus trachycaulus),spikefescue(Leucopoakingii),westernwheatgrass,bluebunchwheatgrass, muttongrass(Poafendleriana),Sandbergbluegrassanduplandsedges(Carexspp.).Forbspecies mayincludecommonyarrow(Achilleamillefolium),rosypussytoes(Antennariarosea),white sagebrush(Artemisialudoviciana),milkvetch(Astragalusspp.),arrowleafbalsamroot (Balsamorhizasagittata),Indianpaintbrush(Castillejaspp.),fleabane(Erigeronspp.),buckwheat (Eriogonumspp.),strawberry(Fragariavirginiana),avens(Geumspp.),owl's‐claws(Hymenoxys hoopesii),lupine(Lupinus,spp.),phlox(Phloxspp.),andcinquefoil(Potentillaspp.). Sage‐grouse(Centrocercusspp.)isanindicatorofahealthysagebrushshrubland. 98 Colorado Natural Heritage Program © 2015 Environment Bigsagebrushshrublandsaretypicallyfoundinbroadbasinsbetweenmountainranges,onplains andfoothills.Sitesaretypicallyflattorollinghillswithdeep,well‐drainedsandyorloamsoils between7,000to10,000feetinelevation.Mostannualprecipitationfallsassnowinwinter. Temperaturesexhibitlargeannualanddiurnalvariation. Dynamics Althoughsagebrushtoleratesdryconditionsandfairlycooltemperaturesitisnotfireadapted,and islikelytobeseverelyimpactedbyintensefiresthatenhancewinderosionandeliminatetheseed bank(Schlaepferetal.2014).Increasedfirefrequencyandseverityintheseshrublandscouldresult increasingareadominatedbyexoticgrasses,especiallycheatgrass(Bromustectorum)(D’Antonio andVitousek1992,ShinnemanandBaker2009).Warmer,driersites(typicallyfoundatlower elevations)aremoreinvasiblebycheatgrass(Chambersetal.2007).Thereisamoderatepotential forinvasionbyknapweedspecies,oxeyedaisy,leafyspurge,andyellowtoadflaxunderchanging climaticconditions,andapotentialforchangingfiredynamicstoaffecttheecosystem.Thereisno informationonthevulnerabilityofthisecosysteminColoradotoinsectordiseaseoutbreak, althoughsevereoutbreaksofthesagebrush‐defoliatingmothArogawebsterihavebeenrecorded furtherwestintheGreatBasin(Bentzetal.2008).Grazingbylargeungulates(bothwildlifeand domesticlivestock)canchangethestructureandnutrientcyclingofsagebrushshrublands(Manier andHobbs2007),buttheinteractionofgrazingwithotherdisturbancessuchasfireandinvasive speciesunderchangingclimaticconditionsappearscomplex(e.g.Daviesetal.2009)andnotwell studiedinColorado. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 3.7% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (22.1%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about5%ofthecurrentrangeofsagebrushshrubland inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About26%ofsagebrushshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Bradley(2010)pointsoutthatsagebrushshrublandsinthewesternU.S.arecurrentlyfoundacross awidelatitudinalgradient(fromabout35to48degreesnorthlatitude),whichsuggestsadaptation toacorrespondinglywiderangeoftemperatureconditions.However,becausetheseshrublandsare Climate Change Vulnerability Assessment for Colorado BLM 99 apparentlyabletodominateazoneofprecipitationbetweendriersaltbushshrublandsandhigher, somewhatmoremesicpinyon‐juniperwoodland,thedistributionofsagebrushshrublandsislikely tobeaffectedbychangesinprecipitationpatterns(Bradley2010).Seasonaltimingofprecipitation isimportantforsagebrushhabitats;summermoisturestressmaybelimitingifwinterprecipitation islow(GerminoandReinhardt2014).Seedlingsofmountainbigsagebrusharemoresensitiveto freezingunderreducedsoilmoistureconditions(Lambrechtetal.2007).Wintersnowpackis criticalforsagebrushgrowth;lowerelevationsareprobablymoreatriskfromtemperatureimpacts incomparisontoupperelevationsduetolesssnow,andconsequentlygreaterwaterstress. Underexperimentalwarmingconditionsinahigh‐elevationpopulation,mountainbigsagebrush hadincreasedgrowth,suggestingthatlongergrowingseasonlengthcouldfacilitatetheexpansion ofsagebrushhabitatintoareasthatwereformerlytoocoldfortheshrub(Perforsetal.2003). However,Pooreetal.(2009)foundthathighsummertemperaturesresultedinlowergrowthrate, duetoincreasedwaterstress. Schlaepferetal.(2012)modeledfuturedistributionofthebigsagebrushecosysteminthewestern U.S.Overtheentirestudyarea,sagebrushdistributionwaspredictedtodecrease,especiallyunder higherCO2emissionsscenarios.Thestrongestdecreasesareinthesouthernpartoftherange (includingsouthwesternColorado),whilethedistributionispredictedtoincreaseathigher elevationsandinareasfartothenorthofColorado. Resilience and Adaptive Capacity Rank Overall Score: 0.61 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.83 Theseshrublandsareprimarilyfoundinthewesternpartofthestate,atelevationsfromabout 5,000to9,500ft,andarenotrestrictedtohighelevations.TheNorthAmericandistributionof sagebrushhabitatislargelytothewestandnorthofColorado.Thethreesubspeciesofbig sagebrushshowanelevationalseparation,withmountainbigsagebrushinwetter,cooler conditionsofhigherelevations,andWyomingbigsagebrushinthewarmestanddriestconditions atlowerelevations(Howard1999).Duetotheadaptationsofthevarioussubspecies,therangeof annualaverageprecipitationforsagebrushhabitatsisfairlywide,fromabout8‐40in(20‐100cm), withameanof18in(45cm),covering64%ofthestatewideprecipitationrange.Growingseason heataccumulationisalsohighlyvariableacrosstherangeofthehabitat,forthesamereason,and covers67%ofthestatewiderange.Thiscombinationoffactorsgivessagebrushshrublandsahigh resiliencescoreinthiscategory. Growth form and intrinsic dispersal rate Score:0.5 Sagebrushreceivedanintermediateresiliencescoreduetoitsgenerallyslowergrowthratesand inabilitytoresproutafterfire.Sagebrushisgenerallyapoorseeder,withsmalldispersaldistances, 100 Colorado Natural Heritage Program © 2015 however,therearenoapparentbarrierstodispersalfortheseshrublands.Thesestandsmayalso besomewhatvulnerabletochangesinphenology. Vulnerability to increased attack by biological stressors Score:0.7 Otherstressorsforsagebrushshrublandsareinvasionbycheatgrassandexpansionofpinyon‐ juniperwoodlands.Thereisamoderatepotentialforinvasionbyknapweedspecies,oxeyedaisy, leafyspurge,andyellowtoadflaxunderchangingclimaticconditions,andapotentialforchanging firedynamicstoaffecttheecosystem.Thereisnoinformationonthevulnerabilityofthisecosystem toinsectordiseaseoutbreak. Grazingbylargeungulates(bothwildlifeanddomesticlivestock)canchangethestructureand nutrientcyclingofsagebrushshrublands(ManierandHobbs2007),buttheinteractionofgrazing withotherdisturbancessuchasfireandinvasivespeciesunderchangingclimaticconditions appearscomplex(e.g.Daviesetal.2009)andnotwellstudiedinColorado. Vulnerability to increased frequency or intensity of extreme events Score:0.5 Althoughsagebrushtoleratesdryconditionsandfairlycooltemperaturesitisnotfireadapted,and noneofthesubspeciesresproutafterfire(Tirmenstein1999).Sagebrushshrublandislikelytobe severelyimpactedbyintensefiresthatenhancewinderosionandeliminatetheseedbank(Young andEvans1989).Increaseddroughtmayincreasefirefrequencyandseverity,eliminating sagebrushinsomeareas,especiallyatdriersitesoflowerelevations.Increasedfirefrequencyand severityintheseshrublandsmayresultintheirconversiontograsslandsdominatedbyexotic species. Other indirect effects of non‐climate stressors – landscape condition Score:0.53 SagebrushshrublandlandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic disturbance.Threatstosagebrushshrublandsfromexurbanorrecreationalareadevelopmentare limited,butongoingataverylowlevel.Huntingandrecreationareminorsourcesofdisturbancein thishabitat.Chainingorothershrubremovalformownhay,andtoalesserextentconversionto croplandisasubstantialthreatinnorthwesternColorado.Largecoalminingoperationsthat completelyremovethishabitatpriortoreclamationactivityareanongoingthreattothe connectivityandqualityoftheseshrublands.Oilandgasdevelopment,withassociatedroads, pipelinecorridors,andinfrastructureisanotherongoingsourceofanthropogenicdisturbance, fragmentation,andlossinthishabitatinnorthwesternColorado. Literature Cited Bentz,B.,D.Alston,andT.Evans.2008.GreatBasininsectoutbreaks.In:Chambers,J.C.,N.Devoe,andA.Evenden,eds. CollaborativemanagementandresearchintheGreatBasin‐examiningtheissuesanddevelopingaframeworkforaction. Climate Change Vulnerability Assessment for Colorado BLM 101 Gen.Tech.Rep.RMRS‐GTR‐204.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearch Station.p.45‐48. Bradley,B.A.2010.Assessingecosystemthreatsfromglobalandregionalchange:hierarchicalmodelingofriskto sagebrushecosystemsfromclimatechange,landuseandinvasivespeciesinNevada,USA.Ecography33:198‐208. Chambers,J.C.,B.A.Roundy,R.R.Blank,S.E.Meyer,andA.Whittaker.2007.WhatmakesGreatBasinsagebrush ecosystemsinvasiblebyBromustectorum?EcologicalMonographs77:117‐145. D’Antonio,C.M.andP.M.Vitousek.1992.Biologicalinvasionsbyexoticgrasses,thegrass/firecycle,andglobalchange. AnnualReviewofEcologyandSystematics23:63–87. Davies,K.E.,T.J.Sevjcar,andJ.D.Bates.2009.Interactionofhistoricalandnonhistoricaldisturbancesmaintainsnative plantcommunities.EcologicalApplications19:1536‐1545. Germino,M.J.andK.Reinhardt.2014.Desertshrubresponsestoexperimentalmodificationofprecipitationseasonality andsoildepth:relationshiptothetwo‐layerhypothesisandecohydrologicalniche.JournalofEcology102:989‐997. Howard,J.L.1999.Artemisiatridentatasubsp.wyomingensis.In:FireEffectsInformationSystem,[Online].U.S. DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer). Available:http://www.fs.fed.us/database/feis/ Johnson,K.A.2000.Artemisiatridentatasubsp.vaseyana.In:FireEffectsInformationSystem,[Online].U.S.Departmentof Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ Lambrecht,S.C.,A.K.Shattuck,andM.E.Loik.2007.Combineddroughtandepisodicfreezingonseedlingsoflow‐and high‐elevationsubspeciesofsagebrush(Artemisiatridentata).PhysiologiaPlantarum130:207‐217. Manier,D.J.andN.T.Hobbs.2007.Largeherbivoresinsagebrushsteppeecosystems:livestockandwildungulates influencestructureandfunction.Oecologia152:739‐750. Perfors,T.,J.Harte,andS.E.Alter.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)inresponsetomanipulated ecosystemwarming.GlobalChangeBiology9:736‐742. Pocewicz,A.,H.E.Copeland,M.B.Grenier,D.A.Keinath,andL.M.Washkoviak.2014.Assessingthefuturevulnerabilityof Wyoming’sterrestrialwildlifespeciesandhabitats.ReportpreparedbyTheNatureConservancy,WyomingGameand FishDepartmentandWyomingNaturalDiversityDatabase. Poore,R.E.,C.A.Lamanna,J.J.Ebersole,andB.J.Enquist.2009.Controlsonradialgrowthofmountainbigsagebrushand implicationsforclimatechange.WesternNorthAmericanNaturalist69:556‐562. Schlaepfer,D.R.,W.K.Lauenroth,andJ.B.Bradford.2012.Effectsofecohydrologicalvariablesoncurrentandfuture ranges,localsuitabilitypatterns,andmodelaccuracyinbigsagebrush.Ecography35:374‐384. Shinneman,D.J.andW.L.Baker.2009.Environmentalandclimaticvariablesaspotentialdriversofpost‐firecoverof cheatgrass(Bromustectorum)inseededandunseededsemiaridecosystems.InternationalJournalofWildlandFire 18:191‐202. Tirmenstein,D.1999.Artemisiatridentataspp.tridentata.In:FireEffectsInformationSystem,[Online].U.S.Department ofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ Young,J.A.andR.A.Evans.1989.Dispersalandgerminationofbigsagebrush(Artemisiatridentata)seeds.WeedScience 37:201‐206. 102 Colorado Natural Heritage Program © 2015 SANDSAGE Shrublandorsteppecharacterizedbysandsagebrush S. Kettler extent exaggerated for display Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Extended periods of drought that decrease levels of vegetation cover would increase the likelihood that sandy substrates will be mobilized. The loss of native plant biodiversity in many stands decreases the available assemblage of drought‐adapted species that can boost resilience to this vulnerability. Sandsageshrublandsarerankedmoderatelyvulnerabletothe effectsofclimatechangebymid‐century.Thisrankingis primarilyduetotheconcentrationofgreatestexposureforall temperaturevariablesontheeasternplainsofColorado,where thisecosystemisfound.Inaddition,anthropogenicdisturbance intheseshrublandshasreducedtheoveralllandscapecondition ofthehabitat.Theseshrublandsarewelladaptedtosandysoils, andmaybeabletoexpandintoadjacentareasunderwarmer, drierconditions,dependingondisturbanceinteractions.Overall conditionandcompositionoftheseshrublandsmaychangewith changingclimate. Distribution Thesandsageecosystemisfoundprimarilyinthesouth‐centralareasoftheWesternGreatPlains. OccurrencesgenerallyrangefromtheNebraskaSandhillregionsouthtocentralTexas,although someexamplesmaybefoundasfarnorthastheBadlandsofSouthDakota.Thegreaterpartofthe ecosystemoccursintheCentralShortgrassPrairieecoregionineasternColorado,westernKansas Climate Change Vulnerability Assessment for Colorado BLM 103 andsouthwesternNebraska.SandsageshrublanddominatessandysoilsofColorado’seastern plains,atelevationsgenerallybelow5,500ft. Theseshrublandshaveoftenbeentreatedasanedaphicvariantofeasternplainsmixed‐grass prairie(Albertson&Weaver1944,Daley1972),orofshortgrassprairie(Ramaley1939,Simsand Risser2000).Sandsage(Artemisiafilifolia)formsextensiveopenshrublandsinsandysoilsof Colorado’seasternplains,andisofparticularimportanceforbothgreaterandlesserprairie chickenhabitat,aswellasforothergrasslandbirds.IneasternColorado,thissystemisfoundin extensivetractsonQuaternaryeoliandepositsalongtheSouthPlatte,ArikareeandRepublican Rivers,betweenBigSandyandRushCreeks,andalongtheArkansasandCimarronRivers,whereit iscontiguouswithareasinKansasandOklahoma(Comeretal.2003). Characteristic species Throughoutitsrange,thissystemischaracterizedbyasparsetomoderatelydensewoodylayer dominatedbysandsage.Theseshrubsusuallydonotgrowasclumpsbutratherasindividuals,and theinterveninggroundismostoftendominatedbyasparsetomoderatelydenselayeroftall,mid‐ orshortgrasses.Associatedspeciescanvarywithgeography,precipitation,disturbanceandsoil texture.Graminoidspeciessuchassandbluestem(Andropogonhallii),threeawn(Aristidaspp.), grama(Boutelouaspp.),prairiesandreed(Calamovilfalongifolia),needle‐and‐thread(Hesperostipa comata),andsanddropseed(Sporoboluscryptandrus)aretypical.Othershrubspeciesmayalsobe presentincludingtreecholla(Cylindropuntiaimbricata),broomsnakeweed(Gutierreziasarothrae), pricklypear(Opuntiaspp.),westernsandcherry(Prunuspumilavar.besseyi),andsoapweedyucca (Yuccaglauca). Greaterandlesserprairie‐chickens,Cassin’ssparrows,andornateboxturtlesareindicatorsofa healthysandsageprairiesystem. Environment Throughoutitsrangeitiscloselytiedtosandysoils,andthisedaphicrestrictionischaracteristicof largepatchsystems.Littleisknownaboutthetoleranceofsandsageforsoilsotherthanwell‐ drainedsandwithalowsiltandclaycomponent.Suchsoilsareoften“droughty”,withreduced water‐holdingability,andconsequently,thepotentialforincreasedwaterstresstoresidentplants (SoilSurveyDivisionStaff1993).RasmussenandBrotherson(1984)speculatedthatsandsageis adaptedtolessfertilesoilsthanspeciesofadjacentgrasslandcommunities. Dynamics Ramaley(1939)indicatedthatthepersistenceofsandsagewasfacilitatedbyfireandlong overgrazing,intheabsenceofwhichasitewouldtransitiontosandprairie.However,thereisno evidencetosuggestthat,undercertaincombinationsoftemperature,precipitation,grazing,and otherdisturbance,sandsagewouldbeunabletoexpandontoothersoiltypes.Firesuppressionmay alsocontributetoanincreaseinshrubdensityinthishabitat,althoughsandsagequicklyresprouts afterburning.Disturbancefromgrazing,fire,anddrought,incombinationwithrangeimprovement practices,haspermittedtheestablishmentandspreadofnon‐nativespecies. 104 Colorado Natural Heritage Program © 2015 Colorado’seasternplainsexhibitclimaticdifferencesfromnorthtosouthwhichmaybereflectedin thelocalexpressionofsandsageshrubland.OccurrencesinsouthernColoradoexperiencealonger growingseason,lowerannualprecipitation,anddifferencesinprecipitationpatterns(Western RegionalClimateCenter2004),andmaybedominatedbydifferentspeciesthannorthernstands.In thesouthernrangeofthissystem,Havardoak(Quercushavardii)mayalsobepresentand representsonesuccessionpathwaythatdevelopsovertimefollowingadisturbance.Havardoakis abletoresproutfollowingafireandthusmaypersistforlongperiodsoftimeonceestablished (WrightandBailey1982). Duringthepast10,000years,theseareasarelikelytohavefluctuatedbetweenactivedunefields andstabilized,vegetateddunes,dependingonclimateanddisturbancepatterns(Formanetal. 2001).Extendedperiodsofseveredroughtorotherdisturbancethatresultsinlossofstabilizing vegetationcanquicklyleadtosoilmovementandblowoutsthatinhibitvegetationre‐ establishment,andmayeventuallyleadtodramaticallydifferentspeciescomposition. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% Initial Exposure‐Sensitivity Rank 44.1% High Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (21.3%) High Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about50%ofthecurrentrangeofsandsageshrubland inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About65%ofsandsageshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Sandsagesharesthedryandwarmclimateofshortgrass.Annualaverageprecipitationisonthe orderof10‐18inches(25‐47cm),withameanof16in(40cm).Thegrowingseasonisgenerally long,withfrequenthightemperatures. SandsageoccurrencesinColoradohavehistoricallyexperiencedseasonaldifferencesin precipitationpatternsfromnorthtosouth(WesternRegionalClimateCenter2004).North‐south gradientsintemperatureandprecipitationonColorado’seasternplainsappeartobereflectedin thespeciescompositionofsandsagehabitat,especiallyinmidgrassspecies(Daley1972),which maycontributetovariablevulnerabilitybetweennorthernandsouthernstands. Climate Change Vulnerability Assessment for Colorado BLM 105 Resilience and Adaptive Capacity Rank: Overall Score: 0.71 Rank: High Bioclimatic envelope and range Averagedcategoryscore:0.62 Theseshrublandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof continentaldistribution.Thegeneralrestrictionofsandsageshrublandstowarm,dryareason Colorado’seasternplainsmeansthattheydisplayasomewhatrestrictedecologicalenvelope, covering18%ofthestatewideprecipitationrange,and57%ofthegrowingdegreedayrange.The moderateresiliencescoreforthiscategorymaynotreflectthetruecapacityoftheseshrublandsto adapttochangingclimateconditionsifsuitablesubstratesareavailable. Growth form and intrinsic dispersal rate Score:1 Sandsageisoftenabletoresproutquicklyafterfire,althoughitmayhavepoordispersalability, withmostseedslandingclosetotheparentplant(McWilliams2003).Theapparentabilityofthis speciestoestablishquicklyafterdisturbancegivesitahighresiliencescoreinthiscategory. Vulnerability to increased attack by biological stressors Score:1 Domesticlivestockgrazingtendstofavortheincreaseofsandsageoverassociatednativegrasses. Long‐termcontinuousgrazingofdomesticlivestockhascontributedtothealterationofthese shrublandhabitatsfromtheirpre‐settlementcondition,however,thisfactorisgenerallylessofa threatthanchangesintemperatureandprecipitation. Vulnerability to increased frequency or intensity of extreme events Score:0.5 Droughtisthemostimportantextremeeventthatislikelytoalterthecharacterofthese shrublands.Warmeranddrierconditions,andresultingreducedvegetationcovercouldallow reactivationofcurrentlystabilizedsandysoilsthroughouteasternColorado.Althoughsandsage doesnotreproducevegetatively,itisabletoresproutafterfire.Fireextentandintensityare correlatedwithclimateandgrazingeffectsonfuelloads.Fireandgrazingarebothimportant disturbanceprocessesforsandsagehabitat,andmayinteractwithdrought,aswellaspermitting invasiveexoticplantspeciestoestablishandspread. Other indirect effects of non‐climate stressors – landscape condition Score:0.43 SandsagelandscapesinColoradoaresignificantlyimpactedbyanthropogenicactivities.Insome casesthishasincreasedtheextentofsandsageshrublandifmidgrassprairieisconvertedto 106 Colorado Natural Heritage Program © 2015 shortgrass‐sandsagecommunity,dueinlargeparttolong‐termcontinuousgrazingbydomestic livestock(LANDFIRE2006).Sandsageshrublandshavelimitedbutongoingthreatofconversionto tilledagricultureorurban/exurbanandcommercialdevelopment.Oilandgasdevelopment,and windturbinefarms,withassociatedroads,utilitycorridors,andinfrastructureisaprimaryongoing sourceofanthropogenicdisturbance,fragmentation,andlossinthishabitat. Literature Cited Albertson,F.W.andJ.E.Weaver.1944.NatureanddegreeofrecoveryofgrasslandfromtheGreatDroughtof1933to 1940.EcologicalMonographs14:393‐479. Comer,P.,S.Menard,M.Tuffly,K.Kindscher,R.Rondeau,G.Jones,G.Steinuaer,andD.Ode.2003.UplandandWetland EcologicalSystemsinColorado,Wyoming,SouthDakota,Nebraska,andKansas.Reportandmap(10hectareminimum mapunit)totheNationalGapAnalysisProgram.Dept.ofInteriorUSGS.NatureServe. Daley,R.H.1972.ThenativesandsagevegetationofeasternColorado.M.S.Thesis,ColoradoStateUniversity,FortCollins, Colorado. Forman,S.L.,R.Oblesby,andR.S.Webb.2001.TemporalandspatialpatternsofHoloceneduneactivityontheGreatPlains ofNorthAmerica:megadroughtsandclimatelinks.GlobalandPlanetaryChange29:1‐29. LANDFIRE.2006.LANDFIREBiophysicalSettingModels.BiophysicalSetting3310940,WesternGreatPlainsSandhill Steppe.USDAForestService;U.S.DepartmentofInterior.Availableat: http://www.landfire.gov/national_veg_models_op2.php McWilliams,J.2003.ArtemisiafilifoliaIn:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture,Forest Service,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ Ramaley,F.1939.Sand‐hillvegetationofnortheasternColorado.EcologicalMonographs9(1):1‐51. Rasmussen,L.L.andJ.D.Brotherson.1986.Habitatrelationshipsofsandsage(Artemisiafilifolia)insouthernUtah.In: McArthur,E.D.,andB.L.Welch,compilers.Proceedings‐‐symposiumonthebiologyofArtemisiaandChrysothamnus; 1984July9‐13;Provo,UT.Gen.Tech.Rep.INT‐200.Ogden,UT:U.S.DepartmentofAgriculture,ForestService, IntermountainResearchStation:58‐66. Sims,P.L.,andP.G.Risser.2000.Grasslands.In:Barbour,M.G.,andW.D.Billings,eds.,NorthAmericanTerrestrial Vegetation,SecondEdition.CambridgeUniversityPress,NewYork,pp.323‐356. SoilSurveyDivisionStaff.1993.Soilsurveymanual.SoilConservationService.U.S.DepartmentofAgricultureHandbook 18.Availableat:http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054261 WesternRegionalClimateCenter[WRCC].2004.ClimateofColoradonarrativeandstateclimatedata.Availableat http://www.wrcc.dri.edu Wright,H.A.andA.W.Bailey.1982.Fireecology:UnitedStatesandsouthernCanada.JohnWileyandSons.NY.501p. Climate Change Vulnerability Assessment for Colorado BLM 107 Grassland or Herbaceous Table 2.7. Key vulnerabilities, grassland or other herbaceous ecosystems. Habitat Climate factor(s) Consequences Other considerations Alpine Extended growing season with earlier snowmelt Conversion to other type that includes shrubs or trees Barriers to dispersal Montane grassland Drought, warmer temperatures Woody species invasion, exotics; potential to expand into burned forest areas Highly altered Semi‐desert grassland ‐‐‐‐ May increase Poor connectivity Shortgrass Extended drought, warmer summer nighttime temperatures Change in relative species abundance, woody species invasion, or conversion to other type Anthropogenic disturbance 108 Colorado Natural Heritage Program © 2015 ALPINE Thisecosystemincludeshigh‐elevationdrytundraturf,dwarf‐shrublands,fellfield,androckand screecommunities. Extent exaggerated for display R. Rondeau Climate Vulnerability Rank: Low Vulnerability summary Key Vulnerabilities: Warmer conditions leading to earlier snowmelt and an extended growing season in higher elevations are expected to allow the establishment of woody species above current treeline levels, although this process is likely to be slow. Photoperiod cues (not influenced by climate change) for many species could negate the effects of a longer growing season. The ability of most alpine species to disperse across intervening lower elevation habitat is doubtful. Alpinehabitatsarerankedashavinglowvulnerabilitytothe effectsofclimatechangebymid‐century,duetolimitedexposure towarmeranddrierconditions.Overall,alpineareasareingood condition,withmoderateresilience.Becauseoftheshortgrowing seasonlengthinalpineandsubalpineareas,changeisexpected tooccurrelativelyslowly.Underalonger‐termevaluationframe, vulnerabilityofthishabitatisexpectedtobegreater,sincethese habitatsarerestrictedtothehighestelevationsofColorado,and consequentlyhaveanarrowbiophysicalenvelope. Distribution ThiswidespreadecosystemoccursaboveuppertimberlinethroughouttheRockyMountain cordillera.Alpinevegetationisfoundatthehighestelevations,usuallyabove11,000feetin Climate Change Vulnerability Assessment for Colorado BLM 109 Colorado,wherethelongwinters,abundantsnowfall,highwinds,andshortsummerscreatea harshenvironment.Althoughalpinedryturfformsthematrixofthealpinezone,itintermingles withbedrockandscree,icefield,fellfield,alpinedwarf‐shrubland,andalpine/subalpinewet meadowsystems.Areasdominatedbyherbaceouscovermaybedrytundra,cushion‐plant dominatedfellfield,orwetmeadows.Shrub‐dominatedareasarecharacterizedby ericaceous dwarf‐shrubsordwarfwillows. Characteristic species Alpinedryturfisformedbyadensecoveroflow‐growing,perennialgraminoidsandforbs. Rhizomatous,sod‐formingsedgesarethedominantgraminoids,andprostrateandmat‐forming plantswiththickrootstocksortaprootscharacterizetheforbs.Dominantspeciesincludeboreal sagebrush(Artemisiaarctica),blackrootsedge(Carexelynoides),spikesedge(Carexnardina), northernsinglespikesedge(Carexscirpoidea),dryspikesedge(Carexsiccata),curlysedge(Carex rupestris),tuftedhairgrass(Deschampsiacaespitosa),alpinefescue(Festucabrachyphylla),Idaho fescue(Festucaidahoensis),Ross'avens(Geumrossii),Bellardibogsedge(Kobresiamyosuroides), cushionphlox(Phloxpulvinata),andalpineclover(Trifoliumdasyphyllum).Dwarf‐shrublandsof thealpinearecharacterizedbyanintermittentlayerofsnowwilloworericaceousdwarf‐shrubs lessthan0.5minheight,withamixtureofforbsandgraminoids,especiallysedges.Snowwillow (Salixnivalis)isatypicaldominantshrub.Blueberry(Vacciniumspp.)andalpinelaurel(Kalmia microphylla)mayalsobeshrubassociates. Mostfellfieldplantsarecushionedormatted,frequentlysucculent,low‐growingrosettesandoften denselyhairedandthicklycutinized.Plantcovermaybesparsetomoderatebetweenexposed rocks.CommonfellfieldspeciesincludeRoss'avens,Bellardibogsedge,twinflowersandwort (Minuartiaobtusiloba),Asianforget‐me‐not(Myosotisasiatica),RockyMountainnailwort (Paronychiapulvinata),cushionphlox(Phloxpulvinata),creepingsibbaldia(Sibbaldiaprocumbens), mosscampion(Sileneacaulis),alpinecloverandParry’sclover(Trifoliumparryi).Barrenand sparselyvegetatedalpinesubstratesincludebothbedrockoutcropandscreeslopes,with nonvascular(lichen)dominatedcommunities.Therecanbesparsecoverofforbs,grasses,lichens andlowshrubs.ClumpsofColoradobluecolumbine(Aquilegiacaerulea)andmountainthistle (Cirsiumscopulorum)arecommoninscreeslopes. Environment Thedistributionofvegetationtypesinthealpineiscontrolledinpartbylocaltopographythat influencessnowdepositionandretention,aswellassoildevelopment.Alpineturfisgenerally foundonmoregentletomoderateslopes,flatridges,valleys,andbasins,wherethesoilhasbecome relativelystabilizedandthewatersupplyismoreorlessconstant.Alpinedwarf‐shrublandtypically isfoundinareasoflevelorconcaveglacialtopography,withlate‐lyingsnowandsub‐irrigation fromsurroundingslopes.Thesemoistbutwell‐drainedareashavedevelopedrelativelystablesoils thatarestronglyacidic,oftenwithsubstantialpeatlayers.Fellfieldsarerockyandwind‐scoured areasthatarefreeofsnowinthewinter,suchasridgetopsandexposedsaddles,wherevegetation isexposedtosevereenvironmentalstress.Soilsonthesewindysitesareshallow,stony,lowin organicmatter,andpoorlydeveloped;winddeflationoftenresultsinagravellypavement. 110 Colorado Natural Heritage Program © 2015 Thereissomeevidencethatalpinevegetationisresponsivetofine‐scaleenvironmental heterogeneity,whichmayenhanceitsresiliencetochangingclimateconditionsinsome topographicallycomplexareas(Spasojevicetal.2013). Dynamics Alpineenvironmentsaregenerallynotsusceptibletooutbreaksofpestspeciesordisease,butmay havesomeslightvulnerabilitytoinvasiveplantspeciessuchasyellowtoadflax(Linariavulgaris), knapweed(Centaureaspp.),anddandelion(Taraxacumofficinale).Thesetreelessenvironmentsare notvulnerabletofire,butcouldbecomesoiftreesareabletoestablish. Patternsofvegetationgrowth,flowering,andsenescenceinalpinehabitatsareprobablydependent onbothdaylengthandtemperature(BillingsandMooney1968).Thecharacteristicforband graminoiddominatedtundraisaresultoflowtemperaturesduringthegrowingseasonthatlimit vegetationgrowthanddecomposition.Withlongerdaylengthandincreasingsolarradiationin spring,warmerairandsoiltemperatures,togetherwithmoisturefromsnowmeltenabletheonset ofplantgrowth.Althoughtemperatureappearstobethedominantcontrolondevelopmental phenology(BillingsandMooney1968),anumberofalpinespeciesareknowntobesensitiveto day‐length(KellerandKörner2003).Theprevalenceandimportanceofphotoperiodsensitivityin Colorado’salpinefloraislittleknown.Ifsomealpinespeciesareunabletoquicklyadaptto changingtemperaturesbecauseofphotoperiodconstraints,thiscouldchangespeciesinteractions andrelativeabundancesinalpinehabitats,withconsequencesthatarenotwellunderstood(Hülber etal.2010,Ernakovichetal.2014). CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 0% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (38.9%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofalpinehabitatin Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About39%ofalpinehabitatinColoradowillbeexposedtoeffectivelydrierconditionsevenunder unchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Snowpackisacrucialcomponentofalpineecosystems,anddependsonbothprecipitationamounts andwinter‐springtemperature(Williamsetal.2002).Vegetationinalpineareasiscontrolledby Climate Change Vulnerability Assessment for Colorado BLM 111 patternsofsnowretention,winddesiccation,permafrost,andashortgrowingseason(Greenland andLosleben2001). Thelengthofthegrowingseasonisparticularlyimportantforthealpinezone,andforthetransition zonebetweenalpineandforest(treeline).Alpineareashavethefewestgrowingdegreedaysand lowestpotentialevapotranspirationofanyhabitatinColorado.Treeline‐controllingfactorsoperate atdifferentscales,rangingfromthemicrositetothecontinental(HoltmeierandBroll2005).Ona globalorcontinentalscale,thereisgeneralagreementthatcoolsummertemperatureisaprimary determinantoftreeline.Atthisscale,thedistributionofalpineecosystemsisdeterminedbythe numberofdaysthatarewarmenoughforalpineplantgrowth,butnotsufficientfortreegrowth. Otheralpineconditionsthatmaintaintreelessvegetationathighelevationsincludelackofsoil development,persistentsnowpack,steepslopes,wind,anddenseturfthatrestrictstreeseedling establishmentandsurvivalwithinthetreelineecotone(Moiretal.2003,Smithetal.2003, HoltmeierandBroll2005).However,increasedextentoftallshrubwillows(e.g.,Salixplanifoliaand S.glauca)throughclonalgrowthhasalreadyoccurredinsomeareas(Formicaetal.2014). Onthebasisofhistoricevidence,treelineisgenerallyexpectedtomigratetohigherelevationsas temperatureswarm,aspermittedbylocalmicrositeconditions(Smithetal.2003,Richardsonand Friedland2009,Grafiusetal.2012).Itisunlikelythatalpinespecieswouldbeabletomovetoother alpineareas.Intheshort‐termwithwarmertemperatures,alpineareasmaybeabletopersist, especiallyinareaswhereitisdifficultfortreestoadvanceupslope.Theslowgrowthofwoody speciesandrarityofrecruitmenteventsmaydelaytheconversionofalpineareastoforestortall shrubfor50‐100+afterclimaticconditionshavebecomesuitablefortreegrowth(Körner2012). Thus,alpineecosystemsmaypersistforawhilebeyondmid‐century,butarelikelytoeventually largelydisappearfromColorado. Resilience and Adaptive Capacity Rank: Overall Score: 0.69 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.25 ElevationsofalpinehabitatsinColoradorangefromabout11,000toover14,000ft.,withameanof about12,000ft.Alpinehabitatsarerestrictedtohighelevations,andarealsonearthesouthern extentoftheircontinentalrangeinColorado.Althoughalpineareascover74%ofthestatewide precipitationrange,alpinegrowingseasonsaretheshortestofanyhabitatinColorado, encompassingonly26%ofthestatewiderangeofgrowingdegreedays.Thesefactorscombineto givealpineareasalowresiliencescoreinthiscategory. Growth form and intrinsic dispersal rate Score:0.50 112 Colorado Natural Heritage Program © 2015 Althoughalpineareasaredominatedbyrelativelyquick‐growingforbandgraminoidspecies,the shortgrowingseasonsarelimiting.Furthermore,thedifficultyofdispersalacrossintervening lowerelevationhabitatgivesthisecosystemanintermediateresiliencescoreinthiscategory. Vulnerability to increased attack by biological stressors Score:0.8 Alpineenvironmentsaregenerallynotsusceptibletooutbreaksofpestspeciesordisease,butmay havesomeslightvulnerabilitytoinvasiveplantspeciessuchasyellowtoadflaxunderfuture climaticconditions.Thesetreelessenvironmentsarenotvulnerabletofire,butcouldbecomesoif treesareabletoestablish.Xericalpineenvironmentsarealreadysubjecttoextremeconditions,but themoremesicareasarevulnerabletodroughtandchangesinsnowmelttiming.Evenunder increasedsnowpack,warmertemperaturesarelikelytoalterpatternsofsnowmelt,andmay reduceavailablemoisture.Thesechangesarelikelytoresultinshiftsinspeciescomposition, perhapswithanincreaseinshrubsonxerictundra.Withwarmingtemperaturesandearlier snowmelt,however,elkmaybeabletomoveintoalpineareasearlierandstaylonger,thereby increasingstressonalpinewillowcommunities(Zeigenfussetal.2011). Vulnerability to increased frequency or intensity of extreme events Score:0.9 Alpinehabitatsarealsoindirectlyaffectedbybothdroughtandland‐usepracticesinupwindareas thatleadtodustemissions.Whenwind‐blowndustisdepositedonmountainsnowpack,the resultingdarkeningofthesnowallowsincreasedabsorptionofsolarradiantenergy,andearlier meltingthanunderdustfreeconditions.Unlikewarmingtemperatures,whichadvanceboth snowmelttimingandgrowingseasononsetforalpinevegetation,theeffectofdustdepositionon mountainsnowpackisasourceofearliersnowmeltthatisnotdirectlylinkedtoseasonalshifting (Steltzeretal.2009).Althoughdustdepositionmaybeasignificantcontributortosoildevelopment insomeareas(Lawrenceetal.2011),itcanincreaseevapotranspirationanddecreaseannual runoffflows(Deemsetal.2013).Changesinsoilmoisturelevelsduetoearliersnowmeltmay interactwithotherclimatechangeeffectstoproducechangesinspeciescompositionandstructure ofalpinehabitats. Other indirect effects of non‐climate stressors – landscape condition Score:0.98 AlpinelandscapesinColoradoaregenerallyinexcellentcondition,andwellprotected.Ongoing threatsfromdevelopmentinalpinehabitatsassociatedwithrecreationareasandactivities, includingassociatedroadsandinfrastructure;thesearegenerallyarelimitedinextent.Old privately‐ownedminingclaimsarescatteredthroughout,butthereareveryfewactivemines operatingtodayInsouthwesternColorado,sheepgrazingandisolatedminingactivityareminor sourcesofdisturbanceinalpineareas.Anthropogenicnitrogendepositionisanongoinginfluence onalpinephenology(Smithetal.2012)andspeciesdiversity(Farreretal.2015)whichmay Climate Change Vulnerability Assessment for Colorado BLM 113 interactwithwarmingtemperatures,althoughthelong‐termeffectsofthisdisturbancearenotwell known. Literature Cited Billings,W.D.andH.A.Mooney.1968.Theecologyofarcticandalpineplants.BiologicalReviews43:481‐529. Deems,J.S.,T.H.Painter,J.J.Barsugli,J.Belnap,andB.Udall.2013.Combinedimpactsofcurrentandfuturedustdeposition andregionalwarmingonColoradoRiverBasinsnowdynamicsandhydrology.Hydrol.EarthSyst.Sci.17:4401‐4413. Ernakovich,J.G.,K.A.Hopping,A.B.Berdanier,R.T.Simpson,E.J.Kachergis,H.Steltzer,andM.D.Wallenstein.2014. Predictedresponsesofarcticandalpineecosystemstoalteredseasonalityunderclimatechange.GlobalChangeBiology 20:3256‐3269. Farrer,E.C.,I.W.Ashton,M.J.Spasojevic,S.Fu,D.J.X.Gonzalez,andK.N.Suding.2015.Indirecteffectsofglobalchange accumulatetoalterplantdiversitybutnotecosystemfunctioninalpinetundra.JournalofEcology103:351‐360. Formica,A.,E.C.Farrer,I.W.Ashton,andK.N.Suding.2014.Shrubexpansionoverthepast62yearsinRockyMountain alpinetundra:possiblecausesandconsequences.Arctic,Antarctic,andAlpineResearch46:616‐631. Grafius,D.R.,G.P.Malanson,andD.Weiss.2012.SecondarycontrolsofalpinetreelineelevationsinthewesternUSA. PhysicalGeography33:146‐164. Greenland,D.andM.Losleben.2001.Climate.Chapter2inBowman,W.D.,andT.R.Seastedt,eds.StructureandFunction ofanAlpineEcosystem:NiwotRidge,Colorado.NewYork:OxfordUniversityPress. Holtmeier,F‐K.andG.Broll.2005.Sensitivityandresponseofnorthernhemispherealtitudinalandpolartreelinesto environmentalchangeatlandscapeandlocallevels.GlobalEcologyandBiogeography14:395‐410. Hülber,K.,M.Winkler,andG.Grabherr.2010.Intraseasonalclimateandhabitat‐specificvariabilitycontrolstheflowering phenologyofhighalpineplantspecies.FunctionalEcology24:245‐252. Keller,F.andC.Körner.2003.Theroleofphotoperiodisminalpineplantdevelopment.Arctic,Antarctic,andAlpine Research35:361‐368. Körner,C.2012.Alpinetreelines:functionalecologyoftheglobalhighelevationtreelimits.Springer,Basel,Switzerland. Lawrence,C.R.,J.C.Neff,andG.L.Farmer.2013.TheaccretionofaeoliandustinsoilsoftheSanJuanMountains,Colorado, USA.JournalofGeophysicalResearch116,F02013,doi:10.1029/2010JF001899. Moir,W.H.,S.G.Rochelle,andA.W.Schoettle.1999.Microscalepatternsoftreeestablishmentnearuppertreeline,Snowy Range,Wyoming.Arctic,Antarctic,andAlpineResearch31:379‐388. Richardson,A.D.andA.J.Friedland.2009.Areviewofthetheoriestoexplainarcticandalpinetreelinesaroundtheworld. JournalofSustainableForestry28:218‐242. Smith,J.G.,W.Sconiers,M.J.Spasojevic,I.W.Ashton,andK.N.Suding.2012.Phenologicalchangesinalpineplantsin responsetoincreasedsnowpack,temperature,andnitrogen.Arctic,Antarctic,andAlpineResearch44:135‐142. Smith,W.K.,M.J.Germino,T.E.Hancock,andD.M.Johnson.2003.Anotherperspectiveonaltitudinallimitsofalpine timberlines.TreePhysiology23:1101‐1112. Spasojevic,M.J.,W.D.Bowman,H.C.Humphries,T.R.Seastedt,andK.N.Suding.2013.Changesinalpinevegetationover21 years:Arepatternsacrossaheterogeneouslandscapeconsistentwithpredictions?Ecosphere4:117. http://dx.doi.org/10.1890/ES13‐00133.1 114 Colorado Natural Heritage Program © 2015 Steltzer,H.,C.Landry,T.H.Painter,J.Anderson,andE.Ayres.2009.Biologicalconsequencesofearliersnowmeltfrom desertdustdepositioninalpinelandscapes.PNAS106:11629‐11634. Williams,M.E.,M.V.Losleben,andH.B.Hamann.2002.AlpineareasintheColoradoFrontRangeasmonitorsofclimate changeandecosystemresponse.GeographicalReview92:180‐191. Zeigenfuss,L.C.,K.A.Schonecker,andL.K.VanAmburg.2011.UngulateherbivoryonalpinewillowintheSangredeCristo MountainsofColorado.WesternNorthAmericanNaturalist71:86‐96. Climate Change Vulnerability Assessment for Colorado BLM 115 MONTANE GRASSLANDS Bunch‐grassdominatedgrasslandsatelevationsbetweenfoothillsandsubalpine Extent exaggerated for display D. Culver Climate Vulnerability Rank: Moderate Vulnerability summary Key Vulnerabilities: Warmer and drier conditions are likely to facilitate the spread of invasive species, and may allow woody species to establish in grasslands. An increase in forest fire activity under future conditions may allow grassland to expand into adjacent burned areas. Montanegrasslandsarerankedasmoderatelyvulnerabletothe effectsofclimatechangebymid‐century.Primaryfactors contributingtothisrankingarevulnerabilityoftheseareato invasivespecies,andthegenerallyhighlydisturbedconditionof occurrences,bothofwhicharelikelytointeractwiththe significantincreasesintemperatureacrossmuchofthe distributionofthehabitatinColoradotoreduceresilienceof thesehabitats. Distribution Montane‐subalpinegrasslandsintheColoradoRockiesaretypicallygrasslandsofforestopenings andpark‐likeexpansesinthemontaneandsubalpineconiferousforestsatelevationsof7,200‐ 10,000feet(2,200‐3,000m),intermixedwithstandsofspruce‐fir,lodgepole,ponderosa,andaspen. AlthoughsmallermontanegrasslandsarescatteredthroughouttheSouthernRockyMountains ecoregion,thelargestoccurrencebyfar(overamillionacres)isonthevalleyfloorofthelarge intermountainbasinSouthParkincentralColorado.Thelargestoccurrencesareprimarilywithin Colorado,butexamplesarescatteredthroughouttheregionfromWyomingtoNewMexico. 116 Colorado Natural Heritage Program © 2015 Characteristic species Theselargepatchgrasslandsareintermixedwithvarioustypesofforeststands,dependingon elevation.Withinthesubalpinezone,forbstendtobemoreprominentathigherelevations,and shrubsatlowerelevations(TurnerandPaulsen1976).Associationsarevariabledependingonsite factorssuchasslope,aspect,andprecipitation,butgenerallylowerelevationmontanegrasslands aremorexericanddominatedbymuhly(Muhlenbergiaspp.),bluebunchwheatgrass (Pseudoroegneriaspicata),Arizonafescue(Festucaarizonica),andIdahofescue(Festuca idahoensis),whileuppermontaneorsubalpinegrasslandsaremoremesicandmaybedominated byThurberfescue(Festucathurberi)ortimberoatgrass(Danthoniaintermedia).Parry’soatgrass (Danthoniaparryi)isfoundacrossmostoftheelevationalrangeofthissystem.Montanegrasslands intheColoradoFrontRangeareoftendominatedbyspikefescue(Leucopoakingii)ormountain muhly(Muhlenbergiamontana)(Peet1981).IntheSanJuanMountainsofsouthwesternColorado, thesegrasslandsaredominatedbyThurberfescueandotherlargebunchgrasses(Jamiesonetal. 1996).Grassesofthefoothillsandpiedmont,suchasbluegrama(Boutelouagracilis),sideoats grama(Boutelouacurtipendula),needle‐and‐thread(Hesperostipacomata),prairieJunegrass (Koeleriamacrantha),westernwheatgrass(Pascopyrumsmithii),Sandbergbluegrass(Poasecunda), andlittlebluestem(Schizachyriumscoparium)maybeincludedinlowerelevationoccurrences. Higher,moremesiclocationsmaysupportadditionalgraminoidspeciesincludingbentgrass (Agrostisspp.),sedge(Carexspp.),alpinefescue(Festucabrachyphylla),Drummond'srush(Juncus drummondii),alpinetimothy(Phleumalpinum),bluegrass(Poaspp.),orspiketrisetum(Trisetum spicatum).Woodyspeciesaregenerallysparseorabsent,butoccasionalindividualsfromthe surroundingforestcommunitiesmayoccur.Scattereddwarf‐shrubsmaybefoundinsome occurrences;speciesvarywithelevationandlocation.Forbsaremorecommonathigherelevations. Environment Thisecosystemtypicallyoccursongentletosteepslopes,parks,oronlowersideslopesthataredry, andmayextendupto11,000ft(3,350m)onwarmaspects.Thegeneralclimateintherangeofthis ecosystemistypicallymontanetosubalpine,characterizedbycoldwintersandrelativelycool summers,althoughtemperaturesaremoremoderateatlowerelevations.Precipitationpatterns differbetweentheeastandwestsidesoftheContinentalDivide.Ingeneral,thesegrasslands experiencelongwinters,deepsnow,andshortgrowingseasons.Averageannualprecipitation rangesbetween20to40inches(51‐102cm),andthemajorityofthisfallsassnow(Turnerand Paulsen1976).SnowcoverinsomeareascanlastfromOctobertoMay,andservestoinsulatethe plantsbeneathfromperiodicsubzerotemperatures.Otherareasarekeptfreefromsnowbywind. Rapidspringsnowmeltusuallysaturatesthesoil,andwhentemperaturesriseplantgrowthis rapid.Precipitationduringthegrowingseasonishighlyvariable,butprovideslessmoisturethan snowmelt.Growingseasonsareshort,typicallyfromJunethroughAugustatintermediatelocations, althoughfrostcanoccuratalmostanytime. ThegeologyoftheSouthernRockyMountainsisextremelycomplex.Notsurprisingly,soilsarealso highlyvariable,dependingontheparentmaterialsfromwhichtheywerederivedandthe conditionsunderwhichtheydeveloped.Podzolicsoilshavedevelopedonmosthighmountain areasasaresultofcooltocoldtemperatures,relativelyabundantmoisture,andthedominant Climate Change Vulnerability Assessment for Colorado BLM 117 coniferousforestvegetation.Intheintermingledparksandopentreelessslopesorridges,grassland soilshavedeveloped.Soiltextureisimportantinexplainingtheexistenceofmontane‐subalpine grasslands(Peet2000).Thesegrasslandsoftenoccupythefine‐texturedalluvialofcolluvialsoilsof valleybottoms,incontrasttothecoarse,rockymaterialofadjacentforestedslopes(Peet2000). Soilsareoftensimilartoprairiesoils,withadarkbrownA‐horizonthatisrichinorganicmatter, welldrained,andslightlyacidic(TurnerandPaulsen1976).Otherfactorsthatmayexplainthe absenceoftreesinthissystemaresoilmoisture(toomuchortoolittle),competitionfrom establishedherbaceousspecies,coldairdrainageandfrostpockets,highsnowaccumulation, beaveractivity,slowrecoveryfromfire,andsnowslides(Daubenmire1943,Knight1994,Peet 2000).Wheregrasslandsoccurintermixedwithforestedareas,thelesspronouncedenvironmental differencesmeanthattreesaremorelikelytoinvade(TurnerandPaulsen1976). Dynamics Avarietyoffactors,includingfire,wind,cold‐airdrainage,climaticvariation,soilproperties, competition,andgrazinghavebeenproposedasmechanismsthatmaintainopengrasslandsand parksinforestsurroundings.Observationsandrepeatphotographystudiesinsitesthroughoutthe southernRockyMountainsindicatethattreesdoinvadeopenareas,butthatthemechanisms responsibleforthistrendmaydifferfromsitetosite.AndersonandBaker(2005)discountedfire suppressionasthecauseoftreeinvasionsinWyoming’sMedicineBowMountains,concludingthat edaphicconditionswerethemostlikelyfactorlimitingtreeestablishment.IntheSanJuan MountainsofsoutheasternColorado,ZierandBaker(2006)alsofoundthattheprobabilityoftree invasionvariedwithforesttype.Climaticvariation,fireexclusion,andgrazingappeartointeract withedaphicfactorstofacilitateorhindertreeinvasioninthesegrasslands(ZierandBaker2006). IntheGunnisonBasin,Schaueretal.(1998)identifiedseedlingmortalityastheprimaryfactor preventinginvasionsofEngelmannspruce,butdidnotdetermineifthiswasduetocompetition fromestablishedgrasslandplants,ortoedaphicconditions.TheworkofCoopandGivnish(2007) intheJemezMountainsofnorthernNewMexicosuggeststhatbothchangingdisturbanceregimes andclimaticfactorsarelinkedtotreeestablishmentinsomemontanegrasslands.Pocketgophers (Thomomysspp.)areawidespreadsourceofdisturbanceinmontane‐subalpinegrasslands.The activitiesoftheseburrowingmammalsresultinincreasedaeration,mixingofsoil,andinfiltration ofwater,andareanimportantcomponentofnormalsoilformationanderosion(Ellison1946).In addition,CantorandWhitham(1989)foundthatbelow‐groundherbivoryofpocketgophers restrictedestablishmentofaspentorockyareasinArizonamountainmeadows.Theinteractionof multiplefactorsindicatesthatmanagementforthemaintenanceofthesemontaneandsubalpine grasslandsmaybecomplex. Grazingbydomesticlivestockmayacttooverrideormaskwhatevernaturalmechanismis responsibleformaintaininganoccurrence.Montane‐subalpinegrasslandswerefirstgrazedby domesticlivestockbeginninginthelate1800’s(TurnerandPaulsen1976).Afterlower‐elevation, moreaccessiblerangelandswereoverstockedinthe1870’sand1880’s,useofmontaneand subalpinegrasslandsincreaseddramatically.Bytheturnofthecenturynearlyallgrazablelandwas beingutilized,andmuchwasalreadyovergrazed(TurnerandPaulsen1976).AsNationalForests wereestablishedfollowingtheOrganicAdministrationActof1897,regulationofgrazingonthese highelevationgrasslandswasinstituted.UselevelspeakedneartheendofthefirstWorldWar,and 118 Colorado Natural Heritage Program © 2015 currentuselevelsaresubstantiallylowerthanthehighestpreviouslevel(TurnerandPaulsen 1976). Floristiccompositioninthesegrasslandsisinfluencedbybothenvironmentalfactorsandgrazing history.Grazingisgenerallybelievedtoleadtothereplacementofpalatablespecieswithless palatableonesmoreabletowithstandgrazingpressure(Smith1967,Paulsen1975,Brown1994, butseeStohlgrenetal.1999).Ingeneral,palatablegrassesarereplacedbynonpalatableforbsor shrubsundercattlegrazing(Smith1967),whilepalatableforbsarecharacteristicallyabsentfrom grasslandswithalonghistoryofsheepuse(TurnerandPaulsen1976).Annualspeciesare uncommonexceptonheavilydisturbedareas.Someoccurrencesaredominatedbyseededpasture grasses,especiallysmoothbrome(Bromusinermis),timothy(Phleumpratense),andKentucky bluegrass(Poapratensis). Historically,soildisturbancewaslargelytheresultofoccasionalconcentrationsoflargenative herbivores,orthediggingactionoffossorialmammals.Domesticlivestockranchinghaschanged thetimingandintensityofgrazingdisturbancefromthatofnativeherbivores,withthepotentialto alterspeciescomposition,soilcompaction,nutrientlevels,andvegetationstructure.Incombination withgrazingofdomesticlivestock,various“rangeimprovement”activities(e.g.seeding,rodent control,herbicideapplication)havethepotentialtoalternaturalecosystemprocessesandspecies composition.Increasingsmall‐acreageexurbandevelopmentwithlivestock(“ranchettes”)appears tobeincreasingtheincidenceofweedyexoticspeciesinthesehabitats.ExoticsincludeDalmatian toadflax(Linariadalmatica),knapweed(Centaureaspp.),cheatgrass(Bromustectorum), sweetclover(Melilotusofficinalis),andothers. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% 1.0% Initial Exposure‐Sensitivity Rank Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Yes (79.6%) Final Exposure‐Sensitivity Rank Moderate Exposure to temperature change Underprojectedmid‐centurytemperatures,about1%ofthecurrentrangeofmontanegrasslandin Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. Exposure to precipitation change About81%ofmontanegrasslandinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Higherelevationgrasslandsarecharacterizedbycoldwintersandrelativelycoolsummers, althoughtemperaturesaremoremoderateatlowerelevations. Climate Change Vulnerability Assessment for Colorado BLM 119 Soiltexturehasasignificanteffectonthedistributionandpersistenceofmontane‐subalpine grasslands(Peet2000),determiningsoilmoistureconditionsthatacttoexcludetrees.Droughtand warmertemperaturesmaychangespeciescomposition,orallowinvasionbydrought‐tolerant shrubsorinvasivespeciesinsomeareas. Resilience and Adaptive Capacity Rank Overall Score: 0.74 Rank: High Bioclimatic envelope and range Averagedcategoryscore:0.82 Thesegrasslandsarenotrestrictedtohighelevations,andarewellwithinthecoreareaoftheir continentaldistributioninColorado.Thevariationpresentinthevariousgrasslandoccurrences givesthisecosystemawideecologicalamplitude,covering79%ofColorado’soverallprecipitation range,and48%ofthegrowingdegreerange.Thesefactorscombinetogivemontanegrasslandsa highresiliencescoreinthiscategory. Growth form and intrinsic dispersal rate Score:1 Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody species. Vulnerability to increased attack by biological stressors Score:0.5 TheworkofCoopandGivnish(2007)intheJemezMountainsofnorthernNewMexicosuggests thatbothchangingdisturbanceregimesandclimaticfactorsarelinkedtotreeestablishmentin somemontanegrasslands.Increasedtreeinvasionintomontanegrasslandswasapparentlylinked tohighersummernighttimetemperatures,andlessfrostdamagetotreeseedlings;thistrendcould continueunderprojectedfuturetemperatureincreases.Increaseddisturbancemayalsofacilitate thecontinuedspreadofintroducedexoticspeciesasclimateconditionschange.Theinteractionof multiplefactorsindicatesthatmanagementforthemaintenanceofthesemontaneandsubalpine grasslandsmaybecomplex. Vulnerability to increased frequency or intensity of extreme events Score:1 Althoughincreasedincidenceorseverityofdroughtmayacttohelppreventtreeinvasioninto montanegrasslands,thereissomeevidencethatwarmer,driersoilconditionscouldfacilitateshrub growthinmontanemeadowsorotherwisealterspeciescomposition(Perforsetal.2003). 120 Colorado Natural Heritage Program © 2015 Other indirect effects of non‐climate stressors – landscape condition Score:0.37 MontanegrasslandlandscapesinColoradoarehighlyalteredbyanthropogenicdisturbance.Higher elevationgrasslandsonrelativelyflatsitesareofteninprivateownership,andareoftenvulnerable tosubdivisionforresidentialdevelopmentand/ortransportationcorridordevelopment.The extensivegrasslandsofSouthPark,inparticular,arethreatenedbythesubdivisionoflarge properties,anddevelopmentoftransportationcorridors.Recreationaluse(publicopenspaceuse inlowerelevations;hunters,packersandsnow‐mobilersinhigherelevations)isanongoingsource ofdisturbanceinthishabitat. Literature Cited Anderson,M.D.andW.L.Baker.2005.Reconstructinglandscape‐scaletreeinvasionusingsurveynotesintheMedicine BowMountains,Wyoming,USA.LandscapeEcology21:243–258. Borchert,J.R.1950.TheclimateofthecentralNorthAmericangrassland.AnnalsoftheAssociationofAmerican Geographers40:1‐39. Brown,D.E.1994.Grasslands.Part4inBioticcommunities:southwesternUnitedStatesandnorthwesternMexico.D.E. Brown,ed.UniversityofUtahPress,SaltLakeCity,UT. Cantor,L.F.andT.J.Whitham.1989.Importanceofbelowgroundherbivory:pocketgophersmaylimitaspentorock outcroprefugia.Ecology70:962‐970. Coop,J.D.andT.J.Givnish.2007.Spatialandtemporalpatternsofrecentforestencroachmentinmontanegrasslandsof theVallesCaldera,NewMexico,USA.JournalofBiogeography34:914‐927. Covich,A.P.,S.C.Fritz,P.J.Lamb,R.D.Marzolf,W.J.Matthews,K.A.Poiani,E.E.Prepas,M.B.Richman,andT.C.Winter.1997. PotentialeffectsofclimatechangeonaquaticecosystemsoftheGreatPlainsofNorthAmerica.HydrologicalProcesses 11:993‐1021. Daubenmire,R.F.1943.VegetationalzonationintheRockyMountains.BotanicalReview9:325‐393. Debinski,D.M.,H.Wickham,K.Kindscher,J.C.Caruthers,andM.Germino.2010.Montanemeadowchangeduringdrought varieswithbackgroundhydrologicregimeandplantfunctionalgroup.Ecology91:1672‐1681. Ellison,L.1946.Thepocketgopherinrelationtosoilerosiononmountainrange.Ecology27:101‐114. Jamieson,D.W.,W.H.Romme,andP.Somers.1996.Bioticcommunitiesofthecoolmountains.Chapter12inTheWestern SanJuanMountains:TheirGeology,Ecology,andHumanHistory,R.Blair,ed.UniversityPressofColorado,Niwot,CO. Knight,D.H.1994.MountainsandPlains:theEcologyofWyomingLandscapes.YaleUniversityPress,NewHavenand London.338pages. Paulsen,H.A.,Jr.1969.Foragevaluesonamountaingrassland‐aspenrangeinwesternColorado.JournalofRange Management22:102–107. Paulsen,H.A.,Jr.1975.RangemanagementinthecentralandsouthernRockyMountains:asummaryofthestatusofour knowledgebyrangeecosystems.USDAForestServiceResearchPaperRM‐154.RockyMountainForestandRange ExperimentStation,USDAForestService,FortCollins,Colorado. Peet,R.K.1981.ForestvegetationoftheColoradoFrontRange:compositionanddynamics.Vegetatio45:3‐75. Climate Change Vulnerability Assessment for Colorado BLM 121 Peet,R.K.2000.ForestsandmeadowsoftheRockyMountains.Chapter3inNorthAmericanTerrestrialVegetation, secondedition.M.G.BarbourandW.D.Billings,eds.CambridgeUniversityPress. Perfors,T.,J.Harte,andS.E.Alter.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)inresponsetomanipulated ecosystemwarming.GlobalChangeBiology9:736‐742 Schauer,A.J.,B.K.Wade,andJ.B.Sowell.1998.Persistenceofsubalpineforest‐meadowecotonesintheGunnisonBasin, Colorado.GreatBasinNaturalist58:273‐281. Smith,D.R.1967.Effectsofcattlegrazingonaponderosapine‐bunchgrassrangeinColorado.USDAForestService TechnicalBulletinNo.1371.RockyMountainForestandRangeExperimentStation,USDAForestService,FortCollins, Colorado. Stockton,C.W.andD.M.Meko.1983.DroughtreoccurrenceintheGreatPlainsasreconstructedfromlong‐termtree‐ring records.JournalofClimateandAppliedMeteorology22:17‐29. Stohlgren,T.J.,L.D.Schell,andB.VandenHuevel.1999.Howgrazingandsoilqualityaffectnativeandexoticplant diversityinrockymountaingrasslands.EcologicalApplications9:45‐64. Turner,G.T.,andH.A.Paulsen,Jr.1976.ManagementofMountainGrasslandsintheCentralRockies:TheStatusofOur Knowledge.USDAForestServiceResearchPaperRM‐161.RockyMountainForestandRangeExperimentStation,USDA ForestService,FortCollins,Colorado. WesternRegionalClimateCenter[WRCC].2004.ClimateofColoradonarrativeandstateclimatedata.Availableat http://www.wrcc.dri.edu Zier,J.L.andW.L.Baker.2006.AcenturyofvegetationchangeintheSanJuanMountains,Colorado:Ananalysisusing repeatphotography.ForestEcologyandManagement228:251–262. 122 Colorado Natural Heritage Program © 2015 SEMI‐DESERT GRASSLAND Drygrasslandscharacterizedbydrought‐tolerantbunchgrassspeciesandscatteredshrubs P. Lyon extent exaggerated for display Climate Vulnerability Rank: Low Vulnerability summary Key Vulnerabilities: Climate related vulnerability for these grasslands is minimal, but the impacted condition of many stands may inhibit their potential for expansion. Lowexposureandsensitivitytoprojectedconditionsoutsidethe currentrangeexperiencedbythesegrasslandsistheprimary factorcontributingtothelowvulnerabilityrankingofthis ecosystem.Thegenerallyfairtopoorconditionofmany occurrencesinColoradomaytendtoinhibitthepotentialofthis ecosystemtoexploitandmoveintonewareasunderfuture climateconditions. Distribution ThesearethedriestgrasslandsoftheintermountainwesternU.S.,occurringinlargepatchesin mosaicswithshrublandsystemsdominatedbysagebrush,saltbush,blackbrush,mormon‐tea,and othershrubspecies.Climatesaresemi‐aridtoarid.Colorado’ssemi‐desertgrasslandsarefound primarilyondryplainsandmesasofthewestslopeatelevationsof4,750‐7,600feet Characteristic species Thesegrasslandsaretypicallydominatedbydrought‐resistantperennialbunchgrassessuchas Indianricegrass(Achnatherumhymenoides),bluegrama(Boutelouagracilis),needle‐and‐thread Climate Change Vulnerability Assessment for Colorado BLM 123 (Hesperostipacomata),ringmuhly(Muhlenbergiatorreyi),orJames'galleta(Pleuraphisjamesii),or bluebunchwheatgrass(Pseudoroegneriaspicata).Scatteredshrubsandsub‐shrubsmaybepresent, includingsagebrush(Artemisiaspp.),saltbush(Atriplexspp.),jointfir(Ephedraspp.),snakeweed (Gutierreziasarothrae),orwinterfat(Krascheninnikovialanata).Blackbrush(Coleogyne ramosissima)isuncommoninColoradooccurrences,buttypicalfurtherwest. Environment WestSlopelow‐elevationgrasslandsoccurinsemi‐aridtoaridclimateswithcoldtemperate conditions.Hotsummersandcoldwinterswithfreezingtemperaturesandsnowarecommon. GrasslandsofthewesternvalleysreceiveasignificantportionofannualprecipitationinJuly throughOctoberduringthesummermonsoonstorms,withtherestfallingassnowduringthe winterandearlyspringmonths.Annualprecipitationisusuallyfrom8‐16in(20‐40cm). Thesegrasslandsoccurinxericlowlandanduplandareasandmayoccupyswales,playas,mesa tops,plateauparks,alluvialflats,andplains.Substratesaretypicallywell‐drainedsandstone‐or shale‐derivedsoils.Somesandysoiloccurrenceshaveahighcoverofcryptogamsonthesoil.Soil salinitydependsontheamountandtimingofprecipitationandflooding. Dynamics Thissystemismaintainedbyfrequentfiresthateliminatewoodyplants.Acombinationof precipitation,temperature,andsoilslimitsthissystemtothelowerelevationswithintheregion. Thedominantperennialbunchgrassesandshrubswithinthissystemareallverydrought‐resistant plants.Grassesthatdominatesemi‐aridgrasslandsdevelopadensenetworkofrootsconcentrated intheupperpartsofthesoilwhererainfallpenetratesmostfrequently. Thesemi‐desertgrasslandsystemisvulnerabletoinvasionbyexoticspecies,particularly cheatgrass(Bromustectorum).Althoughfrequentfiresingrasslandsmayhavebeencommon historically,theintroductionofcheatgrasshasalteredthedynamicsofthesystem,increasingboth firefrequencyandpost‐firecheatgrassdominance(ShinnemanandBaker2009,Balchetal.2013). Cheatgrassiseasilyignited,andalsoprovidesanabundanceoffinefuelsthatcarryfire(Knapp 1998). Floristiccompositioningrasslandsisinfluencedbybothenvironmentalfactorsandgrazinghistory. Manygrasslandoccurrencesarealreadyhighlyalteredfrompre‐settlementcondition.Grazingis generallybelievedtoleadtothereplacementofpalatablespecieswithlesspalatableonesmore abletowithstandgrazingpressure(Smith1967,Paulsen1975,Brown1994,butseeStohlgrenetal. 1999).Grazingbydomesticlivestockmayacttooverrideormaskwhatevernaturalclimaticor edaphicmechanismisresponsibleformaintaininganoccurrence.Thishabitatisalsoadaptedto grazingandbrowsingbynativeherbivoresincludingdeer,elk,bison,andpronghorn,aswellas burrowingandgrazingbysmallmammalssuchasgophers,prairiedogs,rabbits,andground squirrels.Activitiesoftheseanimalscaninfluencebothvegetationstructureandsoildisturbance, potentiallysuppressingtreeestablishment.Periodicdroughtiscommonintherangeoffoothilland semi‐desertgrasslands,butmaynotbeasgreatafactorinthevegetationdynamicsofthissystem asingrasslandsoftheplains. 124 Colorado Natural Heritage Program © 2015 Remnantstandsofdesertgrasslandshavebeenhighlyalteredbylivestockgrazing,anditislikely thatgrasslandsformerlyoccupiedsomesitesthatarenowcoveredbypinyon‐juniperorshrubland (Dick‐Peddie1993).Grazingbydomesticlivestockcanalsoinfluencetherelativeproportionof cool‐vs.warm‐seasongrasses,orfavortheincreaseofwoodyshrubspecies. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Percent Colorado acres with projected temp > max & ppt delta < 5% Initial Exposure‐Sensitivity Rank 14.0% Low Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (35.2%) Low Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about19%ofthecurrentrangeofsemi‐desert grasslandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum. Exposure to precipitation change About49%ofsemi‐desertgrasslandinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Semi‐desertgrasslandspeciesaregenerallydroughttolerant(Dick‐Peddie1993),andareadapted tolowprecipitationlevelsandalonggrowingseason.Soilsaretypicallyaridisols,whicharedryfor mostoftheyear,evenduringthegrowingseason,andthereislittleinfiltrationofwaterintothesoil (SimsandRisser2000).Changesinthetimingandamountofprecipitationcanaffectthestructure andpersistenceofgrasslands.Withtheircomparitivelyshallowerrootsystems,grasseshavean advantageovershrubsonshallow,poorlydrainedsoils,whereasshrubsarefavoredondeepersoils wherewinterprecipitationcanpenetratedeeplyintothesoil.BecauseshrubsareC3plantswith highercool‐seasonactivity(AsnerandHeidebrecht2005)theyareabletoutilizewinter precipitationtoagreaterextentthanarewarm‐seasongrasses.SimsandRisser(2000)reportthat ameanannualtemperatureof50F(10C)isathresholdbetweengrasslandsdominatedbycool‐ season(C3)grassesandthosedominatedbywarm‐season(C4)species.However,Munsonetal. (2011)reportadeclineinperennialvegetationcoveringrasslandsoftheColoradoPlateauwith increasesintemperature. Resilience and Adaptive Capacity Rank Overall Score: 0.72 Rank: High Bioclimatic envelope and range Averagedcategoryscore:0.59 Climate Change Vulnerability Assessment for Colorado BLM 125 Thesegrasslandsarenotrestrictedtohighelevations,noraretheyatthesouthernendoftheir continentaldistributioninColorado.However,becausetheyoccurinthewarmestanddriestparts ofthestate,theyoccupyonly1%ofColorado’soverallprecipitationrange,and34%ofthe statewidegrowingdegreedayrange.Thesefactorscombinetolowertheoverallresiliencescorein thiscategory,butmaybesomewhatoverstatedduetothecurrentlimiteddistributionofthistype inColorado. Growth form and intrinsic dispersal rate Score:1 Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody species. Vulnerability to increased attack by biological stressors Score:0.5 Semi‐desertgrasslandsarevulnerabletoinvasionbyexoticspecies,particularlycheatgrass. Extendeddroughtcanleadtowidespreadmortalityofperennialgrassesandallowtheinvasionof cheatgrass. Vulnerability to increased frequency or intensity of extreme events Score:1 Droughtandwarmertemperaturesmaychangespeciescomposition,orallowinvasionbydrought‐ tolerantwoodyorinvasivespeciesinsomeareas.Droughtcanincreaseextentofbaregroundand decreaseforbcoverage,especiallyinmorexericgrasslands(Debinskietal.2010). Althoughfrequentfiresingrasslandsmayhavebeencommonhistorically,theintroductionof cheatgrasshasalteredthedynamicsofthesystem,andfireoftenresultsincheatgrassdominance. Onceovertakenbycheatgrass,morefrequentfiresareencouragedbythedryflammablematerial, leadingtofurtherdominationbycheatgrass.Evenafewcheatgrassplantsinastandwillproduce enoughseedtodominatethestandwithinafewyearsafterfire.Increasingdroughtislikelyto facilitatethistrend. Other indirect effects of non‐climate stressors – landscape condition Score:0.51 Semi‐desertgrasslandlandscapesinColoradohavebeensignificantlyimpactedbyanthropogenic activity,especiallyconversiontoagricultureinareasnearrivers.Thecurrentrateofconversionof lowerelevationnativegrasslandtoagricultureislow,butremainsathreatforsomelimitedareas. Nativegrasslandhabitatcanalsobelostorfragmentedbysuburbanandexurbandevelopment,and transportation,oilandgas,orutilityinfrastructuredevelopment. 126 Colorado Natural Heritage Program © 2015 Literature Cited Asner,G.P.andK.B.Heidebrecht.2005.Desertificationaltersregionalecosystem‐climateinteractions.GlobalChange Biology11:182‐194. Balch,J.K.,B.A.Bradley,C.M.D’Antonio,andJ.Gómez‐Dans.2013.Introducedannualgrassincreasesregionalfireactivity acrossthearidwesternUSA(1980‐2009).GlobalChangeBiology19:173‐183. Brown,D.E.1994.Grasslands.InBioticcommunities:southwesternUnitedStatesandnorthwesternMexico.D.E.Brown, ed.UniversityofUtahPress,SaltLakeCity,UT. Debinski,D.M.,H.Wickham,K.Kindscher,J.C.Caruthers,andM.Germino.2010.Montanemeadowchangeduringdrought varieswithbackgroundhydrologicregimeandplantfunctionalgroup.Ecology91:1672‐1681. Dick‐Peddie,W.A.1993.NewMexicovegetation,past,present,andfuture.WithcontributionsbyW.H.MoirandRichard Spellenberg.UniversityofNewMexicoPress,Albuquerque,NewMexico. Knapp,P.A.1998.Spatio‐temporalpatternsoflargegrasslandfiresintheIntermountainWest,USA.GlobalEcologyand Biogeography7:259–272. Munson,S.M.,J.Belnap,C.D.Schelz,M.Moran,andT.W.Carolin.2011.Onthebrinkofchange:plantresponsestoclimate ontheColoradoPlateau.Ecosphere2:art68. Paulsen,H.A.,Jr.1975.RangemanagementinthecentralandsouthernRockyMountains:asummaryofthestatusofour knowledgebyrangeecosystems.USDAForestServiceResearchPaperRM‐154.RockyMountainForestandRange ExperimentStation,USDAForestService,FortCollins,Colorado. Shinneman,D.J.andW.L.Baker.2009.Environmentalandclimaticvariablesaspotentialdriversofpost‐firecoverof cheatgrass(Bromustectorum)inseededandunseededsemiaridecosystems.InternationalJournalofWildlandFire 18:191‐202. Sims,P.L.,andP.G.Risser.2000.Grasslands.Chapter9in:Barbour,M.G.,andW.D.Billings,eds.,NorthAmerican TerrestrialVegetation,SecondEdition.CambridgeUniversityPress. Smith,D.R.1967.Effectsofcattlegrazingonaponderosapine‐bunchgrassrangeinColorado.USDAForestService TechnicalBulletinNo.1371.RockyMountainForestandRangeExperimentStation,USDAForestService,FortCollins, Colorado. Stohlgren,T.J.,L.D.Schell,andB.VandenHuevel.1999.Howgrazingandsoilqualityaffectnativeandexoticplant diversityinrockymountaingrasslands.EcologicalApplications9:45‐64. Climate Change Vulnerability Assessment for Colorado BLM 127 SHORTGRASS PRAIRIE Grasslandsdominatedbybluegrama R. Rondeau extent exaggerated for display Climate Vulnerability Rank: High Vulnerability summary Key Vulnerabilities: Warmer summer nighttime low temperatures and/or extended periods of drought are likely to change the balance of warm‐ and cool‐season grasses, and, if fire frequency remains low, allow the establishment of woody species, with the potential for conversion to a more arid grassland type or savanna. Shortgrassprairieisrankedashavinghighvulnerabilitytothe effectsofclimatechangebymid‐century.Primaryfactors contributingtothisrankingarethefactthatthesegrasslandsare foundontheeasternplainsofColorado,wherethegreatestlevels ofexposureforalltemperaturevariablesoccur.Inaddition, anthropogenicdisturbanceinthesegrasslandshasreducedthe overalllandscapeconditionofthehabitat,whichislikelyto reduceitsresilienceinthefaceofincreasingfrequencyof extremeevents. Distribution Shortgrassprairieischaracteristicofthewarm,drysouthwesternportionoftheGreatPlains,lying totheeastoftheRockyMountains,andrangingfromtheNebraskaPanhandlesouthintoTexasand NewMexico.ThehighplainsoftheLlanoestacadodefinethesouthernextentoftheshortgrass prairie,boundedbyescarpmentsformedintheOgalallaCaprock(calledtheMescaleroescarpment tothewestandtheCaprockescarpmentontheeast).Theeasternboundaryoftheshortgrass prairieisafluctuatingecotoneontheeast‐westprecipitationgradientbetweenshortandmidgrass 128 Colorado Natural Heritage Program © 2015 prairie,definedbyatransitionareawhereprecipitationbecomesinsufficienttoprovidesoil moistureforthetallergrasses(Shantz1923,Carpenter1940).Thenorthernboundaryrepresents thetransitiontocooler,moremesicmixed‐grasstypes,generallyoccuringinsoutheastern WyomingandsouthwesternNebraska,althoughoccasionalshortgrassstandsmaybefoundfurther north.Inspiteofextensiveconversiontoagricultureorotheruses,shortgrassprairiestillforms extensivetractsontheeasternplainsofColorado,atelevationsbelow6,000feet. Characteristic species Thissystemspansawiderangeandthustherecanbesomedifferencesintherelativedominanceof somespeciesfromnorthtosouthandfromeasttowest. Priortosettlement,theshortgrassprairiewasagenerallytreelesslandscapecharacterizedbyblue grama(Boutelouagracilis)andbuffalograss(Buchloedactyloides).Inmuchofitsrange,shortgrass prairieformsthematrixvegetationwithbluegramadominant.Othergrassesincludethree‐awn (Aristidapurpurea),side‐oatsgrama(Boutelouacurtipendula),hairygrama(Bouteloua hirsuta),needle‐and‐thread(Hesperostipacomata),Junegrass(Koeleriamacrantha),western wheatgrass(Pascopyrumsmithii),James'galleta(Pleuraphisjamesii),alkalisacaton(Sporobolus airoides),andsanddropseed(Sporoboluscryptandrus).Localinclusionsofmesicorsandysoilsmay supporttallergrassspeciesincludingsandbluestem(Andropogonhallii),littlebluestem (Schizachyriumscoparium),Indiangrass(Sorghastrumnutans),andprairiesandreed(Calamovilfa longifolia),aswellasscatteredshrubspeciesincludingsandsage(Artemisiafilifolia),prairie sagewort(Artemisiafrigida),fourwingsaltbush(Atriplexcanescens),treecholla(Cylindroputia imbricata),spreadingbuckwheat(Eriogonumeffusum),snakeweed(Gutierreziasarothrae),pale wolfberry(Lyciumpallidum),andsoapweedyucca(Yuccaglauca)mayalsobepresent.One‐seed juniper(Juniperusmonosperma)andoccasionalpinyonpine(Pinusedulis)treesareoftenpresent onshalebreakswithintheshortgrassprairiematrix. Thisecosystem,incombinationwiththeassociatedwetlandsystems,representsoneoftherichest areasintheUnitedStatesforlargemammals.Ahealthyshortgrassprairiesystemshouldsupport endemicgrasslandbirds,prairiedogcomplexes,viablepopulationsofpronghorn,andotherGreat Plainsmammals.Historically,suchareaswouldalsohavebeenpopulatedbybisoninsufficient numberstosupportpopulationsofwolves.Grasslandbirdspeciesmayconstituteoneofthefastest decliningvertebratepopulationsinNorthAmerica(Knopf1996). Environment Theclimateoftheshortgrassprairieischaracterizedbylargeseasonalcontrasts,aswellas interannualandlongertermvariability(PielkeandDoesken2008).Wintersintheshortgrass prairiecanbemildanddrywhenPacificairmassesareblockedbytheRockyMountainsunder zonalflowconditions,orcoldandsnowyundermeridionalflowpatternsthatbringarcticairor upslopesnow.Springistransitionalwithwarmingconditionsandlingeringarcticairandpossible heavysnow.Springwarmingbringsthermalinstabilityandatmosphericmixingproducingwindy conditions,andthunderstormsbecomecommon.Tornadosandslow‐movingstormsproducing heavyprecipitationmayalsooccur.InsummeradrylineseparatinghumidGulfairfromdrydesert southwestairformsinthewesternplains,andthunderstormsoftenformalongthisboundary. Climate Change Vulnerability Assessment for Colorado BLM 129 Summerthunderstormscanproducelocallyheavyprecipitation.Inlatesummer,theNorth Americanmonsooncanbringmoisturefromthesouthwest.Typicalautumnweatherinthe shortgrassregionisrelativelyfairanddry,withperiodiccool,wetweatherandthepossibilityof earlysnow(PielkeandDoesken2008). Thesegrasslandsoccurprimarilyonflattorollinguplandswithloamy,ustic(dry,butusuallywith adequatemoistureduringgrowingseason)soilsrangingfromsandytoclayey,atelevations generallybelow6,000feet(1,830m).Organicmatteraccumulationinshortgrassprairiesoilsis primarilyconfinedtotheupper8in(20cm,Kellyetal.2008).Theactionofafreeze‐thawcycleon thesegrasslandsoilsincreasestheirvulnerabilitytowinderosioninlatewinterandspring(Pielke andDoesken2008). Dynamics Large‐scaleprocessessuchasclimate,fireandgrazinginfluencethissystem.Theroleoffirein maintainingherbaceouscoverandsuppressingwoodyvegetationiswelldemonstratedinmost prairietypes.Althoughfireisofsomewhatlesserimportanceinshortgrassprairiecomparedto otherprairietypes,itisstillasignificantsourceofdisturbance(Engleetal.2008),anddocumented historicfireswereoftenexpansive.Bothfloraandfaunaoftheshortgrassprairiearesensitiveto theseasonalityandfrequencyoffire(FordandMcPherson1997).Largescaleclimaticconditions acttodetermineseasonalityandfrequencyofwildfireontheshortgrassprairie,whileextentand localfireeffectsaredependentontopographicandedaphicconditions.Thexericclimateofthe shortgrassreducesoverallfuelloads,butalsodriesvegetationsufficientlyforittobecome flammable.Thegenerallyopen,rollingplainsandoftenwindyconditionsintheshortgrassprairie facilitatethespreadoffirewhenfuelloadsaresufficient(Axelrod1985).Conversly,breaksand rockyareasthatareprotectedfromfireareabletosupportwoodyvegetation,eveninthedry conditionstypicaloftheregion(Wells1965). Theshortgrassesthatdominatethissystemareextremelydrought‐andgrazing‐tolerant.These speciesevolvedwithdroughtandlargeherbivoresand,becauseoftheirstature,arerelatively resistanttoovergrazing. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank: Percent Colorado acres with projected temp > max & ppt delta < 5% Initial Exposure‐Sensitivity Rank 58.3% High Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? No (20.2%) High Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about57%ofthecurrentrangeofshortgrassprairiein Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum. 130 Colorado Natural Heritage Program © 2015 Exposure to precipitation change About78%ofshortgrassprairieinColoradowillbeexposedtoeffectivelydrierconditionseven underunchangedorslightlyincreasedprecipitationprojectedformid‐century. Sensitivity of ecosystem to temperature and precipitation Temperaturesintheshortgrassregionshowsignificantvariationbothdailyandseasonally. Averagedailytemperaturespansare25‐30°F,anddiurnalvariationisgenerallygreatestin summer.Wintertemperaturesarecold,withnightsbelowfreezingandchillydaytime temperatures.Seasonalextremelowsbelow‐20°F(‐29°C)havebeenrecordedthroughoutmostof theregion(WRCC2014).Ingeneral,thenumberoffrostfreedaysisgreaterinmoresouthern latitudes,althoughfreezingtemperatureshavebeenrecordedinallmonthsexceptJulyandAugust. Summermaximumtemperaturesarefrequentlyinthe90’s,especiallyinsouthernlocations; temperaturesof100°F(38°C)orabovehavebeenrecordedeveninthenorthernpartofthe shortgrassprairie(WRCC2014). Grasslandsinareaswheremeanannualtemperatureisabove50°F(10°C)aregenerallydominated byC4(warm‐season)grassspecies,whicharetolerantofwarmertemperaturesandmoreefficient inwateruse(SimsandRisser2000).InColorado,shortgrassprairiehasahistoricannualmean temperatureslightlygreaterthan50°F,althoughtherangeincludesslightlycoolerannualmean temperaturesaswell.Althoughthesegrasslandsareadaptedtowarm,dryconditions,Alwardetal. (1999)foundthatwarmingnight‐timetemperaturesinspringweredetrimentaltothegrowthof bluegrama,andinsteadfavoredcool‐season(C3)species,bothnativeandexotic.Consequently,the effectofincreasingtemperaturesonshortgrassprairieisdifficulttopredict. PrecipitationtrendsintheshortgrassprairiearesimilartothoseofthelargerGreatPlainsarea,in thatwesternareasaredriest.Annualprecipitationisgenerallylessthan20inches(51cm),and soilsareperiodicallymoistonlyinashallowtoplayertypicallylessthan1‐2feetdeep(Shantz 1923).Meanannualprecipitationvariesfrom20+inchesintheeastto12inches(30cm)insome westernlocations(PielkeandDoesken2008).Precipitationmaybethemostimportantecological driverintheshortgrassprairie.LauenrothandSala(1992)foundthatshortgrassproductivitywas primarilyinfluencedbyprecipitationratherthantemperatureinnortheasternColorado.Alarge proportion(70‐80%)ofannualprecipitationfallsduringthegrowingseason(WRCC2014),and mostofthisisreceivedduringalimitednumberoflargerainfallevents(PielkeandDoesken2008). Dailyprecipitationamountsaretypicallyquitesmall(5mmorless),anddonotcontribute significantlytosoilwaterrecharge,whichinsteadisprimarilydependentonlargebutinfrequent rainfallevents(Partonetal.1981,Heisler‐Whiteetal.2008).Snowfallamountsarehighestinthe north,butgenerallysnowisasmallcomponentofannualprecipitation.Mostoftheannual precipitationisquicklyevaporatedandtranspiredintotheatmosphereratherthansoakingintothe soil(PielkeandDoesken2008).Largerrainfalleventspermitdeepermoisturepenetrationinthe soilprofile,andenableanincreaseinabove‐groundnetprimaryproduction(Heisler‐Whiteetal. 2008). Soilmoisturelevelisakeydeterminantofthedistributionofshortgrassprairiehabitat;changein precipitationseasonality,amount,orpatternwillaffectsoilmoisture.Grasslandsgenerallyoccurin Climate Change Vulnerability Assessment for Colorado BLM 131 areaswherethereisatleastoneannualdryseasonandsoilwateravailabilityislowerthanthat requiredfortreegrowth(Partonetal.1981,SimsandRisser2000).Soilwateravailabilityactson bothplantwaterstatusandnutrientcycling(Salaetal.1992).Thedominantshortgrassspecies bluegramaisabletorespondquicklytoverysmallrainfallevents,althoughthisabilityis apparentlyreducedduringextendeddroughtperiods(SalaandLauenroth1982,Salaetal.1982, CherwinandKnapp2012).Nevertheless,bluegramaexhibitedextensivespreadduringthedrought oftheDustbowlyears(AlbertsonandWeaver1944).Iflargerainfalleventsaremorecommon,the sensitivityofshortgrassprairieisreduced(CherwinandKnapp2012). Warmeranddrierconditionswouldbelikelytoreducesoilwateravailabilityandotherwisehave detrimentaleffectsonecosystemprocesses,whilewarmerandwetterconditionscouldbe favorable.Furthermore,changingclimatemayleadtoashiftintherelativeabundanceand dominanceofshortgrassprairiespecies,givingrisetonovelplantcommunities(Polleyetal.2013). BecausewoodyplantsaremoreresponsivetoelevatedCO2,andmayhavetaprootscapableof reachingdeepsoilwater(Morganetal.2007),anincreaseofshrubbyspecies(e.g.,cholla,yucca, snakeweed,sandsage),orinvasiveexoticspecies,especiallyinareasthataredisturbed(for instance,byheavygrazing)mayalsoresult. Resilience and Adaptive Capacity Rank Overall Score: 0.62 Rank: Moderate Bioclimatic envelope and range Averagedcategoryscore:0.66 Shortgrassprairieexperiencesamuchdrierandwarmerclimatethanmostotherhabitattypesin Colorado.Annualaverageprecipitationisontheorderof10‐18inches(25‐47cm),withameanof 15in(38cm),andthegrowingseasonisgenerallylong,withfrequenthightemperatures. Growth form and intrinsic dispersal rate Score:1 Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody species. Vulnerability to increased attack by biological stressors Score:0.5 Theshortgrassesthatcharacterizethishabitatareextremelydrought‐andgrazing‐tolerant.These speciesevolvedwithdroughtandlargeherbivoresand,becauseoftheirstature,arerelatively resistanttoovergrazing.Grazingbydomesticlivestockistheprimaryuseofremainingshortgrass prairie.Managementforincreasedlivestockproductiontendstoproduceamorehomogeneous grasslanddominatedbykeyforagespecies(FuhlendorfandEngle2001),andrequiresadditional managementefforttorestoreamosaicofhabitatstructuresuitableforcharacteristicwildlife 132 Colorado Natural Heritage Program © 2015 species.Thus,thereisanongoingthreatofhabitatdegradationorlossoffunctionforshortgrass prairie.Intactshortgrassprairiehasgenerallyresistedinvasionbynon‐nativespecies(Kotanenet al.1998),includingcheatgrass(Bromustectorum),butdisturbedareasaremoresuceptibleto invasion. Vulnerability to increased frequency or intensity of extreme events Score:0.5 Droughthasbeenanaturalprocessinshortgrassprairiebothduringhistoricalrecording,andin centuriespriortoEuropeansettlement.Moreover,thereisevidencefortheoccurrenceofmega‐ droughtsthatsignificantlyeclipsedtheDustBowlyearsinseverity,duration,andspatialextent (WoodhouseandOverpeck1998).Althoughshortgrassprairiehasadaptedtoandpersistedunder conditionsofextremedrought,thedifferentialimpactofdroughtoncomponentspeciesmayalter speciescomposition(Rondeauetal.2013).Cultivationofmarginallandsmaycompoundthe vulnerabilityofremainingshortgrassoccurrencestoincreaseddroughtintensityorfrequency. Dryclimateconditionscandecreasethefuelloadandthustherelativefirefrequencywithinthe ecosystem.Currently,firesuppressionandcertaingrazingpatternsintheregionhavelikely decreasedthefirefrequencyevenmore,anditisunlikelythatfirefrequencyandintensitywould increaseunderprojectedclimateconditions.However,morefrequentoccurrenceofclimate extremes(e.g.,verywetconditionsfollowedbyverydryconditions)couldincreasethefrequency andextentofgrasslandwildfires(Polleyetal.2013). Other indirect effects of non‐climate stressors – landscape condition Score:0.44 ShortgrasslandscapesinColoradohavebeenheavilyimpactedbyanthropogenicdisturbance, especiallyinthenortheasternpartofthestate.Alargepartoftherangeforthissystemhasbeen convertedtoagriculture.AreasinsoutheasternColoradohavebeenimpactedbytheunsuccessful attemptstodevelopdrylandcultivationpreceedingtheDustBowlofthe1930s.Habitatlossisa continuingthreattoshortgrassprairie.Tilledagriculturehasbeenlargelysurpassedbyincreasing urbanizationastheprimarysourceofshortgrassprairiehabitatconversion,althoughthereissome possibilitythatthiscouldreverseifdemandfordrylandbiofuelcropsweretoaccelerate.Inthe northeasternportionofColorado,patternsofcultivatedlandhavelargelyfragmentedthematrixof theshortgrassprairie,reducingoreliminatingconnectivityforspeciesthatdependonthem,and thistrendislikelytocontinue.Residentialandcommercialdevelopmentisasignificantsourceof habitatlossandfragmentationonthewesternmarginsofColorado’sshortgrassprairie distribution,lesssoinotherareas,butrarelyentirelyabsent. Developmentofoilandgasresourcesisongoinginshortgrassprairiehabitat,especiallyinthe NiobrarashaleoftheDenver‐JulesburgBasinthatliesundermostofthenorthernportionof shortgrassprairieextentinColorado.Thedensityofassociatedroads,pipelinecorridors,and infrastructureisaprimaryongoingsourceofanthropogenicdisturbance,fragmentation,andlossin thishabitat.Disturbancefromrenewableenergydevelopmentremainssmall,andlargelydueto Climate Change Vulnerability Assessment for Colorado BLM 133 concentratedwindturbine“farms”.Utility‐scalesolarinstallationshavethusfarbeenconfinedto areasnearurbandevelopment,butthereisapotentialforfuturedisturbancefromthistypeof facility,whichwouldrequireassociatedutilitycorridordevelopment. Literature Cited Albertson,F.W.,andJ.E.Weaver.1944.NatureanddegreeofrecoveryofgrasslandfromtheGreatDroughtof1933to 1940.EcologicalMonographs14:393‐479. Alward,R.D.,J.K.Detling,andD.G.Milchunas.1999.Grasslandvegetationchangesandnocturnalglobalwarming.Science 238(5399):229‐231. Axelrod,D.I.1985.Riseofthegrasslandbiome,centralNorthAmerica.BotanicalReview51:163‐201. Carpenter,J.R.1940.Thegrasslandbiome.EcologicalMonographs10:617‐684. Cherwin,K.,andA.Knapp.2012.Unexpectedpatternsofsensitivitytodroughtinthreesemi‐aridgrasslands.Oecologia 169:845‐852. Engle,D.M.,B.R.Coppedge,andS.D.Fuhlendorf.2008.FromtheDustBowltotheGreenGlacier:humanactivityand environmentalchangeintheGreatPlainsgrasslands.Chapter14inO.W.VanAuken,ed.,WesternNorthAmerican JuniperusCommunities:adynamicvegetationtype.EcologicalStudies,Vol.196.Springer,NewYork. Ford,P.L.andG.R.McPherson.1997.EcologyoffireinshortgrassprairieofthesouthernGreatPlains.InEcosystem DisturbanceandWildlifeConservationinWesternGrasslands.pp.20‐39.USDAForestServiceRockyMountainForestand RangeExperimentStationGeneralTechnicalReportRM‐285.FortCollins,Colorado. Fuhlendorf,S.D.andD.M.Engle.2001.Restoringheterogeneityonrangelands:ecosystemmanagementbasedon evolutionarygrazingpatterns.BioScience51:625‐632. Heisler‐White,J.L.,A.K.Knapp,andE.F.Kelly.2008.Increasingprecipitationeventsizeincreasesabovegroundnet primaryproductivityinasemi‐aridgrassland.Oecologia158:129‐140. Kelly,E.F.,C.M.Yonker,S.W.Blecker,andC.G.Olson.2008.Soildevelopmentanddistributionintheshortgrasssteppe ecosystem.Chapter3(pp30‐54)inLauenroth,W.K.andI.C.Burke(eds.)2008.EcologyoftheShortgrassSteppe:along‐ termperspective.OxfordUniversityPress. Kotanen,P.M.,J.Bergelson,andD.L.Hazlett.1998.HabitatsofnativeandexoticplantsinColoradoshortgrasssteppe:a comparativeapproach.CanadianJournalofBotany76:664‐672. Knopf,F.L.1996.PrairieLegacies–Birds.Chapter10inF.B.SamsonandF.L.Knopfeds.PrairieConservation:Preserving NorthAmerica’sMostEndangeredEcosystem.IslandPress,Washington,DC. Lauenroth,W.K.andO.E.Sala.1992.Long‐termforageproductionofNorthAmericanshortgrasssteppe.Ecological Applications2:397‐403. Morgan,J.A.,D.G.Milchunas,D.R.LeCain,M.West,andA.R.Mosier.2007.Carbondioxideenrichmentaltersplant communitystructureandacceleratesshrubgrowthintheshortgrasssteppe.PNAS104:14724‐14729. Parton,W.J.,W.K.Lauenroth,andF.M.Smith.1981.Waterlossfromashortgrasssteppe.AgriculturalMeteorology24:97‐ 109. PielkeSr.,R.A.andN.J.Doesken.2008.Climateoftheshortgrasssteppe.Chapter2(pp14‐29)inLauenroth,W.K.andI.C. Burke(eds.)2008.EcologyoftheShortgrassSteppe:along‐termperspective.OxfordUniversityPress. 134 Colorado Natural Heritage Program © 2015 Polley,H.W.,D.D.Briske,J.A.Morgan,K.Wolter,D.W.Bailey,andJ.R.Brown.2013.ClimatechangeandNorthAmerican rangelands:trends,projections,andimplications.RangelandEcology&Management66:493‐511. Rondeau,R.J.,K.T.Pearson,andS.Kelso.2013.VegetationresponseinaColoradograssland‐shrubcommunitytoextreme drought:1999‐2010.AmericanMidlandNaturalist170:14‐25. Sala,O.E.,andW.K.Lauenroth.1982.Smallrainfallevents:anecologicalroleinsemiaridregions.Oecologia53:301‐304. Sala,O.E.,W.K.Lauenroth,andW.J.Parton.1982.Plantrecoveryfollowingprolongeddroughtinashortgrasssteppe. AgriculturalMeteorology27:49‐58. Sala,O.E.,W.K.Lauenroth,andW.J.Parton.1992.Long‐termsoilwaterdynamicsintheshortgrasssteppe.Ecology 73:1175‐1181. Shantz,H.L.1923.ThenaturalvegetationoftheGreatPlainsregion.AnnalsoftheAssociationofAmericanGeographers 13:81‐107. Sims,P.L.,andP.G.Risser.2000.Grasslands.In:Barbour,M.G.,andW.D.Billings,eds.,NorthAmericanTerrestrial Vegetation,SecondEdition.CambridgeUniversityPress,NewYork,pp.323‐35 Wells,P.V.1965.Scarpwoodlands,transportedgrasslandsoils,andconceptofgrasslandclimateintheGreatPlains region.Science148:246‐249. WesternRegionalClimateCenter[WRCC].2014.PeriodofRecordGeneralClimateSummaries‐Temperature,for Cheyenne,WY,Akron,CO,LaJunta,CO,Goodland,KS,BoiseCity,OK,Tucumcari,NM,Amarillo,TX,andLubbock,TX stations.[website.]Availableat:http://www.wrcc.dri.edu/summary/Climsmco.html Woodhouse,C.A.andJ.T.Overpeck.1998.2000yearsofdroughtvariabilityinthecentralUnitedStates.Bulletinofthe AmericanMeteorologicalSociety79:2693‐2714. Climate Change Vulnerability Assessment for Colorado BLM 135 Riparian and Wetland Table 2.8. Key vulnerabilities, riparian and wetland ecosystems. Habitat Climate factor(s) Consequences Other considerations Riparian ‐ East Warmer and drier conditions, runoff amount & timing Earlier peak flows, low late summer flows, change in relative species abundance Highly altered due to diversions and dams, agricultural land use patterns Riparian ‐ Mtn. Warmer temperatures, runoff timing Earlier peak flows, low late summer flows, change in relative species abundance Connectivity Riparian ‐ West Warmer and drier conditions, runoff amount & timing Earlier peak flows, low late summer flows, change in relative species abundance Highly altered due to diversions and dams, agricultural land use patterns Wetland ‐ East Warmer, drier conditions Lower water tables, reduced input Strict irrigation control, highly altered Wetland ‐ Mtn. Warmer temperatures, snowmelt timing Potential change in species composition Groundwater‐driven types more stable Wetland ‐ West Drier conditions Lower water tables, reduced input Highly altered 136 Colorado Natural Heritage Program © 2015 RIPARIAN WOODLANDS AND SHRUBLANDS Areasofgenerallywoodyvegetationassociatedwithmovingwaterandintermittentflooding extent exaggerated for display K. Carsey Climate Vulnerability Ranks: High (Eastern), Low (Mountain), Very High (Western) Vulnerability summary Key vulnerabilities: Warmer and drier conditions and the consequent change in runoff amount and timing are expected to result in earlier peak flows and low late‐summer flows, which are likely to impact the structure and species composition of riparian vegetation, especially at lower elevations. Riparianwoodlandandshrublandsoftheeasternplainsandwesternareasarerankedashaving hightoveryhighvulnerabilitytotheeffectsofclimatechangebymid‐century,whilethoseofthe mountainregionareconsideredtohavecomparativelylowvulnerability.Thevulnerabilityofsome speciesassemblagesmaybehigherorlowerthanisreflectedbythecollectiveassessment.The primaryfactorcontributingtotheserankingsisthedegreetowhichriparianwoodlandsatlower elevationsareexpectedtoexperiencehighertemperatureswithoutcompensatoryprecipitation increase.Thelowtomoderateresilienceranksreflectthehighlyalteredconditionofmostofthese habitats,andingeneral,mostriparianwoodlandsandshrublandsthroughoutthestateshould probablyberegardedashavingsomedegreeofvulnerabilitytoclimatechangethatisnotcaptured byourbroad‐scaleassessmentmethods. Distribution Weassessedtheconditionofriparianwoodlandsandshrublandsineachofthreeregionsin Colorado,correspondingroughlytoecoregionsasdefinedbyTheNatureConservancy(2009, modifiedfromBailey1998):theeasternplains(CentralShortgrassPrairieecoregion);mountains Climate Change Vulnerability Assessment for Colorado BLM 137 (SouthernRockyMountainecoregion);andwesternplateausandvalleys(ColoradoPlateau, WyomingBasins,andotherecoregions). RiparianwoodlandsandshrublandsoccurthroughoutColorado.IneasternColoradotheyarefound alongsmall,mediumandlargestreamsontheplains,includingthewidefloodplainsoftheSouth PlatteandArkansasRivers.Montanetosubalpineriparianwoodlandsareseasonallyflooded forestsandwoodlandsthroughouttheRockyMountains.Atmontanetosubalpineelevations, riparianshrublandsmayoccurasnarrowbandsofshrubsliningstreambanksandalluvialterraces, orasextensivewillowcarrsinbroadfloodplainsandsubalpinevalleys.Theyincludetheconifer andaspenwoodlandsthatlinemontanestreams.Theyaremostoftenconfinedtospecific streamsideenvironments,occurringonfloodplainsorterracesofriversandstreamsorinV‐ shaped,narrowvalleysandcanyons(wherethereiscold‐airdrainage).Lessfrequently,high elevationriparianwoodlandsarefoundinmoderatetowidevalleybottoms,onlargefloodplains alongbroad,meanderingrivers,andonpondorlakemargins.Theycanalsobefoundaroundseeps, fens,andisolatedspringsonhillslopesawayfromvalleybottoms.Atlowerelevationsonthe westernslope,riparianwoodlandsandshrublandsarefoundwithinthefloodzoneofrivers,on islands,sandorcobblebars,andimmediatestreambanks.Theyoftenoccurasamosaicofmultiple communitiesthataretree‐dominatedwithadiverseshrubcomponent. Characteristic species Ontheeasternplains,riparianwoodlandsandshrublandsaregenerallydominatedbyplains cottonwood(Populusdeltoides)andwillow(Salixspp.),butalsooccurasamosaicofmultiple communitiesinterspersedwithherbaceouspatches. Dominantshrubswithinthemontanetosubalpineelevationzoneincludealder(Alnustenuifolia), birch(Betulaoccidentalis),dogwood(Cornussericea),andwillowspecies.Generallytheupland communitiessurroundingtheseripariansystemsareeitherconiferoraspenforests. Westernriparianforestsaretypicallydominatedbycottonwood(Populusangustifolia,P.deltoides) andwillow,butmayincludemaple(Acerglabrum),Douglasfir(Pseudotsugamenziesii),spruce (Piceaspp.),andjuniper(Juniperusspp.).Shrublandsareprimarilydominatedbywillow,alder,and birch. Environment RiparianareasofColorado’seasternplainsareprimarilyassociatedwithintermittentlyflowing streamsofsmalltomoderatesize,butalsoincludethelargerfloodplainsofthelargesnowmelt‐fed rivers(SouthPlatteandArkansas).Smallerstreamsreceivewaterfromprecipitationand groundwaterinflow,havegreaterseasonalflowvariationthanthelargerrivers,andhaveminimal ornoflowexceptduringfloods(Covichetal.1997).InmountainousareasofColorado,riparian areasaremuchmorelikelytobeassociatedwithperenniallyflowingstreams,andtheseplant communitiesareadaptedtohighwatertablesandperiodicflooding.Runoffandseepagefrom snowmeltisaprimarysourceofstreamflow.LowerelevationriparianareasinwesternColorado areadaptedtoperiodicflooddisturbanceandpredominantlyaridconditions.Largerstreamsand riversaresustainedbyrunofffrommountainareas.Smallerstreamsareprimarilysupportedby 138 Colorado Natural Heritage Program © 2015 groundwaterinflow,oroccasionallargeprecipitationevents,andareoftendryforsomeportionof theyear. Dynamics Riparianwoodlandsaretolerantofperiodicfloodingandhighwatertables.Snowmeltmoisturein thissystemmaycreateshallowwatertablesorseepsforaportionofthegrowingseason. Manyhigherelevationriparianshrublandsareassociatedwithbeaver(Castorcanadensis)activity, whichcanbeimportantformaintainingthehealthoftheriparianecosystem(historicallythis wouldhavebeentrueforlowerelevationstreamsaswell).Beaverdamsabatechanneldown cutting,bankerosion,anddownstreammovementofsediment.Beaverdamsalsoraisethewater tableacrossthefloodplainandprovideyear‐roundsaturatedsoils.Plantestablishmentand sedimentbuild‐upbehindbeaverdamsraisesthechannelbedandcreatesawetlandenvironment. Hydrologically,smallerriverstendtohavegreaterseasonalvariationinwaterlevelswithless developedfloodplainthanthelargerrivers,andcandrydowncompletelyforsomeportionofthe year.Cottonwooddie‐offsrelatedtoprolonged,intensedroughtandhydrologicalalterationshave affectedsomestands. Lowerelevationriparianwoodlandsandshrublandsaredependentonanaturalhydrologicregime, especiallyannualtoepisodicflooding.Thesewoodlandsandshrublandsgrowwithinacontinually changingalluvialenvironmentduetotheebbandflowoftheriver,andriparianvegetationis constantlybeing“re‐set”byfloodingdisturbance.Insomeareas,Russianolive(Elaeagnus angustifolia),tamarisk(Tamarixspp.),andotherexoticspeciesarecommon. CCVA Scoring Exposure‐Sensitivity (Potential Impact) Ranks Eastern Mountain Western Percent Colorado acres with projected temp > max & ppt delta < 5% 55.5% 1.8% 37.2% High Low High No (6.7%) No (25.3%) No (14.7%) High Low High Initial Exposure‐Sensitivity Rank Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about60%ofthecurrentrangeofriparianwoodland andshrublandineasternColoradowouldexperienceannualmeantemperaturesabovethecurrent statewidemaximum.Theproportionissimilar(54%)forwesternriparianareas,butmuchlower (2%)inmountainareas. Climate Change Vulnerability Assessment for Colorado BLM 139 Exposure to precipitation change About62%ofriparianwoodlandandshrublandineasternColoradowillbeexposedtoeffectively drierconditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐ century.Forwesternriparianareas,theproportionisslightlylower(52%),andmountainriparian areascanexpecttoseeeffectivelydrierconditionsinabout27%oftheirdistribution. Sensitivity of ecosystem to temperature and precipitation Riparianwoodlandsandshrublandsareadjacenttoandaffectedbysurfaceorgroundwaterof perennialorephemeralwaterbodies.Theyarecharacterizedbyintermittentfloodinganda seasonallyhighwatertable.Thecloseassociationofriparianareaswithstreamflowandaquatic habitatsmeansthatchangingpatternsofprecipitationandrunoffthatalterhydrologicregimesare likelytohaveadirecteffectonthesehabitats(Caponetal.2013).Inaddition,theinteractionof increasedgrowthduetoincreasedCO2concentration,warming‐induceddrought,andheat‐stress withpotentiallyreducedstreamflowsarelikelytoaffectripariancommunitystructureand composition,especiallyinmorearidareas(Perryetal.2012). Climateprojectionsformid‐centuryaregenerallyforwarmeranddrieroutcomes,although precipitationchangeismoreuncertainindirectionandmagnitude(Lucasetal.2014).Annual runoffandstreamflowareaffectedbybothtemperatureandprecipitation,andeffectsoffuture changesinthesefactorsaredifficulttoseparate.Warming‐inducedchangesinsnowpackand snowmelttimingincludeearlierspringsnowmelt,ashifttowardsprecipitationfallingasrain insteadofsnowinspringandfall,andincreasedsublimationfromthesnowpackthroughoutthe season.Thesechangesareexpectedtohavegreaterimpactatlowerelevations(Lucasetal.2014). Theeffectsofwarmingtemperaturesarelikelytochangethehydrologiccyclebyshiftingrunoffand peakflowstoearlierinthespring,andreducinglatesummer‐earlyautumnflows(Roodetal. 2008).Riparianvegetationisinpartdeterminedbyflowlevels(Aubleetal.1994).Reduced summerflowsarepredictedtoresultinmorefrequentdroughtstressforriparianhabitats,witha resultinglossorcontractionofthehabitat(Roodetal.2008). Resilience and Adaptive Capacity Ranks Eastern Overall Score: 0.52 Rank: Moderate Mountain Overall Score: 0.60 Rank: Moderate Western Overall Score: 0.49 Rank: Low Bioclimatic envelope and range Scores:0.57(Eastern),0.81(Mountain),0.66(Western) Theseshrublandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof continentaldistribution.Lowerelevationtypesoftheeastandwestslopehavesomewhatnarrower bioclimaticrangesthanmontanetypes. Growth form and intrinsic dispersal rate Score:0.5 140 Colorado Natural Heritage Program © 2015 Themixedgrowth‐forms(trees,shrubs,andherbaceous)thatmaybedominantorcharacteristicof theseecosystemsgivesthemanintermediateresiliencescoreinthiscategory. Vulnerability to increased attack by biological stressors Scores:0.5 Seedingwithnon‐nativepasturegrasses,invasionbytamariskandexoticforbshasalreadyaltered speciescompositioninmanyeasternandwesternriparianecosystem,andwillhavealastingeffect. Invasivespecieswiththepotentialtoalterecosystemfunction(e.g.,tamarisk)areanongoing managementchallenge. Forhigherelevationriparianhabitats,invasivespeciesandgrazingareminorimpacts(Chimneret al.2010),butthesefactorsareanongoingsourceofdisturbanceinlowermontaneriparianareas. Manyofthesecommunitieshavedegradedunderstories,withweedyherbaceouslayersand Russianoliveandtamariskinvadingtheshrublayers. Vulnerability to increased frequency or intensity of extreme events Scores:0.5 Increasedfrequencyandmagnitudeofdroughtislikelytohavesignificantimpactonthesehabitats. Althoughfirehasoftennotbeenconsideredanimportantdisturbanceinwetlandandriparian areas,recentevidencesuggeststhatfiresinmosttypesofadjacentuplandvegetationarelikelyto burnintothesehabitatsaswell(CharronandJohnson2006,StrombergandRychener2010). Other indirect effects of non‐climate stressors – landscape condition EasternPlainsScore:0.44 RiparianhabitatsofColorado’seasternplainscontinuetobethreatenedbyurban,exurban,and recreationaldevelopmentaswellasagriculturalactivities(e.g.,tillageandcropproduction, livestockgrazing,concentratedanimalfeedingoperations)inadjacentuplandswhoseeffects contributetoagraduallossofhabitatareaandquality.Landusewithintheriparianareaaswellas inadjacentanduplandareascanfragmentthelandscapeandreduceconnectivitybetweenriparian patchesandbetweenripariananduplandareas,adverselyaffectingthemovementofsurface/ groundwater,nutrients,anddispersalofplantsandanimals.Roads,bridges,anddevelopmentcan alsofragmentbothripariananduplandareas.Gravelminingisanadditionalsourceofdisturbance tothesehabitats,especiallyalongthelargerrivers. Alterationofnaturalhydrologicalprocessesbydams,diversions,ditches,roads,etc.,andabiotic resourceconsumptionthroughgroundwaterpumpinghaveconsiderablyalteredthepresettlement conditionofthesehabitats,andareanongoingthreat.Dams,reservoirs,diversions,ditchesand otherhumanlandusesalterthenaturalflowregimeofastream,andcandisrupttheecological integrityoftheripariansystem.Physicalchangesresultingfromalteredflowregimesinclude downstreamerosionandchannelization,reducedchannelmorphologydynamics,reducedbase and/orpeakflows,lowerwatertablesinfloodplains,andreducedsedimentdepositioninthe floodplain(Poffetal.1997).Mosthydrologicalalterationisduetoagriculturalneeds,exceptin Climate Change Vulnerability Assessment for Colorado BLM 141 highlydevelopedareasalongthemountainfrontwhereotherusesareovertakingagriculturaluse. ContinuedgroundwaterpumpingfromtheOgallala‐HighPlainsaquiferhasloweredthewatertable suchthatmanyformerlyflowingstreamsarenowdryformuchoftheyear(Dodds1997).Flood controlcangreatlyreducethespatialcomplexityofriparianandwetlandhabitat. MountainScore:0.69 Riparianareasinmountainareasaregenerallyingoodcondition,althoughnotwithoutimpactfrom anthropogenicdisturbance.Threatstoriparianwoodlandandshrublandinmountainareasof Coloradovarywithelevation.Additionalfragmentationandlossofriparianhabitatsatlower elevationinmountainousareasofColoradoduetourbanizationandagricultureisanongoing threatinmanyareas.Athigherelevationswherelandsareinpublicownershipthesehabitatsare mostthreatenedbyrecreationaldevelopmentandusewhereroadsprovideaccessandareasource ofsedimentationandpollutantrunoff.Exceptatthehighestelevations,fewmountainriparian habitatsarewithouthydrologicalmodification,andtheongoingstressesfromreservoirs,dams, diversions,andsimilaralterationsincludedownstreamerosionandchannelization,reduced channelmorphologydynamics,reducedbaseand/orpeakflows,lowerwatertablesinfloodplains, andreducedsedimentdepositioninthefloodplain(Poffetal.1997). WesternSlopeScore:0.40 RiparianareasinwesternColoradoaregenerallyinfaircondition,andhavebeenheavilyimpacted byanthropogenicdisturbanceinmanyareas.Threatstoriparianhabitatsfromongoingurbanand exurbandevelopmentaregenerallylessinmostareasofColorado’swestslopeincomparisonwith theFrontRange,butnotabsent.Agriculturalactivitiesareubiquitousinlowerelevationriparian habitats,includingirrigatedtilledanduntilledcrops,anddomesticlivestockgrazing.Gravelmining iscommonalongthelargerrivers.Thesedisturbancesarelikelytocontinuetoproduceagradual reductioninhabitatareaandqualityinwestsloperiparianhabitats. Literature Cited Auble,G.T.,J.M.Friedman,andM.L.Scott.1994.Relatingriparianvegetationtopresentandfuturestreamflows.Ecological Applications4:544‐554. Bailey,R.1998.EcoregionsmapofNorthAmerica:Explanatorynote.USDAForestService,Misc.Publicationno.1548.10 pp.+mapscale1:15,000,000 Capon,S.J.,L.E.Chambers,R.MacNally,R.J.Naiman,P.Davies,N.Marshall,J.Pittock,M.Reid,T.Capon,M.Douglas,J. Catford,D.S.Baldwin,M.Stewardson,J.Roberts,M.parsons,andS.E.Williams.2013.Riparianecosystemsinthe21st century:hotspotsforclimatechangeadaptation?Ecosystems16:359‐381. Charron,I.andE.A.Johnson.2006.Theimportanceoffiresandfloodsontreeagesalongmountainousgravel‐bedstreams. EcologicalApplications16:1757‐1770. Chimner,R.A.,J.M.Lemly,andD.J.Cooper.2010.Mountainfendistribution,typesandrestorationpriorities,SanJuan Mountains,Colorado,USA.Wetlands30:763‐771. 142 Colorado Natural Heritage Program © 2015 Covich,A.P.,S.C.Fritz,P.J.Lamb,R.D.Marzolf,W.J.Matthews,K.A.Poiani,E.E.Prepas,M.B.Richman,andT.C.Winter.1997. PotentialeffectsofclimatechangeonaquaticecosystemsoftheGreatPlainsofNorthAmerica.HydrologicalProcesses 11:993‐1021. Dodds,W.K.1997.DistributionofRunoffandRiversRelatedtoVegetativeCharacteristics,Latitude,andSlope:AGlobal Perspective.JournaloftheNorthAmericanBenthologicalSociety,16:162‐168. Holsinger,L.,R.E.Keane,D.J.Isaak,L.Eby,andM.K.Young.2014.Relativeeffectsofclimatechangeandwildfireson streamtemperatures:asimulationmodelingapproachinarockyMountainwatershed.ClimaticChange124:191‐206. Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard. WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado Boulder. Perry,L.G.,D.C.Andersen,L.V.Reynolds,S.M.Nelson,andP.B.Shafroth.2012.Vulnerabilityofriparianecosystemsto elevatedCO2andclimatechangeinaridandsemiaridwesternNorthAmerica.GlobalChangeBiology18:8221‐842. Poff,N.L.,M.M.Brinson,andJ.W.Day.2002.Aquaticecosystemsandglobalclimatechange:potentialimpactsoninland freshwaterandcoastalwetlandecosystemsintheUnitedStates.PreparedforthePewCenteronGlobalClimateChange. Available:http://www.c2es.org/publications/aquatic‐ecosystems‐and‐climate‐change Rood,S.B.,J.Pan,K.M.Gill,C.G.Franks,G.M.Samuelson,andA.Shepherd.2008.DecliningsummerflowsofRocky Mountainrivers:changingseasonalhydrologyandprobableimpactsonfloodplainforests.JournalofHydrology349:397‐ 410. Stromberg,J.C.andT.J.Rycheneer.2010.Effectsoffireonriparianforestsalongafree‐flowingdrylandriver.Wetlands 30:75‐86. TheNatureConservancy[TNC].2009.TerrestrialEcoregionsoftheWorld,digitalvectordata.TheNatureConservancy, Arlington,Virginia. Climate Change Vulnerability Assessment for Colorado BLM 143 WETLANDS Herbaceousvegetationdominatedareascharacterizedbywatersaturationandhydricsoils G. Doyle extent exaggerated for display Climate Vulnerability Ranks: High (Eastern), Moderate (Mountain and Western) Vulnerability summary Key vulnerabilities: Warmer and drier conditions for lower elevation wetlands are likely to result in reduced inputs to these habitats, and lower groundwater levels in general that may reduce the extent and degrade the condition of wetlands. In higher elevations warmer temperatures and consequent earlier snowmelt may influence the species composition of wetland habitats. Ground‐water dependent wetlands at higher elevations are expected to be somewhat buffered from hydrologic change. Wetlandhabitatsofthewesternvalleysandmountainareasarerankedashavingmoderate vulnerabilitytotheeffectsofclimatechangebymid‐century,whilethoseoftheeasternplainsare consideredhighlyvulnerable.Theprimaryfactorcontributingtothehigherrankingforeastern plainswetlandsisthedegreeofincreasedtemperatureprojectedforthatregion,incomparison withtheotherregions.Thevulnerabilityofsomespeciesassemblagesmaybehigherthanis reflectedbythecollectiveassessment.Themoderateresilienceranksreflectthehighlyaltered conditionofmostofthesehabitats,andingeneral,allwetlandsthroughoutthestateshould probablyberegardedashavingsomedegreeofvulnerabilitytoclimatechangethatisnotcaptured byourbroad‐scaleassessmentmethods. Distribution Weassessedtheconditionofnon‐riparianwetlandsineachofthreesectionsofColorado, correspondingapproximatelytoecoregionsasdefinedbyTheNatureConservancy(2009,modified fromBailey1998):theeasternplains(CentralShortgrassPrairieecoregion);mountains(Southern 144 Colorado Natural Heritage Program © 2015 RockyMountainecoregion);andwesternplateausandvalleys(ColoradoPlateau,WyomingBasins, andotherecoregions).Asconsideredherein,wetlandsareareascharacterizedbywatersaturation andhydricsoilstypicallysupportinghydrophyticvegetation. InColorado,non‐riparianwetlandhabitatsincludemoisttowetmeadows,emergentmarshes,fens, andseepsandsprings.Non‐riparianwetlandsofColorado’seasternplainsandwesternvalleysare primarilymarshes,seepsandsprings,andwetmeadows.Playas(shallow,temporarywetlands)are scatteredthroughouttheeasternplains,andoccurinlimiteddistributiononthewesternslopeas well.Althoughnaturalmarshesandwetmeadowsareprimarilyfoundathigherelevations, irrigationpractices(directfloodapplication,irrigationtailwaters,elevatedgroundwaterlevels, etc.)havegreatlyincreasedtheincidenceofwetmeadowsontheeasternplains(Sueltenfussetal. 2013).Mostofthestate’swetmeadowsoccurinmountainousareasofColorado,andmarshesare generallylesscommon.Fensarealsocharacteristicofthemountainregion. Characteristic species Naturalwetmeadowsaredominatedbynativesedgesandgrasses,whilethoseinfluencedby irrigationmaybedominatedbynon‐nativepasturegrasses.Seepsandspringshavegenerally similarvegetationtowetmeadows. Standingwaterinemergentmarshesrestrictsthedominantspeciestorobustwetlandplants,such ascattail(Typha),bulrush(ScirpusandSchoenoplectusspp.),andlargesedges(Carexspp.).Atlower elevations,marshescanbecomedenselyvegetatediftheyarenotperiodicallyflushedby floodwaterormechanicalthinning. Fenvegetationisgenerallycharacterizedbyadensecoverofsedgesandmoss,oftenintermixed withforbsandshorttodwarfshrubssuchaswillowandbogbirch(Betulanana). Environment MeadowsoccurthroughoutColorado,butmostnaturalwetmeadowsarefoundwithinthemontane tosubalpinezone.Naturalwetmeadowsaretightlyassociatedwithsnowmeltorsubsurface groundwaterdischargeandtypicallynotsubjectedtohighdisturbanceeventssuchasflooding. Withinmountainvalleysandatlowerelevations,extensiveacresofwetmeadowsarealsolinkedto irrigationpractices,includingfloodirrigationandseepagefromirrigationditches. Emergentmarshesarewetlandsthatexperiencefrequentorprolongedponding.Marshesoccurin depressionsandkettleponds,asfringesaroundlakes,alongstreamsandrivers,andbehindmany typesofimpoundments.Theycanbefoundatallelevations,butaremorecommonatmidtolower elevations. Fensarewetlandswiththickorganicsoilsthataresupportedbystablegroundwaterdischarge. Fensaretypicallyfoundwithinthemontanetosubalpinezone,generallyabove7,000ft.,andcan formalongtheedgesofvalleybottoms,atbreaksinslope,aroundhillslopeseeps,inshallowbasins oranywherewheresufficientgroundwateremergestoperenniallysaturatesoils.Fensare Climate Change Vulnerability Assessment for Colorado BLM 145 considered“oldgrowth”wetlands,astheaccumulationofthickorganicsoilscantakethousandsof years. Seepsandspringsincludesmallwetlandsthatarehydrologicallysupportedbygroundwater discharge.TheyarefoundthroughoutColoradoandcanbeacomponentofthepreviously describedwetlandtypes,butaremostnotablewithinthecliffandcanyoncountryoftheColorado PlateauandtheLowerArkansasbasin. Dynamics Hydrologyistheprimarydeterminantofthedevelopmentandpersistenceofwetlandecosystems, andvariationsintiminganddurationofinundationlargelydeterminethetypeofwetland.The waterbudgetorhydroperiodofawetlandincludesprecipitation,evapotranspiration,andboth surfaceflowandgroundwater.Althoughwatermaynotbecontinuouslypresentinwetlands,asa generalruleofthumbinundationduringatleast14consecutivegrowingseasondaysissufficientto exertasignificantinfluenceonwetlandprocesses(CulverandLemly2013). CCVA Scoring Exposure‐Sensitivity (Potential Impact) Rank Eastern Mountain Western Percent Colorado acres with projected temp > max & ppt delta < 5% 37.2% 0.8% 15.3% High Low Moderate No (11.3%) Yes (54.5%) No (43.5%) High Moderate Moderate Initial Exposure‐Sensitivity Rank Percent Colorado acres with temp <= max & ppt delta < 5% more than 50%? Final Exposure‐Sensitivity Rank Exposure to temperature change Underprojectedmid‐centurytemperatures,about43%ofthecurrentrangeofwetlandecosystem ineasternColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide maximum.Theproportionislower(19%)forwesternwetlands,andquitelow(1%)inmountain areas. Exposure to precipitation change About49%ofwetlandhabitatsineasternColoradowillbeexposedtoeffectivelydrierconditions evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.Forwestern wetlandecosystems,theproportionissomewhathigher(59%),andmountainwetlandscanalso expecttoseeeffectivelydrierconditionsinabout55%oftheirdistribution. Sensitivity of ecosystem to temperature and precipitation Bothtemperatureandprecipitationcanaffectthepresenceandextentofwetlandsonthe landscape.Warmer,drierconditionsarelikelytoleadtolowergroundwaterlevels,atleastduring certainseasons,andcanhaveanegativeimpactontheseecosystems.Earlierspringrun‐offwould 146 Colorado Natural Heritage Program © 2015 resultindryingconditionsbylatesummer,possiblyreducingthesizeofexistingwetlands. Similarly,wetlandscurrentlysupportedbylate‐meltingsnowfieldsarelikelytodrysoonerthan undercurrentconditions. Effectsofclimatechangeonwetlandsareexpectedtobelargelymediatedthroughthesourceof water,eitherprecipitation,groundwaterdischarge,or,forwetlandsassociatedwithriparianareas, surfaceflow(Winter2000).Precipitationsupportedwetlandsarethoughttobemostvulnerableto drierclimaticoutcomes,butdecreasingprecipitationwouldalsobelikelytolowerwatertable levelsandleadtocontractionofgroundwater‐fedwetlands(Winter2000,Poffetal.2002).Under wetterconditions,somewetlandtypesmaybeabletoexpandoratleastmaintaincurrentextents. Considerationoftheeffectsofchangingprecipitationisfurthercomplicatedbythefactthat wetlandsmayreceivewaterinputfromthesurroundingbasin,notjusttheimmediateenvirons (Gitayetal.2001). Temperatureaffectswetlanddistributionandfunctionprimarilythroughitseffectsonratesof chemical,physicalandbiologicalprocesses(GageandCooper2007).Althoughwetlandsareto someextentbufferedfromtheimmediateeffectsofwarmingonwatertemperature,warmingcould increasebothplantgrowthandmicrobialactivitydrivingdecomposition(Fischlinetal.2007). Temperatureisalsoadriverofevapotranspirationrate,andthewatercycleingeneral(Gitayetal. 2001). Variationinclimaticconditionsaffectsgroundwaterlevelsbothdirectlyviarechargerates,and indirectlythroughchangesinpatternsofgroundwateruse,especiallyirrigation(Tayloretal.2012). Drierfutureconditionsarelikelytoresultintightercontrolsonirrigationseepage,anda consequentreductioninwetlandacressupportedbythissource.Althoughclimatechangeis expectedtohaveasignificanteffectonwetlandsthroughchangesintheseasonalityandvariability ofprecipitationandextremeevents(Gitayetal.2005),changingwaterusepatternsinresponseto climatechangearealsolikelytoplayamajorroleinthefutureofwetlands(Tayloretal.2012). Resilience and Adaptive Capacity Rank Eastern Overall Score: 0.52 Rank: Moderate Mountain Overall Score: 0.59 Rank: Moderate Western Overall Score: 0.52 Rank: Moderate Bioclimatic envelope and range Scores:0.66(Eastern),0.77(Mountain),0.69(Western) Mostwetlandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof continentaldistribution.Lowerelevationtypesoftheeastandwestslopehavesomewhatnarrower bioclimaticrangesthanmontanetypes. Growth form and intrinsic dispersal rate Score:0.5 Climate Change Vulnerability Assessment for Colorado BLM 147 Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,butmay berestrictedindispersalabilityifhabitatsareisolatedwithinthelandscape. Vulnerability to increased attack by biological stressors Scores:0.5 Forhigherelevationwetlands,invasivespeciesandgrazingareminorimpacts(Chimneretal. 2010),butthesefactorsareanongoingsourceofdisturbanceinlowerelevationwetlandsthat lowertheresilienceoftheseoccurrences.Invasivespecieswiththepotentialtoalterecosystem functionareanongoingmanagementchallenge.Impactedwetlandsmaybemorevulnerableto invasionbyexoticspecies. Vulnerability to increased frequency or intensity of extreme events Scores:0.5 Increasedfrequencyandmagnitudeofdroughtislikelytohavesignificantimpactonthesehabitats. Eventualimpactsofclimatechangeonaquifersourceofwatercouldeventuallyeliminatesome types(seeps)fromsomeareas. Other indirect effects of non‐climate stressors – landscape condition EasternPlainsScore:0.43 WetlandsofColorado’seasternplainscontinuetobethreatenedbyurbanandexurban developmentaswellasagriculturalactivities(e.g.,tillageandcropproduction,livestockgrazing, concentratedanimalfeedingoperations)inadjacentuplandswhoseeffectscontributetoagradual lossofhabitatareaandquality.Theincidentalcreationofwetlandsthroughwatermanagement activitiesisgenerallynotsufficienttocompensateforlossesinthisecosystem. MountainScore:0.67 WiththeexceptionoftheextensivewetlandsoftheSanLuisValley,wherewaterdevelopmentfor agriculturaluseisextensive,wetlandhabitatsinmountainareasofColoradoaregenerallyingood condition,withfeweranthropogenicimpacts,andareoveralllessthreatenedbydevelopmentand agriculturethanthoseinlowerelevationsofthestate. WesternSlopeScore:0.41 WetlandhabitatsinwesternColoradohavebeenheavilyimpactedbyanthropogenicactivities,and areofteninonlyfaircondition.Alteredhydrologyduetodams,diversions,andgroundwater pumpingmayinteractwithwarmingtemperaturesandchangesinprecipitationpatterntoalter groundwaterrechargerates,andleadtodryingorcontractionofwetlands.Hanginggardensarean especiallyfragilewetlandtypeofthewesternslope.Wheretheyareaccessibletofoottrafficor livestock,erosion,trampling,andintroductionofexoticspeciesareanongoingthreat. 148 Colorado Natural Heritage Program © 2015 Literature Cited Bailey,R.1998.EcoregionsmapofNorthAmerica:Explanatorynote.USDAForestService,Misc.Publicationno.1548.10 pp.+mapscale1:15,000,000 Culver,D.R.andJ.M.Lemly.2013.FieldGuidetoColorado’sWetlandPlants:Identification,EcologyandConservation. ColoradoNaturalHeritageProgram,WarnerCollegeofNaturalResources,ColoradoStateUniversity,FortCollins, Colorado. Fischlin,A.,G.F.Midgley,J.T.Price,R.Leemans,B.Gopal,C.Turley,M.D.A.Rounsevell,O.P.Dube,J.Tarazona,A.A.Velichko. 2007.Ecosystems,theirproperties,goods,andservices.ClimateChange2007:Impacts,AdaptationandVulnerability. ContributionofWorkingGroupIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange, M.L.Parry,O.F.Canziani,J.P.Palutikof,P.J.vanderLindenandC.E.Hanson,Eds.,CambridgeUniversityPress,Cambridge, 211‐272. Gage,E.,andD.J.Cooper.2007.Historicrangeofvariationassessmentforwetlandandriparianecosystems,U.S.Forest ServiceRegion2.PreparedforUSDAForestService,RockyMountainRegion.DepartmentofForest,Rangelandand WatershedStewardship,ColoradoStateUniversity,FortCollins,Colorado. Gitay,H.,A.SuarezandR.T.Watson.2002.ClimateChangeandBiodiversity.IPCCTechnicalPaper,Intergovernmental PanelonClimateChange,Geneva,77pp. Gitay,H.,S.Brown,W.EasterlingandB.Jallow.2001.Ecosystemsandtheirgoodsandservices.ClimateChange2001: Impacts,Adaptation,andVulnerability.ContributionofWorkingGroupIItotheThirdAssessmentReportofthe IntergovernmentalPanelonClimateChange,J.J.McCarthy,O.F.Canziani,N.A.Leary,D.J.DokkenandK.S.White,Eds., CambridgeUniversityPress,Cambridge,237‐342. Poff,N.L.,M.M.Brinson,andJ.W.Day.2002.Aquaticecosystemsandglobalclimatechange:potentialimpactsoninland freshwaterandcoastalwetlandecosystemsintheUnitedStates.PreparedforthePewCenteronGlobalClimateChange. Available:http://www.c2es.org/publications/aquatic‐ecosystems‐and‐climate‐change Sueltenfuss,J.P.,D.J.Cooper,R.L.Knight,andR.M.Waskom.2013.Thecreationandmaintenanceofwetlandecosystems fromirrigationcanalandreservoirseepageinasemi‐aridlandscape.Wetlands33:799‐810. Taylor,R.G.,B.Scanlon,P.Dölletal.2012.Groundwaterandclimatechange.NatureClimateChange3:322‐329. TheNatureConservancy[TNC].2009.TerrestrialEcoregionsoftheWorld,digitalvectordata.TheNatureConservancy, Arlington,Virginia. Winter,T.C.2000.Thevulnerabilityofwetlandstoclimatechange:ahydrologiclandscapeperspective.Journalofthe AmericanWaterResourcesAssociation.36:305‐311. Climate Change Vulnerability Assessment for Colorado BLM 149 FRESHWATER ECOSYSTEMS – METHODS InconsultationwithBLM,CNHPidentifiedsixfreshwaterecosystemgroupstobeassessed(Table 2.9).Ouranalysisevaluatedtheassociatedwetlandandriparianecosystemsseparately,sothat vulnerabilityresultsherearenotnecessarilytiedtotheassessmentspresentedabove. Table 2.9. Freshwater ecosystem targets. Freshwater Ecosystems Streams – high elevation (>6,500 ft) cold water Rivers Streams – mid elevation (<6,500 ft) cool and warmer water Lakes Cool to coldwater transitional stream areas Reservoirs Thevulnerabilityoffreshwaterecosystemstoclimatechangebymid‐centurywasevaluated throughacombinationofspatialandnarrativemethods.Theprimarymethodofspatialevaluation isbasedonamodelofprojectedchangeinwatertemperaturearoundacoldtocool‐waterfisheries transitionline. Transition line model STORETwatertemperaturedatawithinColoradoweredownloadedfromtheEPAwebsite.Sample datesrangedfrom1964to2013duringalltimesofyearandday.Thenumberofdatarecordsper stationrangesfrom1tonearly2,000.Julywasassumedtobethecriticalmonthduringwhichwater temperaturesreaching68°F(20°C)couldnegativelyimpactcoldwaterfishes.Fromthefulldataset (68,948records),7,373datapointsfrom1,413stationsweretakenduringthemonthofJuly, rangingover1964‐1984.Julysamplestationsarenotevenlydistributedacrossthestate,with relativelyfewacrosstheeasternplainsandneartheWyomingborder,andwithgenerallyclumped spacing(Figure2.10). MultipleJulydatarecordsforasinglestationwereaveraged.MeanJulywatertemperatureper stationrangedfrom33.8‐87.1°F(1‐30.6°C). A2‐power,cross‐validatedlocalpolynomialinterpolationwascalculatedonthemeanJulywater temperaturestoderivewatertemperaturecontourlinesacrossthestate.Temperaturevalueswere weightedbynumberofsamplerecordsperstation,togivehigherweighttothemorecertainvalues. Notsurprisingly,modelfitwaspoorinthoseareaswithfewdatapoints,butwasexcellenttogood inthoseareasmostlikelytorepresentthetemperaturetransitionline(Figure2.11),sowedeemed themodelacceptableforthecurrentpurpose. 150 Colorado Natural Heritage Program © 2015 Figure 2.10. STORET stations with July water temperature readings. Figure 2.11. Prediction Standard Error. Climate Change Vulnerability Assessment for Colorado BLM 151 AfilledcontourforJulywatertemperaturesbetween67‐69°F(19.5‐20.5°C)wasgeneratedfrom thelocalpolynomialinterpolationpredictionsurface(Figure2.12).Projectedfuturetemperatureis availableassurfaceairtemperature,andthereisnotaone‐to‐onerelationshipbetweenairand watertemperaturesoverColorado'scomplextopographical,elevational,andlatitudinalranges.To accountfornorth‐southandeast‐westgradientsintranslatingthewatertemperaturecontourtoair temperature,wedividedthestateintosixequalsections.Foreachoffoursections(thetwoeastern sectionswerenotusedduetolackofdata)wecalculatedthemeanandstandarddeviationofthe currentmeanJulyairtemperatureforeachwatertemperaturecontoursegmentwithinthesection (theSouth‐CentralsectionhastwoseparatecontourstodistinguishtheconditionswithintheSan LuisValley(Figure2.12). Figure 2.12. Interpolated water temperature 67 ‐ 69°F filled contour, split into North‐West, North‐Central, South‐ West, and South‐Central sections. Colors represent the mean July air temperature coinciding with each contour section. Eachfilledcontoursectionisnotasinglelinebutanarea.Airtemperaturesbelowthemeancanbe thoughtofasrepresentingthe"leading"edgeofthetransitionbetweencoldandcool‐water fisheries,whilevaluesabovethemeanwouldrepresentthe"trailing"edgeforthetransitionfrom cooltowarm‐waterfisheries.Ouranalysisfocusedonmeanvalues(Table2.10)asthebest representationoftheoveralltransitionarea. Foreachcontoursegmentshownabove(NW,NC,SW,SC,andtheSanLuisValley),wegenerateda contourofthecurrentJulyairtemperaturemeanvalue(tablecolumnshadedinblue).Thesefive sectionalcontourswerethenmanuallystitchedtogetherintoasinglecohesivetemperature 152 Colorado Natural Heritage Program © 2015 contourforthestate,representingthecurrentcoldtowarm‐waterfisheriestransitionline.The sameprocedurewasfollowedtocreateprojectedfuturetransitionlinesforRCP4.5andRCP8.5 (Figure2.13).ThevulnerabilityanalysiswasmadebycomparingthecurrentandRCP8.5lines,to maintainconsistencywiththeterrestrialecosystemevaluation.Notethat,becauseweareusingair temperatureasaproxyforwatertemperature,cold‐waterreleasesfromreservoirstoragearenot accountedforinthemodel. Table 2.10. Mean and standard deviation (STD) current July air temperature (°F) values for each contour segment within a section. Values in parentheses are °C. Section Mean STD SC, valley 63.4 (17.4) 2.78 (1.55) NW 66.7 (19.3) 3.61 (2.00) SC, east 68.6 (20.3) 4.76 (2.64) SW 69.6 (20.9) 3.49 (1.94) NC 69.8 (21.0) 3.13 (1.74) Themodeledtransitionlinewasusedtoassignstreamandriverreachestocold,transitional,or warmwatercategories.Transitionalreachesarethoselyingwithinapproximately0.5kmoneither sideofthetransitionline;exactdistancesaresomewhatvariabledependingonlocalstream morphologyandreachsegmentlength. Exposuretoclimatechangewasevaluatedbycomparingthetotalstreamlengthcurrentlyfallingin eachcategorywiththetotalsunderprojectedmid‐centuryconditions.Percentchangebetween categoriesissummarizedbyregion(Eastern,Mountain,Western),usingthesamedivisionsthat wereappliedtowetlandandriparianecosystems. Tofocusthevulnerabilityanalysisonthelossofcoldwaterandtransitionalreaches,weuseda decision‐treebasedoncurrentandprojectedstreamlengthsinthesecategoriestoassignexposure ranksforstreamsandrivers(Figure2.14).Vulnerabilityishighestinregionswherecurrently existingcoldwaterandtransitionalreachesareessentiallyentirelyeliminated.Inregionswhere currentpresenceofcoldortransitionalreachesisalreadyverylow,vulnerabilityismoderate,in thatlossesareminimal,butalreadywarmreachesareexposedtoadditionalwarminganddrying. Vulnerabilityisalsomoderateinareaswherelengthsofcoldandtransitionalreacheswilldecline substantially,butremainpresent.Areaswherecoldandtransitionalreachesremainpresentin substantiallengthshavecomparativelylowvulnerability. Climate Change Vulnerability Assessment for Colorado BLM 153 Figure 2.13. Modeled transition line. 154 Colorado Natural Heritage Program © 2015 Cold + Transitional reaches currently > 50km ? No Yes Moderate Cold + Transitional reaches in mid‐century > 50km? No Yes High Cold + Transitional reaches in mid‐century > 500km? No Yes Moderate Cold + Transitional reaches in mid‐century > 10,000km? No Yes Moderate Low Figure 2.14. Decision‐tree for exposure criteria applied to rivers and streams. LakesandreservoirsarepoorlydistinguishedinmostGISdata,andtherearefewnaturallakesin Coloradothathavenotbeenmodifiedtosomeextentforwaterstorage.Weconsideredanywater bodywithsurfaceareagreaterthanorequalto3km2areservoir,andsmallerwaterbodieswere classifiedaslakes.Bothlakesandreservoirsweredesignatedaseither“high”or“low”elevation, accordingtotheirpositioninrelationtothemodeledtransitionaltemperatureline.GISmetrics werecalculatedusingthesamesixdivisionsofthestateshowninFigure2.12,toaccountfornorth‐ southandeast‐westtemperaturedifferencesinherentinColorado.Exposurewascalculatedfor lakesandreservoirsusingmethodssimilarforthoseusedinevaluatingterrestrialecosystems (proportionofacreagewhereprojectedannualmeantemperatureformid‐centuryunderRCP8.5 wasgreaterthananyannualmeantemperaturescurrentlyexperiencedbythatecosystemwithin Colorado,ANDprojectedfutureprecipitationchangeswerelessthan5%increaseovercurrent levels,butwithoutadditionalmodifiers(Table2.11). Table 2.11. Criteria for scoring exposure of lakes and reservoirs freshwater ecosystems. Percent Colorado acres with projected temp > max & ppt delta < 5% Initial Exposure‐Sensitivity Score 36 – 100% 16 – 35% 0 – 15% High Moderate Low Resilience‐Adaptive Capacity Assessment – Freshwater Ecosystems Thisscoresummarizesindirecteffectsandnon‐climatestressorsthatmayinteractwithclimate changetoinfluencetheadaptivecapacityandresilienceofanecosystem.Factorsevaluatedare adaptedfromthemethodologyusedbyManometCenterforConservationScienceand MassachusettsDivisionofFishandWildlife(MCCSandMAFW2010),combinedunderfiveheadings (Table2.12).Factorswerescoredonascaleof0(lowresilience)to1(highresilience). Climate Change Vulnerability Assessment for Colorado BLM 155 Table 2.12. Description of factors used to assess resilience‐adaptive capacity in freshwater ecosystems. Assessment factor Description Restriction to specific hydro‐ geomorphic setting Fundamental geomorphic characteristics that define stream and wetland systems (elevation, slope, drainage area) do not change appreciably over decades. However, headwater streams are constrained by upper limits to watersheds, some larger streams or rivers are constrained at their lower limits by the presence of water bodies, including large reservoirs, and lakes or reservoirs are fixed in location. In addition, increasing temperature and accompanying changes in hydrology and water quality could result in the transition of one stream or river type to another. Vulnerability to change in snowmelt timing and magnitude, and/or decreasing baseflows The timing and magnitude of snowmelt runoff provide a key habitat component for some aquatic species. Earlier peak flows, reduced flows, changes in flood frequency or magnitude, and the overall shape of the hydrograph may change under projected climatic conditions. Effects could include shifts in spawning behavior, as well as loss or displacement of spawning beds and other important habitat structure. Lower base flows, and reduced groundwater discharge are possible under projected increased temperatures. These changes can reduce habitat area, as well as increasing habitat vulnerability to temperature and water quality stress. Finally, if overall water supplies decrease, anthropogenic efforts to divert and store water are likely to increase the level of hydrologic modification in these ecosystems. Vulnerability to increased impact by biological stressors This factor summarizes whether expected future biological stressors (invasive species, pests and pathogens) have had, or are likely to have, an increased effect due to interactions with changing climate. Climate change may result in more frequent or more severe outbreaks of these stressors. Ecosystems that are currently vulnerable to these stressors may become more so under climate change. Aquatic pathogens of concern include whirling disease, giardia, and cryptosporidium. Increased temperatures and the resulting hydrologic changes may make freshwater ecosystems more susceptible to invasion by non‐native species, including quagga mussel, New Zealand mudsnail, rusty crayfish, Eurasian millefoil, and others. Finally, native species (e.g., the alga Didymosphenia geminata) can proliferate as nuisance species under changing climatic conditions. Vulnerability to increased frequency or intensity of extreme events This factor evaluates characteristics of an ecosystem that make it relatively more vulnerable to extreme events (floods, drought, fire) that are projected to become more frequent and/or intense under climate change. Flooding and drought frequency may alter geomorphic processes, sedimentation, water quality, and the stability of small populations. An increase in large fires may change sediment loads and water quality. Other indirect effects of non‐ climate stressors This factor summarizes the overall condition of the ecosystem at the landscape level across Colorado, and is derived from a summary impact score indexing the degree of hydrological modification and anthropogenic disturbance (TNC 2012). 156 Colorado Natural Heritage Program © 2015 Restriction to specific hydro‐geomorphic setting Scoresof0=lowresilience,0.5=intermediateoruncertainresilience,and1=highresiliencewere assigned,basedonbestprofessionaljudgementfocusedontherelativevulnerabilityofeachtypein comparisonwithothertypes. Vulnerability to change in snowmelt timing and magnitude, and/or decreasing baseflows Scoresof0=lowresilience,0.5=intermediateoruncertainresilience,and1=highresiliencewere assigned,basedonbestprofessionaljudgementfocusedontherelativevulnerabilityofeachtypein comparisonwithothertypes. Vulnerability to increased impact by biological stressors Foreachbiologicalstressor(invasivespeciesandpathogens‐pests)towhichanecosystemis believedvulnerable,0.5wassubtractedfromadefaultscoreof1,toproducethefinalecosystem score. Vulnerability to increased frequency or intensity of extreme events Foreachnon‐biologicalstressor(drought,flooding,andfire)towhichanecosystemisbelieved vulnerable,0.33wassubtractedfromadefaultscoreof1,toproducethefinalecosystemscore. Other indirect effects of non‐climate stressors Resiliencetoclimatechangewasevaluatedusingthemeasuresofaquaticresourcecondition databaseforColoradodevelopedbyTheNatureConservancy(2012).Thedatabaseincludesa metricthatsummarizesconditionfactorsunderfiveprimaryheadingsasshowninTable2.13for eachstreamreach.Thesummarymeasurerangesfrom1(verygoodcondition,littleornoimpact) to4(poorcondition,heavilyimpacted).Wereportthelength‐weightedaverageofthesummary metricbystreamorrivercategorywithinthesamethreeregions(Eastern,Mountain,Western) describedabove. Table 2.13. Factors included in TNC freshwater measures of condition database. Natural Flow Regime Riparian Condition Development Connectivity Water Quality Consumptive Use (Agricultural Use, Municipal Use, Transbasin Diversions) Reservoir Storage Riparian Land Use Non‐native Plants – Tamarisk – in the Riparian Vegetation Instream Barriers to Fish Movement Streams with a 303d and/or Monitoring and Evaluation Designation Land Use Road Density Road Crossings Oil and Gas Mining Vulnerability Assessment Ranking Overall Vulnerability Ranking TheExposure‐SensitivityscoreandtheResilience‐AdaptiveCapacityscorearecombinedinthe samewayasforterrestrialecosystems(Figure2.2)toproduceanoverallvulnerabilityrankfor eachfreshwaterecosystem. Climate Change Vulnerability Assessment for Colorado BLM 157 FRESHWATER ECOSYSTEMS ‐ RESULTS Table 2.14. Key vulnerabilities, freshwater ecosystems. Habitat Climate factor(s) Consequences Other considerations Streams ‐ west Warming water temps Loss of cool‐water reaches Connectivity; altered hydrology due to diversions Streams ‐ mtn. Timing and amount of snowmelt/runoff Altered hydrographs Connectivity (including transbasin diversion), potential for increased wildfire disturbance Streams ‐ east Warmer and drier conditions Loss of perennial reaches Connectivity; altered hydrology due to diversions Rivers ‐ west Warming water temps Loss of cool‐water reaches, low summer flows Connectivity (including transbasin diversion), potential for increased wildfire disturbance Rivers ‐ mtn. Timing and amount of runoff Altered hydrographs Connectivity (including transbasin diversion) Rivers ‐ east Timing and amount of runoff Altered hydrographs Connectivity; altered hydrology due to dams and diversions Lakes, high Warmer and drier conditions Reduced water quality Nitrogen deposition Lakes, low Warmer and drier conditions Low water levels Municipal & agricultural supply pressure Reservoirs, high Timing and amount of snowmelt/runoff Earlier high water levels Flood control releases, reduced later storage Reservoirs, low Warmer and drier conditions Low water levels Municipal & agricultural supply pressure 158 Colorado Natural Heritage Program © 2015 STREAMS, RIVERS, LAKES, AND RESERVOIRS FreshwaterecosystemsinColoradoincludebothcold‐andwarm‐waterstreamsandrivers,aswell astransitionalcool‐waterstreamandriverreaches.Lakesandreservoirsarealsoincludedinour analysis. CNHP photos Climate Vulnerability Ranks: Threeofthe10regionalecosystemsubtypesassessedhaveanoverallvulnerabilityrankofHigh, andtwoarerankedVeryHigh(Table2.15).Theprimaryfactorcontributingtothehighexposure rankingsforriversistheessentiallycompletelossofcurrentcoldandtransitionalreaches.Lakes andreservoirsatallelevationsareprojectedtoexperiencetemperaturesoutsidethecurrentrange, aswellaseffectivelydrierconditions.Mostecosystemsubtypeswereassessedashavingmoderate resilience,withonlymountainstreamshavinghighresilienceandlowoverallvulnerabilitybymid‐ century. Climate Change Vulnerability Assessment for Colorado BLM 159 Table 2.15. Vulnerability rank summary for all assessed freshwater ecosystems. Freshwater Ecosystem Target Streams West Exposure ‐ Resilience ‐ Combined Sensitivity final Adaptive capacity ranks ranking final ranking Overall vulnerability rank Moderate Moderate M/M Moderate Low High L/H Low Moderate Moderate M/M Moderate High Moderate H/M High Moderate Moderate M/M Moderate High Moderate H/M High Lakes ‐ high High High H/M Moderate Lakes ‐ low High Low H/L Very High Reservoirs ‐ high Moderate Moderate M/M Moderate Reservoirs ‐ low High Low H/L Very High Streams Mountain Streams East Rivers West Rivers Mountain Rivers East Vulnerability summary Key vulnerabilities: Rivers and Streams Warming water temperatures are expected to lead to loss of cool‐water reaches in both rivers and streams in western Colorado, and to lower summer flows. Warmer temperatures will generally result in earlier snowmelt and runoff for mountain streams and rivers. In eastern Colorado, warmer and drier conditions are likely to reduce the extent of perennial stream reaches, and alter the hydrographs of large rivers that depend on snowmelt. Nearly all river and stream habitats are already impacted by dams and diversions that have degraded the connectivity and hydrology of the ecosystem. Lakes and Reservoirs Warmer and drier conditions for lower elevation lakes and reservoirs are likely to result in generally lower water levels under pressure from municipal and agricultural consumers. High elevation lakes may see reduced water quality as temperatures warm; some areas are already affected by nitrogen deposition. Changes in timing and amount of snowmelt runoff may change storage patterns in higher elevation reservoirs; early flood control releases may lead to reduced late‐season water levels. Smallerloticecosystems(streams)havegenerallylowervulnerability,especiallyathigher elevationswherecoldwaterreachesarelikelytoremainviable.Theprimaryfactorcontributingto highorveryhighvulnerabilityranksforfreshwaterecosystemsistheprojectedchangeinthe transitionzonebetweenwarmandcoldwaterareas.Mostfreshwaterecosystemswererankedas moderatelyresilient,indicatingthattherearelikelytobemanagementopportunitiestomitigate someeffectsofexposuretowarmerconditions. 160 Colorado Natural Heritage Program © 2015 Distribution FreshwaterecosystemsinColoradoarefoundthroughoutthestate,althoughperennialstreamsand lakesaremorecommonathigherelevations.WiththeexceptionoftheGreenRiver,whichcrosses thenorthwesterncornerofthestate,allofColorado’smajorriversoriginatewithinthestateand flowawayfromthecontinentaldivide.Totheeastofthedivide,streamsandriversdraintoward theGulfofMexico.Onthewesternslope,flowingwatersaretributarytotheColoradoRiver, drainingtowardthePacificOcean.ConditionsinColoradowatershedsaffectmanydownstream users,bothwithinthestate’sbordersandbeyond.WaterdistributioninColoradohasevolveda complexsystemofdiversions,irrigationwells,andwaterstoragefacilitiesthathavealteredthe originalhydrologicregimeofmanyareas. Environment Freshwaterecosystemsasevaluatedinthisassessmentareallpartofaninterconnectedhydrologic networkthatincludesbothsurfaceandgroundwater.Forthepurposesofourassessment,we dividethesurfacewatersofthisnetworkintoseveralbroadtypesbysize,flowpatterns,and location.Flowingwatersofstreamorder5through7(thelargestinColorado)arediscussedherein as“rivers”,whileflowingwatersoflowerorderaretermed“streams.”Underthisgrouping,rivers includethelargerperennialstreamreaches,togetherwiththeirmajortributaries,thatdrain watershedsontheorder10,000+squaremilesinextent.Streamsincludeallothersmallerreaches bothperennialandintermittent,fromheadwaterstotheirjunctionwithrivers,ifany. Lakesandreservoirsarealsopartofthehydrologicnetwork,buthavegenerallymuchslower current,suchthattheygenerallyappearasstandingbodiesofwater,andmaybeisolatedfrom perennialsurfaceflow.Becausemanylakeshavebeenmodifiedtosomeextenttoregulatewater flow,wegroupedlargerimpoundments(greaterthanorequalto3km2inarea)togetheras reservoirs,andsmallerwaterbodies(lessthan3km2inarea)aslakes,regardlessofmodification. Finally,weassessedfreshwaterhabitatsaccordingtoelevationandregionallocationwithinthe state. Dynamics BaronandPoff(2004)identifiedfivedynamicfactorsthatshapethestructureandfunctionof freshwaterecosystems:theflowpatternofwaterthroughthesystem,inputsofsedimentand organicmatter,nutrientandchemicalconditions,temperatureandlightlevels,andplantand animalassemblages. Flowpatternsdescribethewaywaterpassesintoandoutofstreams,rivers,lakesandassociated wetlands.Importantcharacteristicsincludebaseflowlevels,theperiodicityandmagnitudeofboth annualorfrequentfloodsandrareandextremefloodevents,seasonalityofflows,andannual variability(BaronandPoff2004).Patternsofwaterflowandtheirinteractionwithlocallandforms andsubstratesatavarietyofscalesaretheprimarydeterminantofphysicalhabitatforriver organisms.Aquaticorganismsevolvedwithandareadaptedtothecharacteristicnaturalflow regimeoftheirhabitat;changesinflowregimecancauseseriousdisruptiontothereproduction andsurvivalofmanyaquaticspecies,leadingtoaneventuallossofbiodiversity(Bunnand Arthington2002).Reducedconnectivityinaquatichabitats,bothin‐streamandbetweentheriver Climate Change Vulnerability Assessment for Colorado BLM 161 channelandassociatedfloodplainhabitats,reduceshabitatavailabilityanddiversity,with consequentnegativeeffectsonthepopulationviabilityofaquaticspecies.Alteredflowregimes,and transbasindiversionscanfacilitatetheinvasionandestablishmentofexoticspecies(Bunnand Arthington2002).Finally,riverinesystemsacttointegrateandcollecttheeffectsofdisturbances withinthecatchment,includingthoseduetoflowmodification(Naimanetal.2002). Sedimentandorganicmatterinputstofreshwaterecosystemsmayincludebothnaturaland anthropogenicsources.Thearrivalofnaturalorganicmatter(e.g.,plantmaterial)fromadjacent uplandareasisaregularseasonaloccurrence,andsedimentmovementsoccurnaturallywith seasonalandinterannualvariationinwaterflow.Manyplantandanimalspeciesofthesehabitats arecloselyadaptedtospecificsedimentandorganicmatterconditions,andareeasilyeliminatedby changesintheenvironment(BaronandPoff2004).Anthropogenicdisturbancessuchas agriculture,logging,roadconstruction,dams,anddiversionshavehighlymodifiedthenatural sedimentandorganicinputoffreshwaterecosystems.Unmodifiedstreamsdisplayamosaicof habitatscreatedbyflowandsedimentationpatterns.Extensiveremovalofbeaverthroughout Coloradointhefirsthalfofthe19thcenturyprobablyhadaconsiderableeffectonchannel structure,diversity,andstability,aswellassedimentlevelsinmountainstreams(Wohl2006). Placerminingwasanevenstrongeragentofhydrologicmodificationinmanyareas.Diversion damstendtoshifthabitattowardslowerflowandincreasedfinesedimentation(Bakeretal.2011). Thelegacyofthesehistoricanthropogenicdisturbancesisreducedhabitatsuitabilityfornative species. Naturalnutrientandchemicalconditionsinfreshwaterecosystemsarelargelydeterminedby climate,bedrock,soil,vegetation,andtopographyinthevicinity,andareconsequentlyhighly variablebylocale(BaronandPoff2004).Humanactivitiescanaddnutrients(eutrophication),ora varietyofman‐madechemicals(herbicides,pesticides,pharmaceuticals,etc.)thatchangethe speciescompositionandqualityofthesehabitats(Carpenter1998). Watertemperatureiskeyindeterminingoxygenconcentrationandthelifeprocessesofaquatic organisms.Patternsoftemperatureandsolarenergyabsorptiondifferbetweenmovingandstill waters.Thereleaseofcoldwaterfromreservoirstorageinterruptsthenaturaltemperature patternsimmediatelydownstream. Changingclimateconditionscanaffectallthesefactors,butdirectlyactthroughtemperatureand flow. Characteristic species Thecompletebioticcommunityofanaquaticecosystemincludesplantsandalgae,aswellas invertebrateandvertebrateanimals.Environmentalconditionsanddynamicsinpartdeterminethe plantandanimalassemblagesthatwillbeassociatedwithaparticularfreshwaterecosystem.In turn,thebiotaareactiveparticipantsinecologicalprocesses.Acompletedescriptionofspecies characteristicofColorado’sfreshwaterecosystemsisbeyondthescopeofthisassessment,but commonandimportantmacroinvertebratesincludecrustaceansandspeciesofEphemeroptera, Plecoptera,Trichoptera,andOdonata,amongothers. 162 Colorado Natural Heritage Program © 2015 FishofColorado’sfreshwaterecosystemsincludebothnativeandintroducedspecies.Fishspecies showninTable2.16arerepresentativeofsomeofthefreshwaterecosystemsevaluated. Vulnerabilityresultsfromspecies‐specificClimateChangeVulnerabilityIndexanalysis(seeChapter 3)areshown,ifavailable. Table 2.16. Representative fish species for freshwater ecosystems. Warm Water Representative fish species CCVI rank Rivers Streams Rivers Streams Lakes ‐ high Streams Transitional Rivers Cold Water Colorado River Cutthroat Extremely vulnerable X X X X X Greenback Cutthroat X X X X X Rio Grande Cutthroat Extremely vulnerable X X X X X Mottled sculpin X X X X Speckled dace X X X X Brown trout X X Bluehead sucker Highly vulnerable X X X X Flannelmouth sucker Highly vulnerable X X X X Roundtail Chub Highly vulnerable X X X X Bonytail chub Extremely vulnerable X X Colorado pikeminnow Extremely vulnerable X X Humpback chub Extremely vulnerable X X Razorback sucker Highly vulnerable X X Climate Change Vulnerability Assessment for Colorado BLM 163 CCVA Scoring Exposure‐Sensitivity (Potential Impact) Ranks Ecosystem Method Score Streams West Decision tree Moderate Streams Mountain Decision tree Low Streams East Decision tree Moderate Rivers West Decision tree High Rivers Mountain Decision tree Moderate Rivers East Decision tree High Lakes – high elev. Avg. “out of range” High Lakes – low elev. Avg. “out of range” High Reservoirs – high elev. Avg. “out of range” Moderate Reservoirs – low elev. Avg. “out of range” High Underthescopeofouranalysis,thetotalstreamandriverlengthpresentinthestateisassumedto remainconstantbetweenthepresentandmid‐century.Theeffectsofwarmingtemperatureare measuredbycomparingtheproportionofstreamandriverreachesthatmovefromonecategoryto thenext.Undertheconstraintsofthetechnique,areachcanremaininthesamecategory,ormove toawarmercategory,butnevermovetoacoolercategory. Asexpected,bothstreamsandriversinthemountainregionarecurrentlydominatedbycoldwater reaches,andtherearelimitedcoldwaterreachespresentinboththeeasternandwesternregions (Figure2.15,Table2.17).Cooltocoldwatertransitionreachesarecurrentlymostcommonin westernriversandstreams.Botheasternandwesternriversandstreamscurrentlyhavea significantproportionofwarmwaterreaches. StatewidepatternsoftransitionareshowninFigure2.16.Anoverallretreatofcoldwater conditionstohigherelevationsisevident.Majorriversonboththeeastandwestslopeare projectedtoseewarmerwatertemperaturesfarupstream.Thiseffectisparticularlyevidentonthe westernrivers. Underprojectedwarmingwatertemperaturesatmid‐century,forallregionstheproportionof warmwaterreachlengthincreases.Transitionalareasgenerallymoveupinelevation,andbecome concentratedinthemountainregion.Withoutaccountingforwatertemperaturesmaintainedby storagerelease,coldwaterreachesessentiallydisappearfromthelowerelevationsofbotheastern andwesternColorado. 164 Colorado Natural Heritage Program © 2015 Exposureto“outofrange”conditionsforlakesandreservoirswaslowestforhighelevation reservoirs.Bothlowandhighelevationlakeswereinthemoderatelyvulnerablecategory,although higherelevationlakeshadslightlylessexposure.Lowelevationreservoirshadhighestexposure underprojectedmid‐centuryclimateconditions. Figure 2.15. Category transitions between current and projected (RCP 8.5) conditions for streams and rivers. Climate Change Vulnerability Assessment for Colorado BLM 165 Table 2.17. Reach length statistics (km) for water temperature categories both statewide and by region. Cold Water Transitional Warm Water Statewide: Rivers Streams Rivers Streams Rivers Streams Current 1,394 64,728 395 12,342 4,480 63,386 % Total 1% 44% 0% 8% 3% 43% RCP 8.5 560 36,882 117 14,227 5,591 89,348 % Total 0.4% 25% 0.1% 10% 4% 61% % change from Current ‐60% ‐43% ‐70% 15% 25% 41% By Region: West Slope Current 58 0.2% 0 0% ‐100% % Total RCP 8.5 % Total % change from Current Southern Rocky Mountains Current % Total RCP 8.5 % Total % change from Current Eastern Plains Current % Total RCP 8.5 % Total % change from Current 3,044 11% 20 0.07% ‐99% 1,321 2% 560 1% ‐58% 59,640 84% 36,862 52% ‐38% 15 0.03% 0 0% ‐100% 2,044 4% 0 0% ‐100% 129 0.5% 0 0% ‐100% 245 0% 117 0.2% ‐52% 14 0.03% 0 0% ‐100% 4,564 16% 362 1% ‐92% 1,408 5% 1,596 6% 13% 5,640 8% 13,663 19% 142% 18,515 67% 25,741 93% 39% 569 1% 1,456 2% 156% 3,547 5% 18,303 26% 416% 2,138 4% 201 0.4% ‐91% 2,510 5% 2,539 5% 1% 41,324 86% 45,304 94% 10% 166 Colorado Natural Heritage Program © 2015 Figure 2.16. Comparison of current (top) and projected (bottom) stream temperature classification. Climate Change Vulnerability Assessment for Colorado BLM 167 Resilience and Adaptive Capacity Ranks Ecosystem Score Rank Streams West 0.54 Moderate Streams Mountain 0.71 High Streams East 0.61 Moderate Rivers West 0.49 Moderate Rivers Mountain 0.58 Moderate Rivers East 0.66 Moderate Lakes ‐ high 0.68 High Lakes ‐ low 0.39 Low Reservoirs ‐ high 0.59 Moderate Reservoirs ‐ low 0.27 Low Restriction to specific hydro‐geomorphic setting Highelevationlakesarescoredasmostrestrictedbytheirlocation.Otherwaterbodiesarescored asintermediateinlocationrestriction,asarehigherelevationstreamsandrivers.Lowerelevation streamsandriversarepresumedtobeunrestricted. Score Ecosystem Streams West 1 Streams Mountain 0.5 Streams East 1 Rivers West 1 Rivers Mountain 0.5 Rivers East 1 Lakes – high elev. 0 Lakes – low elev. 0.5 Reservoirs – high elev. 0.5 Reservoirs – low elev. 0.5 168 Colorado Natural Heritage Program © 2015 Vulnerability to change in snowmelt timing and magnitude, and/or decreasing baseflows Streams,lakes,andreservoirsofhighelevationsarescoredasleastvulnerabletochangesin snowmelttimingandmagnitude,andwithlessvulnerabilitytodecreasingbaseflows,underthe assumptionthathigherelevationsarelesslikelytoseeeffectivelydrierconditionsbymid‐century. Streams,rivers,andlakesoflowerelevationsarescoredashavingintermediatevulnerabilityfor thesefactors,basedontheassumptionthattheeffectsofincreasingtemperaturesandeffectively drierconditionswilltendtoaccumulateinthesedownstreamreaches.Lowelevationreservoirsare assumedtobemostvulnerable. Score Ecosystem Streams West 0.5 Streams Mountain 1 Streams East 0.5 Rivers West 0.5 Rivers Mountain 0.5 Rivers East 1 Lakes – high elev. 1 Lakes – low elev. 0.5 Reservoirs – high elev. 1 Reservoirs – low elev. 0 Vulnerability to increased impact by biological stressors Ingeneral,freshwaterhabitatsofthehighestelevationsarescoredasnotvulnerabletoincreased impactbypathogensorinvasives,duetocomparativelycoolertemperaturesintheseareas,andthe currentlowlevelsofsuchstressors.Lowelevationecosystemsarescoredasmorevulnerableto invasivespeciesandpathogens,duetothewarmertemperatures,andthefactthatsomeinvasives andpathogensarealreadypresentinthesehabitats. Ecosystem Streams West Streams Mountain Streams East Score Factors 0.5 Pathogens 1 ‐‐‐ 0.5 Invasives Rivers West 0 Pathogens & Invasives Rivers Mountain 1 ‐‐‐ Rivers East 0.5 Invasives Lakes – high elev. 1 Lakes – low elev. 0 ‐‐‐ Pathogens & Invasives Climate Change Vulnerability Assessment for Colorado BLM 169 Score Factors Reservoirs – high elev. 0.5 Invasives Reservoirs – low elev. 0 Pathogens & Invasives Ecosystem Vulnerability to increased frequency or intensity of extreme events Increasingfrequencyandseverityofdroughtistheprimaryfactorthatislikelytoincrease vulnerabilityoffreshwaterecosystems.Streamsinwesternandmountainareasarescoredasbeing vulnerabletoincreasedsedimentationfollowingapotentialincreaseinfirefrequency.Mountain riversarescoredasvulnerabletoapotentialincreaseinextremeprecipitationevents.High elevationlakesarenotthoughttobevulnerableinthiscategory. Score Factors Streams West 0.33 Drought, fire Streams Mountain 0.67 Fire Streams East 0.67 Drought Ecosystem Rivers West 0.67 Drought Rivers Mountain 0.67 Flooding Rivers East 0.67 Drought Lakes – high elev. 1 ‐‐‐ Lakes – low elev. 0.67 Drought Reservoirs – high elev. 0.67 Drought Reservoirs – low elev. 0.67 Drought Other indirect effects of non‐climate stressors Thelength‐weightedmeanscorebyregionforthesummaryconditionfactor(TNC2012)was convertedtoaproportionofpotentialbestscore(4)usingtheformula:1–((regionmean‐1)/3).A lowermeanbeforescoreconversionindicatesbettercondition,andhigherresilience.Ingeneral, higherelevationareasareinbettercondition. Ecosystem Mean Score Streams West 2.57 0.48 Streams Mountain 2.45 2.57 0.52 0.48 Rivers West 2.94 0.35 Rivers Mountain 3.08 0.31 3.53 0.16 2.34 0.55 2.80 0.40 Streams East Rivers East Lakes – high elev. Lakes – low elev. 170 Colorado Natural Heritage Program © 2015 Ecosystem Mean Score Reservoirs – high elev. 2.94 0.35 Reservoirs – low elev. 3.25 0.25 Conclusions Allfreshwaterecosystemsareexpectedtobeaffectedtosomeextentbyclimatechange.Aswater temperatureschange,somewarm‐waterhabitattypesmayexpandattheexpenseofcool‐orcold‐ watertypes.Nearlyallevaluatedfreshwatertypeswererankedwithmoderatetoveryhigh vulnerabilityinouranalysis,withreasonablecertaintythatthesehabitatswillbeimpactedby climatechange.Althoughwedidnotincorporatefreshwaterfishspecies‐specificscoringintoour vulnerabilityanalysis,thoseresults(Chapter3)tendtosupportthegenerallyhighervulnerability levelsforfreshwaterecosystems.Uncertaintyintheevaluationisduetouncertaintyinclimate projections,thescopeofcurrentknowledge,andongoingmanagementactions. Thereisevidencefrommonitoringrecordsthatwarmerairtemperatureshavealreadyaffected watertemperaturesandhydrographsinmountainstreams(Isaaketal.2012).Bymid‐century, underbothmoderateandhighradiativeforcingscenarios(RCP4.5andRCP8.5),wecanexpectto seeevenwarmertemperaturesstatewide,especiallyontheeasternplains.Warmerair temperaturesareexpectedtoleadtowarmerwatertemperatures,earliersnowmelt,lossof permanenticefields,andpossiblydrierconditions.Evenifprecipitationlevelsathigherelevations areessentiallyunchanged,warmerconditionswillleadtomoreprecipitationfallingasraininstead ofsnow,adecreasedsnowpack,earlierrunoff,andearlierdryconditionsinlatesummer(Lucaset al.2014).Allofthesefactorsarelikelytointeractwithstressesarisingfromalteredhydrology (dams,diversions,etc.),andsocio‐economicdemandsforcontinuedwateravailabilityatpreviously establishedlevels. ThehighlymanagednatureofwaterresourcesinColoradotosomeextentconfoundsour preliminaryevaluationofvulnerabilitytoclimatechangefortheseecosystems.Waterstorageand releasepatternsdonotalwaysmimicconditionsthatwouldbefoundonanunmanipulatedreach, andthismaybenefitsomespecieswhileharmingothers.Furthermore,theimpactsofwarming temperaturesandpotentiallychangingprecipitationpatternsonfreshwaterecosystemscanbe enhancedbyfragmentationormitigatedbyincreasedconnectivityintheseinterconnected networksofhabitats.Formostspecies,intactconnectivitywithinthehydrologicnetworkwillbe crucialforadaptationtochangingconditions;however,speciesassemblagesarelikelytochangeas lessmobilecommunitymembersareeliminated.Enhancingconnectivitywithconcomitant reductioninanthropogenicstressesislikelytobethemostproductiveapproachforconserving freshwaterecosystemsunderfutureclimaticconditions(Khamisetal.2014). Strategiesformeetingthechallengesoffutureconditionsareperhapsmostcomplexandyetmost urgentforfreshwaterecosystems.Althoughdaunting,earlieractionislikelytoallowincreased opportunityforfutureadaptivemanagementthandelayorinaction. Climate Change Vulnerability Assessment for Colorado BLM 171 Literature Cited Baker,D.W.,B.P.Bledsoe,C.M.Albano,andN.L.Poff.2011.Downstreameffectsofdiversiondamsonsedimentand hydraulicconditionsofRockyMountainStreams.RiverResearchandApplications27:388‐401. Baron,J.S.andN.L.Poff.2004.Sustaininghealthyfreshwaterecosystems.UniversitiesCouncilonWaterResources,Water ResourcesUpdate127:52‐58. Bunn,S.E.andA.H.Arthington.2002.Basicprinciplesandecologicalconsequencesofalteredflowregimesforaquatic biodiversity.EnvironmentalManagement30:492‐507. Carpenter,S.R.,N.F.Caraco,D.L.Correll,R.W.Howarth,A.N.Sharpley,andV.H.Smith.1998.Nonpointpollutionofsurface waterswithphosphorusandnitrogen.EcologicalApplications8:559‐568. Isaak,D.J.,C.C.Huhlfeld,A.S.Todd.R.Al‐Chokhachy,J.Roberts,J.L.Kershner,K.D.Fausch,andS.W.Hostetler.2012.The pastaspreludetothefutureforunderstanding21st‐centuryclimateeffectsonRockyMountaintrout.Fisheries37:542‐ 556. Khamis,K.,D.M.Hannah,M.HillClarvis,L.E.Brown,E.Castella,andA.M.Milner.Alpineaquaticecosystemconservation policyinachangingclimate.EnvironmentalScience&Policy43:39‐55. Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard. WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado Boulder. Naiman,R.J.,S.E.Bunn,C.Nilsson,G.E.Petts,G.Pinay,L.C.Thompson.2002.Legitimizingfluvialecosystemsasusersof water:anoverview.EnvironmentalManagement30:455‐467 TheNatureConservancy[TNC].2012.FreshwatermeasuresofconditionforColorado.Geodatabase. Wohl,E.2006.Humanimpactstomountainstreams.Geomorphology79:217‐248. 172 Colorado Natural Heritage Program © 2015 3 ANIMALS Authors: Jeremy Siemers Bernadette Kuhn Brad Lambert Robert Schorr John Sovell Recommended chapter citation: Siemers, J., B. Kuhn, B. Lambert, R. Schorr, and J. Sovell 2015. Animals. Chapter 3 In Colorado Natural Heritage Program 2015. Climate Change Vulnerability Assessment for Colorado Bureau of Land Management. K. Decker, L. Grunau, J. Handwerk, and J. Siemers, editors. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Climate Change Vulnerability Assessment for Colorado BLM 173 Table of Contents – 3 Animals Methods .................................................................................................................................................... 176 Results ....................................................................................................................................................... 180 Animal Species CCVA Summaries ............................................................................................................. 182 Boreal toad ................................................................................................................................................ 183 Canyon Treefrog........................................................................................................................................ 187 Great Basin Spadefoot .............................................................................................................................. 191 Northern Leopard Frog ............................................................................................................................. 195 American Peregrine Falcon ....................................................................................................................... 199 Black Swift ................................................................................................................................................. 203 Brewer’s Sparrow ...................................................................................................................................... 206 Burrowing Owl .......................................................................................................................................... 210 Golden Eagle ............................................................................................................................................. 214 Greater sage‐grouse ................................................................................................................................. 218 Gunnison sage‐grouse............................................................................................................................... 222 Long‐Billed Curlew .................................................................................................................................... 226 Mountain Plover ....................................................................................................................................... 230 Northern Goshawk .................................................................................................................................... 235 Western Snowy Plover .............................................................................................................................. 239 Western Yellow‐billed Cuckoo .................................................................................................................. 243 White‐faced Ibis ........................................................................................................................................ 247 Bluehead Sucker ....................................................................................................................................... 251 Bonytail Chub ............................................................................................................................................ 256 Colorado pikeminnow ............................................................................................................................... 260 Colorado River Cutthroat Trout ................................................................................................................ 265 Flannelmouth Sucker ................................................................................................................................ 270 Humpback Chub ........................................................................................................................................ 274 Razorback Sucker ...................................................................................................................................... 278 Rio Grande Cutthroat Trout ...................................................................................................................... 282 Roundtail Chub ......................................................................................................................................... 286 Great Basin Silverspot ............................................................................................................................... 290 American beaver ....................................................................................................................................... 294 Desert Bighorn Sheep ............................................................................................................................... 297 174 Colorado Natural Heritage Program © 2015 Fringed Myotis .......................................................................................................................................... 301 Gunnison Prairie Dog ................................................................................................................................ 304 Townsend’s big‐eared bat ......................................................................................................................... 308 White‐tailed prairie dog ............................................................................................................................ 311 Desert spiny lizard ..................................................................................................................................... 314 Longnose leopard lizard ............................................................................................................................ 318 Midget faded rattlesnake ......................................................................................................................... 321 List of Figures and Tables Figure 3.1. Summary of climate change vulnerability scores for animal species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. ........................................................................................................................................................ 181 Table 3.1. Climate change vulnerability scores for animal species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. ............... 180 Climate Change Vulnerability Assessment for Colorado BLM 175 METHODS NatureServe Climate Change Vulnerability Index Overview Thisoverviewhasbeensynthesizedandreprinted,withpermission,fromYoungetal.(2011).The ClimateChangeVulnerabilityIndex(CCVI),developedbyNatureServe,isaMicrosoftExcel‐based toolthatfacilitatesrapidassessmentofthevulnerabilityofplantandanimalspeciestoclimate changewithinadefinedgeographicarea.Inaccordancewithwell‐establishedpractices(Schneider etal.2007,Williamsetal.2008),theCCVIdividesvulnerabilityintotwocomponents: exposuretoclimatechangewithintheassessmentarea(e.g.,ahighlysensitivespecieswill notsufferiftheclimatewhereitoccursremainsstable). sensitivityofthespeciestoclimatechange(e.g.,anadaptablespecieswillnotdeclineeven inthefaceofsignificantchangesintemperatureand/orprecipitation). Exposuretoclimatechangeismeasuredbyexaminingthemagnitudeofpredictedtemperatureand moisturechangeacrossthespecies’distributionwithinthestudyarea.CCVIguidelinessuggest usingthedownscaleddatafromClimateWizard(http://climatewizard.org)forpredictedchangein temperature.ProjectionsforchangesinprecipitationareavailableinClimateWizard,but precipitationestimatesaloneareoftenanunreliableindicatorofmoistureavailabilitybecause increasingtemperaturespromotehigherratesofevaporationandevapotranspiration.Moisture availability,ratherthanprecipitationperse,isacriticalresourceforplantsandanimalsand thereforeformstheotherpartoftheexposuremeasurewithintheCCVI,togetherwith temperature.Topredictchangesinmoistureavailability,NatureServeandpartnersdevelopedthe HamonAET:PETmoisturemetricaspartoftheCCVI.Themetricrepresentstheratioofactual evapotranspiration(i.e.,theamountofwaterlostfromasurfacethroughevaporationand transpirationbyplants)topotentialevapotranspiration(i.e.,thetotalamountofwaterthatcould beevaporatedundercurrentenvironmentalconditions,ifunlimitedwaterwasavailable).Negative valuesrepresentdryingconditions. Sensitivityisassessedusing20factorsdividedintotwocategories:1)indirectexposuretoclimate change;and2)speciesspecificfactors(includingdispersalability,temperatureandprecipitation sensitivity,physicalhabitatspecificity,interspecificinteractions,andgeneticfactors).Foreach factor,speciesarescoredonaslidingscalefromgreatlyincreasing,tohavingnoeffecton,to decreasingvulnerability.TheCCVIaccommodatesmorethanoneanswerperfactorinorderto addresspoordataorahighlevelofuncertaintyforthatfactor.Thescoringsystemintegratesall exposureandsensitivitymeasuresintoanoverallvulnerabilityscorethatindicatesrelative vulnerabilitycomparedtootherspeciesandtherelativeimportanceofthefactorscontributingto vulnerability. 176 Colorado Natural Heritage Program © 2015 TheIndextreatsexposuretoclimatechangeasamodifierofsensitivity.Iftheclimateinagiven assessmentareawillnotchangemuch,noneofthesensitivityfactorswillweighheavily,anda speciesislikelytoscoreattheNotVulnerableendoftherange.Alargechangeintemperatureor moistureavailabilitywillamplifytheeffectofanyrelatedsensitivity,andwillcontributetoascore reflectinghighervulnerabilitytoclimatechange.Inmostcases,changesintemperatureand moistureavailabilitywillcombinetomodifysensitivityfactors.However,forfactorssuchas sensitivitytotemperaturechange(factor2a)orprecipitation/moistureregime(2b),onlythe specifiedclimatedriverwillhaveamodifyingeffect. Thesixpossiblescoresare: ExtremelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessed extremelylikelytosubstantiallydecreaseordisappearby2050. HighlyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikelyto decreasesignificantlyby2050. ModeratelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikely todecreaseby2050. NotVulnerable/PresumedStable:Availableevidencedoesnotsuggestthatabundanceand/or rangeextentwithinthegeographicalareaassessedwillchange(increase/decrease)substantially by2050.Actualrangeboundariesmaychange. NotVulnerable/IncreaseLikely:Availableevidencesuggeststhatabundanceand/orrangeextent withingeographicalareaassessedislikelytoincreaseby2050. InsufficientEvidence:Availableinformationaboutaspecies'vulnerabilityisinadequateto calculateanIndexscore. Scoring Factors in the CCVI ThefactorsusedtogeneratetheCCVIscorearelistedinthefollowingsection.Detaileddefinitions ofscoringcategoriesarelistedinAppendixB. A. Exposure to Local Climate Change 1. 2. B. Temperature Moisture Indirect Exposure to Climate Change 1. 2. Exposuretosealevelrise.(NotapplicabletoColorado) Distributionrelativetonaturalandanthropogenicbarriers. Climate Change Vulnerability Assessment for Colorado BLM 177 3. C. Sensitivity 1. 2. 3. 4. 5. 6. D. Predictedimpactoflandusechangesresultingfromhumanresponsestoclimate change. Dispersalandmovements. Predictedsensitivitytotemperatureandmoisturechanges. a.Predictedsensitivitytochangesintemperature. b.Predictedsensitivitytochangesinprecipitation,hydrology,ormoisture regime. c.Dependenceonaspecificdisturbanceregimelikelytobeimpactedby climatechange. d.Dependenceonice,ice‐edge,orsnow‐coverhabitats. Restrictiontouncommongeologicalfeaturesorderivatives. Relianceoninterspecificinteractions. a.Dependenceonotherspeciestogeneratehabitat. b.Dietaryversatility(animalsonly). c.Pollinatorversatility(plantsonly). d.Dependenceonotherspeciesforpropaguledispersal. e.FormspartofaninterspecificinteractionnotcoveredbyC4a‐d. Geneticfactors. a.Measuredgeneticvariation. b.Occurrenceofbottlenecksinrecentevolutionaryhistory. Phenologicalresponsetochangingseasonaltemperatureandprecipitation dynamics. Documented or Modeled Response to Climate Change 1. 2. 3. 4. Documentedresponsetorecentclimatechange. Modeledfuturechangeinrangeorpopulationsize. Overlapofmodeledfuturerangewithcurrentrange. Occurrenceofprotectedareasinmodeledfuturedistribution. Factorsnotconsidered—TheIndexdevelopmentteamdidnotincludefactorsthatarealready consideredinconservationstatusassessments.Thesefactorsincludepopulationsize,rangesize, anddemographicfactors.ThegoalisfortheNatureServeClimateChangeVulnerabilityIndexto complementNatureServeConservationStatusRanksandnottopartiallyduplicatefactors.Ideally, Indexvaluesandstatusranksshouldbeusedinconcerttodetermineconservationpriorities. Application of Climate Data Scoringfactorsrelatedtohistoricandpredictedfutureclimate(temperature,precipitation,and moistureavailability,FactorsA1,A2,C2ai,andC2biintheCCVI)werecalculatedinGISusingthe 178 Colorado Natural Heritage Program © 2015 methodsdescribedbelow.Refertothespeciesprofilesinthefollowingsectionofthisreportfor detailsonscoringrationaleandreferencesforallotherfactors. Exposuretopredictedtemperatureincreasewascalculatedusingspeciesdistributiondataandan ensembleaverageof16CMIP3climatepredictionmodels(seeAppendixA)averagedoverthe summerseason(June–August)usingthehigh(A2)CO2emissionsscenario.Thehighemissions scenariowasusedbecauseitismostsimilartocurrentemissions.DatawereobtainedfromClimate Wizard,andtheanalysisperiodwastotheyear2050(whichisactuallyanaverageofprojections foryears2040–2069).Thesummerseason–growingseasonforplants,breedingseasonfor animals–wasusedbecauseitwasconsideredthemostcriticaltimeperiodformostspecies. Exposuretoprojecteddrying(integrationofprojectedtemperatureandprecipitationchange,i.e., theHamonAET:PETmoisturemetric)wascalculatedusingthedatasetcreatedbyNatureServeas partoftheCCVI.NotethatNatureServebasedtheirmoisturemetriccalculationsonthesame ClimateWizarddatasetasabove,exceptthattheyusedtheA1Bcarbondioxideemissionsscenario. BecausethemodelingmethodsusedbyNatureServewerenotavailable,wewereunableto recalculateusingtheA2scenario.Thus,weusedthedataasprovided,whichweconsidereda reasonablealternativesincetheA1BandA2scenariospredictsimilarchangesthroughthemid‐21st Century,theperiodusedinthisanalysis.Wecalculatedthepercentofeachspecies’range/ distributionthatfallswithineachratingcategory.Allcalculationsusedthe“summer”(June– August)datasubset. Thehistoricalthermalnichefactormeasureslarge‐scaletemperaturevariationthataspecieshas experiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanseasonal temperaturevariation(differencebetweenhighestmeanmonthlymaximumtemperatureand lowestmeanmonthlyminimumtemperature).Itisaproxyforspecies'temperaturetoleranceata broadscale.ThisfactorwascalculatedinGISbyassessingtherelationshipbetweenspecies’ distributionsandhistoricaltemperaturevariationdatadownloadedfromNatureServe.Historical temperaturevariationwasmeasuredasthemeanJulyhighminusthemeanJanuarylow,using PRISMdatafrom1951‐2006,expressedasasingleaveragedvaluefortheentirespeciesrange. Thehistoricalhydrologicalnichefactormeasureslarge‐scaleprecipitationvariationthataspecies hasexperiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanannual precipitationvariationacrossoccupiedcellswithintheassessmentarea.Ratingsforthisfactor werecalculatedinGISbyoverlayingthespecies’distributionsonmeanannualprecipitationdata (PRISM4kmannualaverageprecipitation,ininches,1951‐2006)downloadedfromClimateWizard, andsubtractingthelowestpixelvaluefromthehighestvalue. Representing Species’ Distributions Avarietyofsourceswereusedforanimalspecies,includingelementoccurrencerecordsand/or observationdatafromCNHP’sdatabases,onlinedistributiondatafromCPW,existingspecies distributionmodels,rangemapsfrompublishedliterature,andcriticalhabitatmaps. Climate Change Vulnerability Assessment for Colorado BLM 179 Thelistofanimalspeciesincludedinthisclimatechangevulnerabilityassessmentwasdeveloped throughconsultationwithBLMstaff,usingtheBLMSensitiveSpecieslistasastartingpoint.This listincludesallfederallylistedspecies.TheentireBLMsensitivelistwasbeyondthescopeofthe project,sospecieswereprioritizedaccordingtothelevelofpriorworkavailableandthe managementimportanceofthespecies.Afewwide‐rangingspeciesofparticularmanagement interestthatarenotontheBLMsensitivelistwereincluded. RESULTS CCVIresultsaresummarizedinTable3.1,andpresentedinfullinAppendixC.Animal species results are sorted alphabetically by common name within taxonomic group.Therationaleforscoringand literaturecitationsareincludedinthefollowingspeciesprofiles. Table 3.9. Climate change vulnerability scores for animal species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. Taxonomic Group English Name Species Amphibian Boreal Toad Anaxyrus boreas boreas HV Amphibian Canyon Treefrog Hyla arenicolor MV Amphibian Great Basin Spadefoot Spea intermontana PS Amphibian Northern Leopard Frog Lithobates pipiens MV Bird American Peregrine Falcon Falco peregrinus anatum PS Bird Black Swift Cypseloides niger PS Bird Brewer's Sparrow Spizella breweri PS Bird Burrowing Owl Athene cunicularia hypugaea MV Bird Golden Eagle Aquila chrysaetos MV Bird Greater sage‐grouse Centrocercus urophasianus HV Bird Gunnison Sage‐grouse Centrocercus minimus HV Bird Long‐billed Curlew Numenius americanus HV Bird Mountain Plover Charadrius montanus PS Bird Norhern Goshawk Accipiter gentilis MV Bird Western Snowy Plover Charadrius alexandrinus nivosus HV Bird Western Yellow‐billed Cuckoo Coccyzus americanus occidentalis MV Bird White‐faced Ibis Plegadis chihi MV Fish Bluehead Sucker Catostomus discolobus HV Fish Bonytail Chub Gila elegans EV Fish Colorado Pikeminnow Ptychocheilus lucius EV Fish Colorado River Cutthroat Trout Oncorhynchus clarkii pleuriticus EV Fish Flannelmouth Sucker Catostomus latipinnis HV Fish Humpback Chub Gila cypha EV Fish Razorback Sucker Xyrauchen texanus HV 180 Score Colorado Natural Heritage Program © 2015 Taxonomic Group English Name Species Score Fish Rio Grande Cutthroat Trout Onchorhynchus clarkii virginalis EV Fish Roundtail Chub Gila robusta HV Invert‐Insect Great Basin Silverspot Speyeria nokomis nokomis HV Mammal American Beaver Castor canadensis MV Mammal Desert Bighorn Sheep Ovis canadensis nelsoni MV Mammal Fringed Myotis Myotis thysanodes PS Mammal Gunnison's Prairie Dog Cynomys gunnisoni PS Mammal Townsend's Big‐eared Bat Corynorhinus townsendii PS Mammal White‐tailed Prairie Dog Cynomys leucurus PS Reptile Desert Spiny Lizard Sceloporus magister PS Reptile Longnose Leopard Lizard Gambelia wislizenii PS Reptile Midget Faded Rattlesnake Crotalus oreganus concolor HV Animalspeciesincludedfouramphibians,thirteenbirds,ninefish,oneinsect,sixmammals,and threereptiles.Fivespecieswererankedasextremelyvulnerabletoclimatechange.Fish,in particular,wererankedonthehightoextremelyvulnerableendoftherange(Figure3.1);other taxonomicgroupsweregenerallymoreevenlydistributedbetweenpresumedstabletohighly vulnerable.Noevaluatedspecieswereassessedaslikelytoincreaseunderfutureconditions. Figure 3.1. Summary of climate change vulnerability scores for animal species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. Climate Change Vulnerability Assessment for Colorado BLM 181 ANIMAL SPECIES CCVI SUMMARIES 182 Colorado Natural Heritage Program © 2015 Boreal toad Anaxyrusboreasboreas G4T1/S1 Family:Bufonidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedon:themajorityofborealtoadpopulationsinColorado beingborderedbyhighmountainsthatactasnaturalbarriers,whichcouldlimittheabilityofthis speciestoshiftitsrangeinresponsetoclimatechange;thephysiologicalnicheofthisspeciesbeing coolerhighelevationareaswheresnowfallandsummerevaporationcouldaffectseasonalwetland breedinghabitat;thedependenceofthisspeciesonspecifichydrologyforbreedingandthe potentialdisruptionofthetimingofbreedingandlarvaldevelopmentbyclimatechange.Additional importantrankingfactorsincludetheimportanceofsnowpacklevelsforbreedingpondwater levelsandasaninsulatorforhibernation.Borealtoadsarealsooftendependentonbeaversto createandmaintainbreedinghabitat. Distribution:BorealtoadswerefoundhistoricallythroughoutthemountainousareasofColorado, buthavenotbeenreportedfromtheSangreDeCristoMountainRange,WetMountains,orthePikes Peakregion(Hammerson1999).BorealToadsarealsoabsentfromtheLaPlataMountainsand UncompahgrePlateauinSouthwestColorado(CNHP2014).Habitat:Borealtoadsarerestrictedto montanehabitatsatelevationsof8,000–12,200feet(2,400–3,400meters).Commonhabitats includebeaverponds,wetmeadows,glacialkettlepondsandlakesinsubalpineforests (Hammerson1999).Breedingoccursalongthemarginsofshallowpondsinstillwater. Occasionally,floodedtireruts,man‐madepondsandstreambackflowsareusedaswellfor breeding(Loeffler2001). CCVI Scoring Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2), mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected Climate Change Vulnerability Assessment for Colorado BLM 183 tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange (NatureServe2012). Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent on17percentofitsrange,9.7to11.9percentdryingon49percentofitsrangeand7.4to9.6 percentdryingon32percentofitsrange(NatureServe2012). B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Mountainrangeswithhigh,>12,500ft. passesshouldbeconsideredasnaturalbarriersforborealtoadmovement(NatureServe2014).The majorityofborealtoadpopulationsinColoradoaremostlyborderedbyhighmountains. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic barriers(NatureServe2014).ThemajorityofborealtoadpopulationsoccuronUSFSmanagedland wheredevelopmentisverylow. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincreasetoneutral.Landalterationssuchas,timberharvest,grazing,recreationand waterdevelopmentwouldlikelynotbebeneficialforborealtoadhabitat,buthavenotbeenshown asprimarycausativeagentsfordeclinesinthesouthernRockyMountains(Loeffler2001).Landuse changesassociatedwithclimatechangemaybeconsideredathreatbutthescopeandtypeof changeintherangeoftheborealtoadishardtopredict. C1)Dispersalandmovements.Somewhatdecreasetoneutral.Borealtoadsaredependentupon breeding,foragingandhibernatinghabitat,whichencompassesbothwetlandanduplandhabitat (Adamsetal.2005).Theevidenceshowsseasonalvariabilityintoadmovementsandindividual movementsandindividualtoadsmaymove4kmormorebetweenbreedingandnonbreeding habitat(Hammerson1999;Jones2000)anduptoapproximately7.6kmforanadultmale(Lambert andSchneider2013). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean seasonaltemperaturevariationinthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.:Somewhatincrease. TherangeofthisspeciesinColoradoisrestrictedtocoolerhighelevationareas.Reducedsnowfall andincreasedsummerevaporationcouldhavedramaticeffectsonthedurationoroccurrenceof seasonalwetlands(Corn2005).Longeractiveseasonswerefoundtoincreaserecruitmentattwo breedingsitesinChaffeeCounty,Colorado(Lambertetal.InPrep),e.g.,increasedtemperatureswill allowforearlierdevelopmentofyoungwithlargermetamorphsenteringhibernationthus increasingoverwintersurvival. 184 Colorado Natural Heritage Program © 2015 C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.Thisspecieshasundergonegreaterthan average(>40inches/1,016mm)precipitationvariationoverthelast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Theborealtoadishighlydependentofspecific hydrologyforbreeding.Holland(2002)foundthatborealtoadtadpolesinColoradoexperienced thatgreatestlarvalgrowthratesatbreedingsiteswiththewarmestandleastvariablewater temperatures.Timingofbreedingandtimeforlarvaldevelopmentcouldalsobeimpactedby changesinhydrologicallevels(Corn2005). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Theborealtoadisnotdependentuponspecificdisturbanceregimessuchasfires,floods, severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Somewhatincrease.Borealtoad breedingpondsoftendependonsnowpackmelttomaintainwaterlevelsforbreeding.Depthof Snowpackcanbeimportantinprotectinghibernatingtoadsfromfreezing(Campbell1970;Corn 2003;Schereretal.2005). C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Borealtoadsarenot dependentonanyspecificgeologicfeature. C4a)Dependenceonotherspeciestogeneratehabitat.Increase.Borealtoadbreedingponds arecommonlyfoundinbeaverpondcomplexes(Hammerson1999;Holland2002)andareoften dependentonbeaverstomaintainbreedinghabitat. C4b)Dietaryversatility(animals).Neutral.Borealtoadsfeedonawidevarietyofinvertebrates (Hammerson1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Theborealtoadisaself‐ disperser. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheborealtoad. C5a)Measuredgeneticvariation.Somewhatdecrease.Switzeretal.(2009)foundpatternsof highlevelsofgeneticdifferentiationamongrelativelyclosebreedingsitesofborealtoadsandfound thepopulationswithinthesouthernRockyMountainstobeisolatedwithlimitedgeneflowamong populations. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence thatthetotalpopulationofborealtoadswerereducedto<1000individualsortheoccupiedarea wasreducedby>30%overthelast500years. Climate Change Vulnerability Assessment for Colorado BLM 185 C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein etal.2001). Literature Cited Adams,S.B.,D.S.Schmetterling,andM.K.Young.2005.Instreammovementsbyborealtoads.HerpetologicalReview 36(1):27‐33. Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate change.ConservationBiology15:1804‐1809. Campbell,J.B.1970.Life‐historyofBufoboreasboreasintheColoradoFrontRange.Ph.D.thesis,UniversityofColorado, Boulder,CO. Corn,P.S.2003.Amphibianbreedingandclimatechange:Importanceofsnowinthemountains.ConservationBiology 17(2):622‐625. Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO. Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado DivisionofWildlife. Holland,A.A.2002.EvaluatingBorealToad(Bufoboreas)BreedingHabitatSuitability.M.S.Thesis,ColoradoState University,FortCollins,CO. Jones,M.S.,J.P.Goettl,K.L.Scherff‐Norris,S.Brinkman,L.J.Livo,A.M.Goebel.1998.ColoradoDivisionofWildlifeBoreal ToadResearchProgressReport1995‐1997.UnpublishedreportColoradoDivisionofWildlife,Denver,CO. Lambert,B.andS.Schneider.2013.ColoradoNaturalHeritageProgramborealtoadsurveyandmonitoringproject summary1999‐2012.UnpublishedreporttotheColoradoDivisionofWildlife,FortCollins,CO. Loeffler,C.(ed.),2001.ConservationplanandagreementforthemanagementandrecoveryofthesouthernRocky Mountainpopulationoftheborealtoad(Bufoboreasboreas),BorealToadRecoveryTeam.76pp.+appendices. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Scherer,R.D.,E.Muths,B.R.Noon,andP.S.Corn.2005.Anevaluationofweatheranddiseaseascausesofdeclineintwo populationsofborealtoads.EcologicalApplications15(6):2150‐2160. Switzer,J.F.,R.Johnson,B.A.Lubinski,andT.L.King.2009.GeneticstructureintheAnaxyrusboreasspeciesgroup(Anura, Bufonidae):anevaluationoftheSouthernRockyMountainspopulation.FinalReportSubmittedtotheU.S.Fishand WildlifeService. 186 Colorado Natural Heritage Program © 2015 Canyon Treefrog Hylaarenicolor G5/S2 Family:Hylidae Photo:CopyrightbyLaurenJ.Livoand SteveWilcox Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedon:themajorityofcanyontreefrogpopulationsinColorado beingrestrictedtorockycanyonsandcanyon‐bottompoolsthatactasnaturalbarriers,whichcould limittheabilityofthisspeciestoshiftitsrangeinresponsetoclimatechange;Thecanyontreefrog ishighlydependentonspecifichydrology(rainfall)forbreedingandthepotentialdisruptionofthe timingofbreedingandlarvaldevelopmentbyclimatechangeisaconcern. Distribution:CanyontreefrogsoccurinwesternColoradoatelevationsrangingfromabout4,500‐ 6,300ft.alongthesouthernedgeoftheColoradoRivervalleyandalongtheDoloresRiverandits tributariessouthtoSanMiguelCounty,(Hammerson1999).ThereisanisolatedpopulationinLas AnimasCountyatMesadeMaya(CNHP2014).Habitat:Canyontreefrogsarefoundalong intermittentstreamsindeeprockycanyons(Hammerson1999). CCVI Scoring Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2), mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange (NatureServe2012). Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent on12.1percentofitsrange,9.7to11.9percentdryingon43.2percentofitsrangeand7.4to9.6 Climate Change Vulnerability Assessment for Colorado BLM 187 percentdryingon31.3percentofitsrangeand5.1to7.3percentdryingon13percentofitsrange (NatureServe2012). B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Somewhatincreasevulnerability.InColorado, thisspeciesisrestrictedtorockycanyonsandbreedsincanyonbottompools(Hammerson1999). Geneticanalysissuggeststhatgeographicbarriersareresponsibleforphylogeographicpatternsin canyontreefrogsfromArizonaandNewMexico(Barber1999). B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic barriers(NatureServe2014).Themajorityofcanyontreefrogpopulationsoccuronfederally managedlandsindeepcanyonswheredevelopmentisverylow. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Landalterationssuchas,timberharvest,grazing,recreationandwaterdevelopmentwouldlikely notbebeneficialforcanyontreefroghabitat,buttheremotenessofoccurrencesmakesitunlikely areasforfuturehumandisturbances.Landusechangesassociatedwithclimatechangemaybe consideredathreatbutthescopeandtypeofchangeintherangeofthecanyontreefrogishardto predict. C1)Dispersalandmovements.Neutral.Canyontreefrogsaredependentonrockycanyonslopes andbottomsforbreeding,foragingandhibernatinghabitat(Hammerson1999).Hylidsgenerally exhibitlimitedmovementsonashort‐termbasis(NatureServe2014).Exceptforwarmrainy nights,canyontreefrogsdonotrangefarfromcanyon‐bottompools(Hammerson1999). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied bythecanyontreefrogintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C) meanseasonaltemperaturevariationinthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease. Thisspeciesshowsapreferenceforenvironmentswithwarmertemperatures(Synderand Hammerson1993). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Thisspecieshasundergoneaverage(21‐40inches/509‐ 1,016mm)precipitationvariationoverthelast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thecanyontreefrogishighlydependentonspecific hydrology(rainfall)forbreeding(Hammerson1999). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thecanyontreefrogisnotdependentuponspecificdisturbanceregimessuchasfires, floods,severewinds,pathogenoutbreaks,orsimilarevents. 188 Colorado Natural Heritage Program © 2015 C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Canyontreefrogsdonot dependoniceorsnow‐coverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Canyon treefrogsareassociatedwithrockycanyonbottomswheretheyperchonsolidrocksurfacesandat nightretreattorockcrevices(Hammerson1999). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Canyontreefrogsdonotrelyon otherspeciestogeneratehabitat. C4b)Dietaryversatility(animals).Neutral.Canyontreefrogsfeedonawidevarietyof invertebrates(Hammerson1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thecanyontreefrogisa self‐disperser. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceofthecanyontreefrog. C5a)Measuredgeneticvariation.Somewhatincrease.Barber(1999)foundlowgeneticvariation fromdifferencesamongpopulationsinArizonaandNewMexico. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence thatthetotalpopulationofcanyontreefrogswerereducedto<1000individualsortheoccupied areawasreducedby>30%overthelast500years. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe timingofbreedingforamphibians(Blausteinetal.2001;Corn2005),buthasnotbeenreportedfor canyontreefrogs. Literature Cited Barber,P.H.1999.Patternsofgeneflowandpopulationgeneticstructureinthecanyontreefrog,Hylaarenicolor. MolecularEcology8:563‐576. Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate change.ConservationBiology15:1804‐1809. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO. Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67. Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado DivisionofWildlife. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. Climate Change Vulnerability Assessment for Colorado BLM 189 NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Snyder,G.K.andG.A.Hammerson.1993.Interrelationshipsbetweenwatereconomyandthermoregulationinthecanyon treefrogHylaarenicolor.JournalofAridEnvironments25:321‐329. 190 Colorado Natural Heritage Program © 2015 Great Basin Spadefoot Speaintermontana G5/S3 Family:Scaphiopodidae Photo:CopyrightbyLaurenJ. LivoandSteveWilcox Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedon:Theonlymetricthatincreasedthevulnerabilityfor GreatBasinspadefootswastheirdependenceonspecifichydrology(ephemeralandpermanent watersources)forbreedingandthepotentialdisruptionofthetimingofbreedingandlarval developmentbyclimatechange.Therestofthescoringfactorswereneutral.Thehabitatthis speciesinhabitsisdiverseanddevoidofnaturalbarriers;withintherangeofthisspeciesin Colorado,oilandgasdevelopmentcouldimpacthabitat,buttherehasnotbeenanyevidenceofthat occurring.Irrigatedagriculturemaybebeneficialincreatingbreedinghabitat(Leonardetal.1996). GreatBasinspadefootsoccurinprettyremoteareasofColoradoandareatalowriskofthreats fromurbandevelopment. Distribution:GreatBasinspadefootsoccurinnorthwesternColorado,northoftheUncompahgre Plateau(Hammerson1999).Habitat:GreatBasinspadefootsarefoundinwidevarietyofhabitats inColoradoatelevationsbelow7,000ft.(Hammerson1999).TypicalhabitattypesinColoradofor GreatBasinspadefootsarepinyon‐juniperwoodlands,sagebrushandsemidesertshrublands (Hammerson1999).Breedingoccursintemporarypoolsfromheavyrains(Hammerson1999)and occasionallyinpermanentshallowponds(Hovinghetal.1995). CCVI Scoring Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2), mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange (NatureServe2012). Climate Change Vulnerability Assessment for Colorado BLM 191 Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent on9.1percentofitsrange,9.7to11.9percentdryingon55.1percentofitsrangeand7.4to9.6 percentdryingon22.6percentofitsrangeand5.1–7.3on12.7percentofitsrange(NatureServe 2012). B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.InColorado,thisspeciesinhabits sagebrushflats,pinyon‐juniperwoodlandandsemi‐desertshrublands(Hammerson1999),areas thataretypicallydevoidofnaturalbarriersforspadefoottoads. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic barriers(NatureServe2014),butformostoftheGreatBasinspadefootsrangeinColoradourban developmentislow.Theremaybebreedinghabitatcreationfromirrigatedagriculture,butinsome casesgrainfieldscouldeliminatebreedingponds(Leonardetal.1996). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Landalterationssuchas,timberharvest,grazing,recreationandwaterdevelopmentwouldlikely notbebeneficialforGreatBasinspadefoots,buttheremotenessofoccurrencesmakesitunlikely areasforfuturehumandisturbances.Landusechangesassociatedwithclimatechangemaybe consideredathreatbutthescopeandtypeofchangeintherangeofthecanyontreefrogishardto predict. C1)Dispersalandmovements.Neutral.GreatBasinspadefootsaredependenton sagebrush/semi‐desertshrublandhabitatwithtemporarypoolsforbreedingandforaging (Hammerson1999).Specificdispersaldataforthisspeciesislackingbutingeneralspadefoottoads exhibithighfidelitytobreedingsitewithmovementsuptoseveralhundredmetersfrombreeding sites(NatureServe2014).Therehavebeenreportsofadultsmigratingupto100metersbetween breedingpoolsandnon‐breedinghabitat(Busecketal.2005). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean seasonaltemperaturevariationinthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotrestrictedtocoldenvironmentsthatarevulnerabletoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Thisspecieshasundergoneaverage(21‐40inches/509‐ 1,016mm)precipitationvariationoverthelast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thegreatbasinspadefootishighlydependenton 192 Colorado Natural Heritage Program © 2015 specifichydrology(ephemeralandpermanentwatersources)forbreeding(Hovinghetal.1995; Hammerson1999;Busecketal.2005).Timingofbreedingandtimeforlarvaldevelopmentin amphibianscouldalsobeimpactedbychangesinhydrologicallevels(Corn2005). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thegreatbasinspadefootisnotdependentuponspecificdisturbanceregimessuchas fires,floods,severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.GreatBasinspadefootsdo notdependoniceorsnow‐coverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.GreatBasin spadefootsarenotdependentonanyspecificgeologicfeature. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.GreatBasinspadefootsdonot relyonotherspeciestogeneratehabitat. C4b)Dietaryversatility(animals).Neutral.GreatBasinspadefootsfeedonawidevarietyof invertebrates(Hammerson1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGreatBasinspadefoot isaself‐disperser. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheGreatBasinspadefoot. C5a)Measuredgeneticvariation.Neutral.PhylogeneticanalysisontwopopulationsofGreat Basinspadefootssuggestedpossiblegeographicvariationwithinthespecies(WiensandTitus 1991). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence thatthetotalpopulationofGreatBasinspadefootswerereducedto<1000individualsorthe occupiedareawasreducedby>30%overthelast500years. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein etal.2001). Literature Cited Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate change.ConservationBiology15:1804‐1809. Buseck,R.S.,D.A.Keinath,andM.Geraud.2005.SpeciesAssessmentforGreatBasinSpadefootToad(Speaintermontana) inWyoming.TechnicalreportforBureauofLandManagement,Cheyenne,Wyoming. Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67. Climate Change Vulnerability Assessment for Colorado BLM 193 Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado DivisionofWildlife. Hovingh,P.,B.Benton,andD.Bornholdt.1995.Aquaticparametersandlifehistoryobservationsofthegreatbasin spadefoottoadinUtah.GreatBasinNaturalist45:22‐30. Leonard,W.P,H.A.Brown,LL.C.Jones,K.R.McAllisterandR.M.Storm.1996.AmphibiansofWashingtonandOregon. SeattleAudubonSociety,Seattle,Washington. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Wiens,J.J.andT.A.Titus.1991.AphylogeneticanalysisofSpea(Anura:Pelobatidae).Herpetologica.47(1):21‐28. 194 Colorado Natural Heritage Program © 2015 Northern Leopard Frog Lithobatespipiens G5/S3 Family:Ranidae Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedon:thenorthernleopardfrog’sdependenceonspecific hydrologyforbreedingandthepotentialdisruptionofthetimingofbreedingandlarval developmentbyclimatechange.ThepredictedeffectsofclimatechangeintheWestincludea reducedsnowpackandshorterperiodsofsnowcover,snowmeltthatoccursearlierintheseason,a hydrologiccyclethatismoredynamicasextremerainfalleventsoccurwithgreaterfrequencyand anoverallwarmer,drier,andmoredrought‐likeconditions(Melilloetal.2014).Climatechangehas thepotentialtoalterthetimingofpondbreedingamphibians(Blausteinetal.2001).Additional importantrankingfactorsincludethevulnerabilityofnorthernleopardfrogstodevelopmentand habitatfragmentationfrombusypavedroads. Distribution:NorthernleopardfrogsoccurthroughoutColorado,excludingmostofthe southeasternandeasteast‐centralportionofthestate(Hammerson1999).Habitat:Northern leopardfrogsarefoundinwidevarietyofhabitatsinColoradoatelevationsrangingfrom3,500ft. to11,000ft.(Hammerson1999).TypicallyinColorado,northernleopardfrogsarefoundinwet meadows,marshes,ponds,streams,lakesandreservoirs.Breedingoccursinmid‐sizedponds (Merrell1997)andshallowareasofpermanentpondsandinseasonallyfloodedareasadjacentto permanentpoolsorstreams(Hammerson1999). CCVI Scoring Temperature:CalculatedusingClimateWizard:ensembleaverage,mediumemissionscenario (A1B),mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesis expectedtobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentof itsrange(NatureServe2012). Climate Change Vulnerability Assessment for Colorado BLM 195 Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent on12.6percentofitsrange,9.7to11.9percentdryingon52.8percentofitsrangeand7.4to9.6 percentdryingon29.1percentofitsrangeand5.1–7.3on5.4percentofitsrange(NatureServe 2012). B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Thenorthernleopardfrogoccupiesa varietyofhabitattypesandiswidelydistributedinColorado(Hammerson1999).Whilepatchiness occurs,therearefewnaturalbarrierstotheirdispersaltootherlandscapes.Riverscouldbea barrierdependingonwidthandflowdynamics(NatureServe2014). B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Intensiveresidential orcommercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredas anthropogenicbarriers(NatureServe2014).Disturbedareasdevoidofcoverdisruptedtheability fornorthernleopardfrogstoreachhabitatpatchesinNewBrunswick(MazerolleandDesrochers (2005).Bouchardetal.(2009)foundthatleopardfrogswerehighlyvulnerabletoroadmortality. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincreasetoneutral.ThenortheasternColoradohabitatofthisspeciesissusceptibleto potentialdevelopmentofwindfarms/solarfarmsandbiofuelsproduction.Inthefaceofrising climatechangeandcoststoextractfossilfuels,windenergydevelopmentisexpectedtoincrease withintherangeofthenorthernleopardfroginColorado(NRDC2014). C1)Dispersalandmovements.Somewhatdecreasetoneutral.Northernleopardfrogshavegood movementanddispersalcapabilityastheyaredependentuponbreeding,foragingandhibernating habitat,whichencompassesbothwetlandanduplandhabitat(Hammerson1999;NatureServe 2014).Theevidenceshowsseasonalvariabilityinleopardfrogmovementsandindividual movementsupto4kmforadults(Seburnetal.1997)and5.2kmforjuveniles(Dole1971)in AlbertaandMichiganrespectively. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean seasonaltemperaturevariationinthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Somewhat Increase.TherangeofthisspeciesinColoradoincludessomehigherelevationmontaneareas. Reducedsnowfallandincreasedsummerevaporationcouldhavedramaticeffectsontheduration oroccurrenceofseasonalwetlands(Corn2005). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.Thisspecieshasundergonegreaterthan average(>40inches/1,016mm)precipitationvariationoverthelast50years. 196 Colorado Natural Heritage Program © 2015 C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thenorthernleopardfrogishighlydependenton specifichydrologyforbreeding.Reproductivesuccessistiedtoappropriatetemperaturein breedingsites(shallowponds);timingofthiswouldchangewithearlysnowmeltandwarmer temperatures(SmithandKeinath2007).Timingofbreedingandtimeforlarvaldevelopmentcould alsobeimpactedbychangesinhydrologicallevels(Corn2005).Increaseddroughtcouldcause reductionsinhabitatandpotentiallyincreasemortalityfromeggtoadult.Droughtwasresponsible fortheextirpationofapopulationofleopardfrogsinLarimerCounty,Colorado(Cornand Fogleman1984). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thenorthernleopardfrogisnotdependentuponspecificdisturbanceregimessuchas fires,floods,severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Northernleopardfrogs inhabitawiderangeofhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Northernleopard frogsarenotdependentonanyspecificgeologicfeature. C4a)Dependenceonotherspeciestogeneratehabitat.Neutraltosomewhatincrease.Northern leopardfrogssometimesusebeaverpondsforbreeding(Hammerson1999). C4b)Dietaryversatility(animals).Neutral.Northernleopardfrogsfeedonawidevarietyof invertebrates(Hammerson1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thenorthernleopardfrog isaself‐disperser. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceofthenorthernleopardfrog. C5a)Measuredgeneticvariation.Somewhatdecrease.Mushetetal.(2013)foundhighlevelsof geneticdiversityinpopulationsofnorthernleopardfrogsinNorthDakota. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence thatthetotalpopulationofnorthernleopardfrogswerereducedto<1000individualsorthe occupiedareawasreducedby>30%overthelast500years. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein etal.2001). Literature Cited Alford,RossA.2011.Bleakfutureforamphibians.Nature480:461‐462. Climate Change Vulnerability Assessment for Colorado BLM 197 Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate change.ConservationBiology15:1804‐1809. Bouchard,J.,A.T.Ford,F.E.Eigenbrod,andL.Fahrig.2009.Behavioralresponsesofnorthernleopardfrogs(Ranapipiens) toroadsandtraffic:Implicationsforpopulationpersistence.EcologyandSociety14(2):23. Corn,P.S.andJ.C.Fogleman.1984.Extinctionofmontanepopulationsofthenorthernleopardfrog(Ranapipiens)in Colorado.JournalofHerpetology18(2):147‐152. Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67. Dole,J.W.1971.Dispersalofrecentlymetamorphosedleopardfrogs,Ranapipiens.Copeia1971:221‐228. Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado DivisionofWildlife. Mazerolle,M.J.andA.Desrochers.2005.Landscaperesistancetofrogmovements.CanadianJournalofZoology83:455‐ 464. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.2014.ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. Merrell,D.J.1977.Lifehistoryoftheleopardfrog,Ranapipiens,inMinnesota.BellMuseumofNaturalHistoryOccasional PapersNo.15:1‐23. Mushet,D.M.,N.H.Euliss,Y.ChenandC.A.Stockwell.2013.Complexspatialdynamicsmaintainnorthernleopardfrog (Lithobatespipiens)geneticdiversityinatemporaryvaryinglandscape.HerpetologicalConservationandBiology 8(1):163‐175. NaturalResourceDefenseCouncil[NRDC].2014.RenewableEnergyforAmerica,harvestingthebenefitsofhomegrown renewableenergy[Online].http://www.nrdc.org/energy/renewables/technologies.asp NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Seburn,C.N.L.,D.C.SeburnandC.A.Paszkowski.1997.Northernleopardfrog(Ranapipiens)dispersalinrelationto habitat.Pp.64‐72inGreen,D.M.,ed.AmphibiansinDecline:CanadianStudiesofaGlobalProblem.SocietyfortheStudy ofAmphibiansandReptiles,HerpetologicalConservationNumberOne.St.Louis,Missouri. Smith,B.E.andD.A.Keinath.2007.NorthernLeopardFrog(Ranapipiens):atechnicalconservationassessment.[Online]. USDAForestService,RockyMountainRegion.Available:http://www.fs.fed.us/r2/ projects/scp/assessments/northernleopardfrog.pdf 198 Colorado Natural Heritage Program © 2015 American Peregrine Falcon Falcoperegrinusanatum G4T4/S2B Family:Falconidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostatewiderankisbasedon:theextensivedispersalandmigratoryabilitiesofthis raptor,thelackofimpactsfromlandusechangesassociatedwithclimatechange,theaverage geneticvariationmeasuredforthespeciesinNorthAmerica,andthepredicted68percent expansionofthePeregrinefalconswinterrangeinresponsetoclimatechange.Climatemodels projectincreasedwarminganddroughtacrosstheassessedareawithannualaveragetemperatures risingby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowth inglobalemissions(A2emissionsscenario),withthegreatestincreasesinthesummerandfall (Melilloetal.2014).Projectionsofprecipitationchangesarelesscertain,butunderacontinuation ofcurrentrisingemissionstrends(A2),reducedwinterandspringprecipitationisconsistently projectedforthesouthernpartoftheSouthwestby2100(Melilloetal.2014).Theseprojected changesinclimatearenotexpectedtohaveimportantnegativeimpactstothePeregrinefalcon withintheassessmentarea. Distribution:PeregrineFalconsbreedalongthefoothillsofColorado'sFrontRangeand(inhigher concentrations)intherivervalleysandcanyonsoftheWesternSlope(Kingery1998).Habitat: PeregrineFalconsnestonledgesofhighcliffsinthefoothillsandmountainsfrom4,500toover 9,000feet(1,388to2,776m)inelevation(U.S.FishandWildlifeService1984).Thesteepestand mostinaccessiblelocationsonthetallestcliffsarepreferred;especiallythosethatofferflat, protectedledgesatleast18incheswide,withsheerrockaboveandbelow(Johnsgard2009).In Colorado,pinyon/juniperwoodlandoccursinthevicinityofabouthalfofallPeregrineFalconnest sites,andponderosapinewoodlandorforestisfoundataboutone‐quarterofthesites(Kingery 1998). Climate Change Vulnerability Assessment for Colorado BLM 199 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Significantnaturalbarriersdonotexist forthisspecies.ThePeregrinefalconisavolantlongdistantmigratorthatcantraversemountain rangesandlargebodiesofwater. B2b)Distributionrelativetoanthropogenicbarriers.Increase.Neutral.Significant anthropogenicbarriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyover oraroundpotentialanthropogenicbarriers. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. AlthoughraptorsandPeregrinefalconshavebeenreportedtobeatriskofcollisionwithwind turbinesanddisturbedbytheirconstructionduringbrooding(NHFG2005)duringmigrationonly about10%oftheirrangeintheassessedareaissuitableforwindenergydevelopment(NRDC 2014).Thisisalowconcernfortheraptorwithintheassessedarea. C1)Dispersalandmovements.Decrease.Althoughmalestendnottodispersefarfromtheirnatal sites,femalesareknowntodisperse100sofkmfromnatalsites(Whiteetal.2002).Additionally, PeregrinefalconshavelargehomerangeswithestimatesinColoradorangingfrom358–1,508km2 (EndersonandCraig1997).Finally,thePeregrinefalconislongdistantmigratorandcantravel over10,000kilometersduringmigration(Whiteetal.2002). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbythePeregrinefalconintheassessedareahasexperiencedanaverage(51.7‐77°F/31.8 ‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thereisno directevidencethatPeregrinesrequirecoolmicroclimatesfornesting.Theygenerallymakea scrapeonaledgewithshading,sheltering,oroverhangs,andtrendtosouth‐orwest‐facing orientationinhighlatitudesbutmorerandomdirectionsinlowerlatitudes.Presumablyorientation orothermicro‐featuresofeyrieprotectyoungfromtemperatureextremes(Whiteetal.2002) C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.TherangeoccupiedbythePeregrinefalconin theassessedareahasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutral.ThePeregrinefalconhasnodependenceonastrongly seasonalhydrologicregimeand/oraspecificaquatic/wetlandhabitatorlocalizedmoistureregime thatishighlyvulnerabletolossorreductionwithclimatechange. 200 Colorado Natural Heritage Program © 2015 C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.ThePeregrinefalconisnotdependentuponspecificdisturbanceregimessuchasfires, floods,severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonsnow‐coveredhabitats.Neutral.ThePeregrinefalconisnotdependenton habitatswithice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincreaseto increase.Peregrinefalconshavepreferencefornestingoncliffs,althoughtheywilluseartificial structuressuchassmokestacksandbuildings(Whiteetal.2002). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.ThePeregrinefalconisnot dependentonanyotherspeciestocreatesuitablehabitatforitsexistence C4b)Dietaryversatility.Neutral.Withintheassessedareaperegrinefalconsmainlyfeedonbirds includingcolumbids(e.g.,Zenaida),swifts,andpasserines,butmayoccasionallyfeedonmammals, amphibians,fish,andinsects(Whiteetal.2002). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.ThePeregrinefalconisa self‐disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceofthePeregrinefalcon. C5a)Measuredgeneticvariation.Neutral.Theperegrinefalconexhibitsaveragegeneticdiversity acrosspopulationsinNorthAmericawithobservedandexpectedheterozygositiesbeingnearly equivalent(Johnsonetal.2010). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Itisprojectedthattherewill beadecreaseinathreattothePeregrinefalconswinterrangeduetoclimatechange.Rangewide, modelspredictedtoincreaseby69%by2080inthefalconswinterrange(NAS2014).Thisincludes predictionsofanexpansionofthewinterrangeintheassessedarea.Modelsoftheimpactof climatechangeonthefalcon’spopulationsizearenotavailablefortheassessedarea. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 201 Literature Cited Enderson,J.H.andG.R.Craig.1997.WiderangingbynestingPeregrinefalcons(Falcoperegrinus)determinedby radiotelemetry.JournalofRaptorResearch,31:333‐338. Johnsgard,P.A.2009.BirdsoftheGreatPlains–BreedingSpeciesandtheirDistribution:NewExpandedEdition(2009). 546p.Univ.ofNebr.Press,LincolnandLondon. Johnson,J.A.,S.L.Talbot,G.K.Sage,K.K.Burnham,J.W.Brown,T.L.Maechtle,W.S.Seeger,M.A.Yates,B.AndersonandD.P. Mondell.2010.PLoSone,5:1‐15.Available: http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0014042&representation=PDF [2/5/2015]. Kingery,H.E.(editor)1998.Coloradobreedingbirdatlas.ColoradoBreedingBirdAtlasPartnership,Denver.Colorado. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NationalAudubonSociety(NAS).2014.Audubon’sBirdsandClimateChangeReport:APrimerforPractitioners.National AudubonSociety,NewYork.Contributors:GaryLangham,JustinSchuetz,CandanSoykan,ChadWilsey,TomAuer,Geoff LeBaron,ConnieSanchez,TrishDistler.Version1.2.Available:http://climate.audubon.org/birds/perfal/peregrine‐falcon [1/29/2015]. NewHampshireFishandGame(NHFG).2005.NewHampshirewildlifeactionplan.NewHampshireFishandGame Department,Concord,NewHampshire. NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica.Available: http://www.nrdc.org/energy/renewables/energymap.asp[2/6/2015]. U.S.FishandWildlifeService1984.AmericanPeregrineFalconRecoveryPlan(RockyMountainSouthwestPopulations). White,C.M.,N.J.Clum,T.J.CadeandW.GraingerHunt.2002.PeregrineFalcon(Falcoperegrinus),TheBirdsofNorth AmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline: http://bna.birds.cornell.edu/bna/species/660. 202 Colorado Natural Heritage Program © 2015 Black Swift Cypseloidesniger G4/S3B Family:Apodidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement; 2)associationwithwaterfallsfornestingthatmaybevulnerabletodryingunderprojected increasesintemperatureduetoclimatechange. Distribution:InColorado,BlackSwiftsbreedprimarilyintheSanJuanMountainswithpopulations concentratedinthesouthwestcornerofthestate.BreedinglocationsarealsofoundintheSangre deCristo,FlatTops,Gore,andFrontrangesnorthtonorthernRouttCounty(ColoradoBirdAtlas Partnership1998;Levadetal.2008).Habitat:InColorado,BlackSwiftsnestonclifffaceswith waterfallsandinsomecases,wetcaves(ColoradoBirdAtlasPartnership1998;Levadetal.2008). Elevation:Nestinglocationsrangefrom6,640to11,680feetinelevation,withameanof9,957feet (Levadetal.2008). EcologicalSystem:Cliffandcanyon CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers Climate Change Vulnerability Assessment for Colorado BLM 203 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It isunlikelythatanymitigation‐relatedlandusechangeswilloccurwithinthisspecies’rangewithin Colorado. C1)Dispersalandmovements.Decrease.BlackSwiftsbreedinColoradoandundertakelong, seasonalmigrations.Dispersalabilityisgreat. C2)Sensitivitytotemperatureandmoisturechanges.Thisspecies'closeassociationwith waterfallsfornestsites(LowtherandCollins2002)greatlyincreasesitsvulnerability;this associationwithinColoradoaffectsitsscoreinboththehydrologicandgeologicsections. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.BlackSwifts prefercoolsitesnearwaterfallsfornesting,butthesemicroclimatesarenotlikelytobeaffected directlybyclimatechange. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thedegreetowhichstreamsonwhichthese waterfallsarefoundwillbeaffectedbyclimatechangeisuncertain;Knorr(1961)firstsuggested thatthisspecieswillnotnestonintermittentstreamsandthatevenindroughtyearswherethe streamwasreducedtoatrickle,birdsreturnedtotheirnestingsites(Knorr1961;Knorr1993).The degreetowhichperennialstreamsthatfeedwaterfallswithnestingsitesbecomeintermittentdue toclimatechangeseemstobetheprimaryfactorindetermininghowvulnerablenestingsitesmay be.Levadetal.(2008)didfindthatincreasedstreamflowcontributedtoahigherprobabilitythata waterfallwouldbeoccupied. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.This species'closeassociationwithwaterfallsfornestsites(LowtherandCollins2002)increasesits vulnerability. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral. Diet items are diverse, but primarily limited to flying insects (Lowther and Collins 2002). C4c)Pollinatorversatility(Plantsonly,notapplicable). 204 Colorado Natural Heritage Program © 2015 C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown.MoreinformationisneededonBlackSwiftgenetics. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver, Colorado:ColoradoBirdAtlasPartnership.636pg. Knorr,O.A.1961.ThegeographicalandecologicaldistributionoftheBlackSwiftinColorado.WilsonBulletin73:155‐170. Knorr,O.A.1993.BreedingoftheBlackSwiftintheGreatBasin.WesternBirds24:197‐198. Levad,R.G.,K.M.Potter,C.W.Schultz,C.Gunn,andJ.G.Doerr.2008.Distribution,abundance,andnest‐sitecharacteristics ofBlackSwiftsintheSouthernRockyMountainsofColoradoandNewMexico.TheWilsonJournalofOrnithology 120:331‐338. Lowther,P.E.,andC.T.Collins.2002.BlackSwift(Cypseloidesniger).InTheBirdsofNorthAmerica,No.676(A.Pooleand F.Gill,eds.).TheBirdsofNorthAmerica,Inc.,Philadelphia,PA. Climate Change Vulnerability Assessment for Colorado BLM 205 Brewer’s Sparrow Spizellabreweri G5/S4B Family:Emberizidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialincreasehabitat degradationdueoilandgasdevelopmentinBrewer’ssparrowhabitat;2)relianceonsagebrush habitats;and3)positivecorrelationbetweenwinterprecipitationandclutchsize.TheBrewer’s Sparrowmaybelessvulnerablethanotherbirdspeciesassessedinthisreportduetothelackof barrierstomovement,highgeneticvariation,highdietaryversatility,andlongdistancemovement patterns. Distribution:Brewer’sSparrowsareoccurthroughoutmostofColorado,butarenotablyabsent fromtheSanJuanBasin(ColoradoBirdAtlasPartnership1998;BoyleandReeder2005).Breeding Brewer’sSparrowsaremostcommoninthemesasandfoothillsofwesternColorado,withthe highestabundanceestimatesoccurringinthenorthwesterncornerofthestate(Lambeth1998). Habitat:InColorado,Brewer’sSparrowsaremostfrequentlydocumentedinmountainbig sagebrushhabitats(ColoradoBirdAtlasPartnership1998).Theyalsooccurinthefollowing vegetationtypesasdefinedbytheColoradoBreedingBirdAtlas(1998):lowlandsagebrush,tall desertshrub,shortgrassortallgrass/sandsage,montanegrassland,mountainshrub,pinyon‐juniper woodland.Elevation:Commonlynestingbetween5,000and7,500ft(AndrewsandRighter1992). EcologicalSystem:Sagebrushshrubland,Sandsage,DesertShrublands,Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. 206 Colorado Natural Heritage Program © 2015 B2a)Distributionrelativetonaturalbarriers.Neutral.Brewer'sSparrowsarefoundonboththe EastandWestSlopeofColorado,fromlowelevationareasontheplains,tohighelevationsitesnear timberline(11,400feet)(HansleyandBeauvais2004). B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Thisspeciesoccupiesabroad geographicandelevationrangeinCO.Noanthropogenicbarriershavebeenreportedforthe species(HansleyandBeauvais2004). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.Brewer'sSparrowsareconsideredsagebrushobligates.NWColorado, includingRioBlancoCounty,containslargeexpansesofsagebrushshrublands.Atotalof2,915 activenaturalgaswellsarecurrentlyoperatinginRioBlancoCounty(COGCC2015).Aprojected 1,845newwellswillbedrilledinRioBlancoCountyin2035tomeetenergydemandsinColorado (BBC2008).Increasedenergydevelopmentinthisareawillresultinfurtherhabitatfragmentation forBrewer'sSparrow. C1)Dispersalandmovements.Decrease.Brewer'sSparrowsmigratelongdistancesacrossthe WesternUS,winteringinTexas,California,andNevada,andtravelingnorthtoCanada,Wyoming, Colorado,andtheGreatPlainstobreed(ColoradoBirdAtlasPartnership2008). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Lessthan 10%ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimatic envelope(SeeEcosystemSectionofreport). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutral.Thisspeciesdoesnotrelyonastronglyseasonal hydrologicregime. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thisspeciesdoesnotrelyonaspecificdisturbanceregimethatwillbeimpactedbyclimate change. C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.Clutchsizeappearstobe positivelycorrelatedwithwinterprecipitation(PetersonandBest1986;Lack1966). C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 207 C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.Thisspeciesismost frequentlyassociatedwithmountainbigsagebrushhabitatsinColorado. C4b)Dietaryversatility.Neutral.Brewer'sSparrowseatawidevarietyofinsects(Petersonand Best1986).Duringmigration,Brewer'sSparrowsrelymainlyonseedsandseedheadsforfood, withinsectscomprisingonly10%oftheirdiet(Short1984). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Neutral.Geneticvariationorinbreedingdepressionhasnot beenidentifiedasaconcernforBrewer'sSparrow(HansleyandBeauvais2004). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Andrews,R.andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.Denver:DenverMuseumof NaturalHistory. BBCResearchandConsulting.2008.NorthwestColoradoSocioeconomicAnalysisandForecasts.Reportpreparedfor AssociatedGovernmentsofNorthwestColorado.179pg.Availableonlineat http://www.colorado.gov/cs/Satellite?blobcol=urldata&blobheadername1=ContentDisposition&blobheadername2=Cont entType&blobheadervalue1=inline%3B+filename%3D%22Full+Report.pdf%22&blobheadervalue2=application%2Fpdf& blobkey=id&blobtable=MungoBlobs&blobwhere=1251731958720&ssbinary=true. Boyle,S.A.andD.R.Reeder.2005.Coloradosagebrush:aconservationassessmentandstrategy.GrandJunction:Colorado DivisionofWildlife. ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver, Colorado:ColoradoBirdAtlasPartnership.636pg. ColoradoOilandGasCommission(COGCC).2015.WeeklyOilandGasStatisticsforFeb2,2015.AccessedonlineFeb21, 2015atwww.colorado.gov/cogcc. 208 Colorado Natural Heritage Program © 2015 Hansley,P.L.andG.P.Beauvais.2004.SpeciesAssessmentforBrewer'sSparrow(Spizellabreweri)inWyoming.Prepared fortheBLM.49pages. Lack,D.1966.Populationstudiesofbirds.ClarendonPress,Oxford,UK. Lambeth,R.1998.Brewer'ssparrow(Spizellabreweri).InColoradoBreedingBirdAtlas,editedbyH.E.Kingery.Denver: ColoradoBirdAtlasPartnership&ColoradoDiv.ofWildlife. Petersen,K.L.andL.B.Best.1986.DietsofnestlingSageSparrowsandBrewer’sSparrowsinanIdahosagebrush community.JournalofFieldOrnithology57:283‐294. Short,H.L.1984.HabitatSuitabilityIndexmodels:Brewer’sSparrow.USDIFishandWildlifeServiceBiologicalReport FWS/OBS‐82/10.83. Climate Change Vulnerability Assessment for Colorado BLM 209 Burrowing Owl Athenecuniculariahypugaea G4/S4B Family:Strigidae ©DonBaccus Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)dependenceonprairiedogsand othermammalstocreatesuitablenestinghabitat;2)lowlevelsofgeneticdiversity;3)lackof protectiononprivatelands;4)predictedlossof77%ofcurrentbreedingrangeduetoclimate change(AudubonSociety2015). Distribution:Breedingrecordscovermuchofthestate,althoughitismorecommonontheplains ofeasternColorado(AndrewsandRighter1992,ColoradoBirdAtlasPartnership1998).Habitat: Thisspeciesisfoundindryopentreelessareasandisassociatedwithburrowingmammals. Burrowsareusuallysurroundedbybaregroundandprovideprotectionfromweatherextremes (Haugetal.1993).Althoughcapableofdiggingtheirownburrowswhereburrowingmammalsare absent,burrowingowlsusuallyuseexistingburrows,particularlythoseofprairiedogs. EcologicalSystem:ShortgrassPrairie CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterof 210 Colorado Natural Heritage Program © 2015 ColoradoneartheNewMexicoandNebraskabordershasexcellentwindresources(DOE2004). Windturbinescancausedirectimpactstobirdsviacollisionsthatresultininjuryormortality (Kunzetal.2007;Kuvleskyetal.2007),aswellasindirectimpactsviahabitatlossandbarriersto movement(DrewittandLangston2006;Kuvleskyetal.2007;Pruettetal.2009;Kieseckeretal. 2011).ResultsfromastudyatawindfarminCaliforniasuggestthatwindturbinesannuallykill betweenone‐fifthandnearlytwicethenumberofestimatedowlsintheavailablehabitatarea (Smallwoodetal.2010). C1)Dispersalandmovements.Decrease.TheBurrowingOwliscapableoflongdistance migration,andBurrowingOwlsbandedinAlberta,CanadahavebeenrecoveredinMexico(USFWS 2003). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isassociatedwithshortgrassprairieinColoradoandisnotlimitedtocoolorcoldhabitats (ColoradoBirdAtlasPartnership1998). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutral.StudiesonthePawneeNationalGrasslandshowed decreasedsurvivalinowletsduringwetsummers(Conrey2010).Preypopulationsmayrespond positivelytoincreasedrainfall,butBurrowingOwlstypicallydonothuntinwetweather(Conrey 2010). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Sandysoilsmay permiteasierdiggingforprairiedogs,badgers,andBurrowingOwlsthatcreateburrowsinthe shortgrassprairie. C4a)Dependenceonotherspeciestogeneratehabitat.SomewhatIncrease.BurrowingOwls nestinburrowsthatarecreatedbyprairiedogsandothermammals(ColoradoBirdAtlas Partnership1998). Climate Change Vulnerability Assessment for Colorado BLM 211 C4b)Dietaryversatility.Neutral.BurrowingOwlsonthePawneeGrasslandatebeetles, grasshoppers,ants,rodents,andsongbirds;insectscomprised95%oftheirdietbynumberand only11%bybiomass(Conrey2010). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral. C5a)Measuredgeneticvariation.Increase.Lowlevelsofgeneticvariationhavebeendocumented inBurrowingOwls,basedonmicrosatellitedatafrompopulationsdistributedthroughoutNorth America(Macias‐Duarteetal.2010). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Neutral. D2)Modeledfuturechangeinpopulationorrangesize.Increase.AudubonSociety’sclimate modelspredictthatby2080,BurrowingOwlscouldlose77%oftheircurrentbreedingrange (AudubonSociety2015). D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Increase.InColorado,mostareasontheeasternplainsinBurrowingOwl habitatareonprivatelands. Literature Cited Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp363 AudubonSociety.2015.ClimateModelsforBurrowingOwl.Onlineat http://climate.audubon.org/birds/burowl/burrowing‐owl.AccessedFeb21,2015. ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver, Colorado:ColoradoBirdAtlasPartnership.636pg. Conrey,R.Y.2010.Breedingsuccess,preyuse,andmark–resightestimationofburrowingowlsnestingonblack‐tailed prairiedogtowns:Plagueaffectsanon‐susceptibleraptor.Ph.D.dissertation,ColoradoStateUniversity,FortCollins,CO. DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015 Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42. Haug,E.A.,B.AMillsap,andM.S.Martell.1993.BurrowingOwl(Speotytocunicularia),inTheBirdsofNorthAmerica(A. PooleandF.Gill,eds.),no.61.Acad.Nat.Sci.,Philadelphia 212 Colorado Natural Heritage Program © 2015 Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth. 2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566. Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M. Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance document.JournalofWildlifeManagement71:2449–4486.Available:http://www.wind‐watch.org/documents/wp‐ content/uploads/wild‐71‐08‐45.pdf. Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐ 2498. Macias‐Duarte,A.,C.J.Conway,A.Munguia‐Vega,andM.Culver.2010.NovelmicrosatellitelocifortheBurrowingOwl, Athenecunicularia.ConservationGeneticsResources2:67‐69. Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof WindEnergy.ConservationBiology23(5)1253‐1259. Smallwood,K.S.,C.G.Thelander,M.L.Morrison,L.M.Rugge.2010.BurrowingOwlMortalityintheAltamontPassWind ResourceArea.TheJournalofWildlifeManagement71(5):1513‐1524). U.S.FishandWildlifeService.2003.StatusAssessmentandConservationPlanfortheWesternBurrowingOwlinthe UnitedStates.BiologicalTechnicalPublicationR6001‐2003.120pg. Climate Change Vulnerability Assessment for Colorado BLM 213 Golden Eagle Aquilachrysaetos G5/S3S4B,S4N Family:Accipitridae Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostatewiderankisbasedon:theprojectedincreasesintemperaturefortheassessed area,increasedwindenergydevelopmentandthegreaterrisktomortalityfromwindturbinesthan otherraptors,limitedprecipitationvariationtheeaglehashistoricallyexperienced,limitednumber ofpreyspeciestheeagledependsupon,andapredicteddecreaseinbreedingrange.Climate projectionssuggestthatsummertemperaturesacrosstherangeoftheGoldenEagleintheassessed areawillincrease6°Fbytheendofthecenturyunderaloweremissionsscenario,withincreasesof morethan10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009). Distribution:InColorado,goldeneaglesbreedprimarilyinmontanehabitatsinthewestand canyonhabitatsinthesoutheast.ThereissomelimitedbreedinginnortheastColorado.Inwinter, goldeneaglesrangemorewidelyandoccurcommonlythroughoutColorado.Habitat:Golden eaglesuseaverywiderangeofhabitats.Fornestingtheymostfrequentlyusecliffsbutwillalso nestintrees.Becauseoftheirlargesizeandpredatorynature,theyrequirelargeareasofforaging habitat.Forforagingtheyusehigh‐andmid‐elevationpineforest,piñon‐juniperwoodlands, sagebrushandothershrubhabitats,grassland,andagriculturalhabitatsareallusedbyGolden eagles. CCVI Scoring B1)Exposuretosealevelrise.Neutral. 214 Colorado Natural Heritage Program © 2015 B2a)Distributionrelativetonaturalbarriers.Neutral.Significantnaturalbarriersdonotexist forthisspecies.Thisraptorisavolantspeciesthatcantraversemountainrangesandlargebodies ofwater. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Significantanthropogenic barriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyoveroraround potentialanthropogenicbarriers. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.GoldenEaglesareatgreaterrisktomortalityfromwindturbinesthanother raptors(USFWS2011).Windenergydevelopmentisexpectedtoincreasewithintherangeofthe GoldenEagleinColorado(NRDC2014). C1)Dispersalandmovements.Decrease.GoldenEaglesreadilydispersemorethan10kilometers fromhatchingsitetobreedingareas(Kochertetal.2002) C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheGoldeneagleintheassessedareahasexperiencedanaverage(51.7‐77°F/31.8‐ 43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. InNorthAmerica,GoldenEagle'sbreedingsuccessappearstobecompromisedbythenumberof extremelyhotdaysduringthebroodrearingperiod(Steenhofetal.1997).Climateprojections suggestthatsummertemperaturesacrosstherangeoftheGoldenEagleintheassessedareawill increase6°Fbytheendofthecenturyunderaloweremissionsscenario,withincreasesofmore than10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009) C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatincrease.WithintheassessedareatheGoldenEaglehas experiencedslightlylowerthanaverage(20‐30inches/255‐508mm)precipitationvariationinthe past50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutral.GoldenEaglereproductivesuccessappearstobe independentofanyparticularprecipitationregime(Steenhofetal.1997andCrandall2005). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.TheGoldenEagleisnotdependentonanydisturbanceregimesuchasfireorfloodingand aremostdependentuponsuitablepreypopulationsinforagingareas(Steenhofetal.1997and Crandall2005). C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheGoldenEagleisnotdependenton habitatswithice,snow,oronsnowpack. Climate Change Vulnerability Assessment for Colorado BLM 215 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheGoldenEagleis notdependentuponanyuncommongeologicalelements.However,theyoftennestoncliffs,butalso willnestintreesandontheground,riverbanksandhumanstructures(Kochertetal.2002). Climatechangeshouldnotimpacttheavailabilityofsuitablecliffsitesfornesting. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheGoldenEagleisnot dependentonanyotherspeciestocreatesuitablehabitatforitsexistence. C4b)Dietaryversatility.Somewhatincrease.TheGoldenEagledependsuponafewsmall mammalaspreyincludinghares(Lepusspp.)andrabbits(Sylvilagusspp.);alsogroundsquirrels (Spermophilusspp.),prairiedogs(Cynomysspp.)andmarmots(Marmotaspp.)(Kochertetal. 2002). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGoldenEagleisaself‐ disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractions,otherthanthosediscussedabove,areimportanttothepersistenceofthe GoldenEagle. C5a)Measuredgeneticvariation.Neutral.Thegeneticdiversityofthegoldeneaglehasbeen reportedtobeaverage(Doyleetal.2014). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Increase.Thepredictedbreedingrange oftheGoldenEagleintheassessedareaispredictedtodeclineby79percent(NationalAudubon Society2013). D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Crandall,R.H.2005.IdentifyingenvironmentalfactorsinfluencingGoldenEaglepresenceandreproductivesuccess. Master'sthesis,UniversityofMontana. DoyleJM,KatznerTE,BloomPH,JiY,WijayawardenaBK,etal.(2014)TheGenomeSequenceofaWidespreadApex Predator,theGoldenEagle(Aquilachrysaetos).PLoSONE9(4):e95599.doi:10.1371/journal.pone.0095599 216 Colorado Natural Heritage Program © 2015 Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge UniversityPress. Kochert,M.N.,K.Steenhof,CL.McintyreandE.H.Craig.2002.GoldenEagle(Aquilachrysaetos),TheBirdsofNorth AmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline: http://bna.birds.cornell.edu/bna/species/684doi:10.2173/bna.684" NationalAudubonSociety.2013.DevelopingaManagementModeloftheEffectsofFutureClimateChangeonSpecies:A ToolfortheLandscapeConservationCooperatives.UnpublishedreportpreparedfortheU.S.FishandWildlifeService. NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica. http://www.nrdc.org/energy/renewables/energymap.asp Steenhof,K.,M.N.KochertandT.L.McDonald.1997.InteractiveEffectsofPreyandWeatheronGoldenEagle Reproduction.JournalofAnimalEcology,66:350‐362. U.S.FishandWildlifeService(USFWS).2011.DraftEagleConservationPlanGuidance. Climate Change Vulnerability Assessment for Colorado BLM 217 Greater Sage‐grouse Centrocercusurophasianus G3G4/S4 Family:Phasianidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankofHighlyVulnerableisbasedonthefollowingfactors:1)lessthan 10%ofsagebrushecosystemsinCOareprojectedtobeoutsideofcurrentclimaticenvelope(see Ecosystemschapter);2)outsideoftheirrelianceonsagebrushforcoverandfood,thisspecieshas fewrestrictionstouncommongeologicfeatures,norelianceonintraspecificrelationships;3) GreaterSage‐grouse(GrSG)arecapableofmovingseveralkilometers;4)GrSGhaveexperienced averagetemperaturevariationinthepast50years;5)geneticvariationinColoradoishigherthan otherpartsoftheGrSGrange. Distribution:Greatersage‐grouseoccurintheWesternUnitedStatesandCanada.Coloradoison thesoutheasternedgeofthecurrentGrSGrange(ColoradoGreaterSage‐grouseSteering Committee[CGSGSC]2008).WithinColorado,theoccupiedrangeofGrSGisinthenorthwestcorner ofthestateinthefollowingcounties:Eagle,Garfield,Grand,Jackson,Larimer,Mesa,Moffat,Rio Blanco,Routt,andSummit.Habitat:TheGrSGaredependentonsagebrushyeararoundforfood andcover.Femalesandbroodsmayselectriparianhabitatsinthesagebrushtypethatcontainhigh coverofforbsandabundantmoisture(seeCGSGSC2008fordiscussionofseasonalhabitatuse withinsagebrushshrublands).Elevation:7,900‐9,500feet. EcologicalSystem:Sagebrushshrubland CCVI Scoring B1)Exposuretosealevelrise.Neutral. 218 Colorado Natural Heritage Program © 2015 B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Severalpopulationsonthe easternedgeofoccupiedhabitatinCOareseparatedbytheParkRange.Thesehighalpineareas andruggedpeaksmayactasanaturalbarrierformovement. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Thismountainrange isapotentialnaturalbarrierforGrSG.RivervalleysandlargeagriculturalareasinAlberta, Saskatchewan,Montana,andWyomingweresignificantbarrierstoGrSGmovement(Bushetal. 2011).TheeasternandsouthernedgesofGrSGrangeinColoradocontainirrigatedanddryland agriculturalfieldsthatmayserveasbarrierstoGrSGmovement(USGSNationalGapAnalysis Program2004). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.GrSGareconsideredsagebrushobligates.NWColorado,includingRioBlanco County,containslargeexpansesofsagebrushshrublands.Atotalof2,915activenaturalgaswells arecurrentlyoperatinginRioBlancoCounty(COGCC2015).Aprojected1,845newwellswillbe drilledinRioBlancoCountyin2035tomeetenergydemandsinColorado(BBC2008).Increased energydevelopmentinthisareawillresultinfurtherhabitatfragmentationforGrSG.Lessthanone percentoffederallandsinColoradocontainwindenergydevelopmentright‐of‐wayswithin PriorityAreasforGrSGConservationinColorado(LeBeauetal.2014). C1)Dispersalandmovements.Decrease.Averagenest‐to‐wintermovementsinGrSGinWyoming averaged14.4kminarecentstudy(Fedyetal.2012). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,GrSGhasexperiencedaverage(57.1‐77° F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Lessthan 10%ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimatic envelope(SeeEcosystemSectionofreport). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,GrSGhasexperiencedgreaterthanaverage(>40inches/1,016 mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Highqualitybrood‐rearinghabitatsareoften locatedinmesicareaslikestreambedsandwetmeadows(Connellyetal.2000). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.FireisconsideredoneofthetopthreatstoGrSG.Althoughhistoricallynatural fireswereoftenlargeandsevere,theyweretypicallyinfrequentinGrSGhabitat(Brooksetal. 2015).However,duringrecentdecades,fireprobabilityandoccurrencehasincreasedacrossGrSG Climate Change Vulnerability Assessment for Colorado BLM 219 habitat,hinderingtherecoveryofsagebrush,andposingathreattoGrSGhabitat(Brooksetal 2015.) C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thisspeciesmakessnowroostsand burrows(Backetal.1987),butisnotcompletelydependentonsnowcoverforsurvival. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatDecrease.This speciesisnotrestrictedtouncommongeologicfeatures. C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.TheGrSGrelyon sagebrushyear‐roundforfoodandcover. C4b)Dietaryversatility.SomewhatIncrease.Duringthespringandsummer,GrSGconsume insectsandforbs;theirfallandwinterdietiscomprisedentirelyofsagebrush(CGSGSC2008). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Neutral.NorthPark,MiddlePark,andEaglepopulationsin high‐elevationvalleyinColoradoaregeneticallydistinctfrompopulationsintheWyomingBasin thataremorewide‐spread(Oyler‐McCanceetal.2005).NopopulationsinColoradohavebeen identifiedashavinganextremelylownumberofhaplotypes,ascomparedtothoseintheColumbia Basin(Oyler‐Mccanceetal.2005). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Geneticstestingacross therangeofGrSGdidnotrevealanypopulationbottlenecksinColoradopopulations(Oyler‐ Mccanceetal.2005).C6)Phenologicalresponsetochangingseasonaltemperatureand precipitationdynamics.Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Back,G.N.,M.R.Barrington,andJ.K.McAdoo.1987.SageGrouseuseofsnowburrowsinnortheasternNevada.Wilson Bulletin99:488‐490. BBCResearchandConsulting.2008.NorthwestColoradoSocioeconomicAnalysisandForecasts.Reportpreparedfor AssociatedGovernmentsofNorthwestColorado.179pg.Availableonlineat http://www.colorado.gov/cs/Satellite?blobcol=urldata&blobheadername1=ContentDisposition&blobheadername2=Cont 220 Colorado Natural Heritage Program © 2015 entType&blobheadervalue1=inline%3B+filename%3D%22Full+Report.pdf%22&blobheadervalue2=application%2Fpdf& blobkey=id&blobtable=MungoBlobs&blobwhere=1251731958720&ssbinary=true. Brooks,M.L.,J.R.Matchett,D.J.Shinneman,andP.S.Coates.2015.Firepatternsintherangeofgreatersage‐grouse,1984– 2013‐Implicationsforconservationandmanagement:U.S.GeologicalSurveyOpen‐FileReport2015‐1167,66p. Bush,K.L.,C.K.Dyte,B.J.Moynahan,C.L.Aldridge,H.S.Sauls,A.M.Battazzo,B.L.Walker,K.E.Doherty,J.Tack,J.Carlson,D. Eslinger,J.Nicholson,M.S.Boyce,D.E.Naugle,C.A.Paszkowski,andD.W.Coltman.2011.Populationstructureandgenetic diversityofgreatersage‐grouse(Centrocercusurophasianus)infragmentedlandscapesatthenorthernedgeoftheir range.ConservationGenetics12:527‐542 ColoradoGreaterSage‐grouseSteeringCommittee[CGSGSC].2008.Coloradogreatersage‐grouseconservationplan. ColoradoDivisionofWildlife,Denver,Colorado,USA. ColoradoOilandGasCommission(COGCC).2015.WeeklyOilandGasStatisticsforFeb2,2015.AccessedonlineFeb21, 2015atwww.colorado.gov/cogcc. Connelly,J.W.,M.A.Schroeder,A.R.Sands,andC.E.Braun.2000.Guidelinestomanagesagegrousepopulationsandtheir habitats.WildlifeSocietyBulletin28:967‐985. Fedy,B.C.,C.L.Aldridge,K.E.Doherty,M.O’Donnell,J.L.Beck,B.Bedrosian,M.J.Holloran,G.D.Johnson,N.W.Kaczor,C.P. Kirol,C.A.Mandich,D.Marshall,G.McKee,C.Olson,C.C.Swanson,andB.Walker.2012.Interseasonalmovementsof greatersage‐grouse,migratorybehaviour,andanassessmentofthecoreregionsconceptinWyoming.JournalofWildlife Management76(5):1062‐1071. LeBeau,C.,J.Fruhwirth,J.R.Boehrs.2014.AnalysisoftheOverlapbetweenPriorityGreaterSage‐GrouseHabitatsand ExistingandPotentialEnergyDevelopmentAcrosstheWest.FinalReportforWesternValuesProject.Preparedby WesternEcoSystemsTechnology,Inc.36pg.Onlineat:http://westernvaluesproject.org/wp‐ content/uploads/2014/10/Greater‐Sage‐Grouse‐Priority‐Habitats‐and‐Energy‐Development.pdf. Oyler‐McCance,S.J.,S.E.Taylor,andT.W.Quinn.2005.Amultilocusgeneticsurveyofgreatersage‐grouseacrosstheir range.MolecularEcology14:1293‐1310. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. Climate Change Vulnerability Assessment for Colorado BLM 221 Gunnison Sage‐grouse Centrocercusminimus G1/S1 ListedThreatened Family:Phasianidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdecreaseingrowthofmountainbigsagebrushduetoclimatechange;3)relianceonmesic habitattypesforbrood‐rearinghabitat;4)lackofgeneticdiversity;5)potentialincreaseinfire frequencyinsagebrushhabitatsduetoprojectedtemperatureincreases. Distribution:LimitedtosouthwestColoradoandsoutheastUtah.InColorado,Gunnison‐sage‐ grouseoccurinthefollowingcounties:Delta,Dolores,Gunnison,Hinsdale,Mesa,Montrose,San Miguel,andSaguache(USFWS2014).Habitat:Gunnisonsage‐grouserelyonlargeexpansesof sagebrushhabitatforfoodandcover;mesicareasalongripariancorridors,aswellaswetmeadows providebrood‐rearinghabitat(USFWS2014). EcologicalSystem:Sagebrushshrubland CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Gunnisonsage‐grouserely onlarge,continuous,unfragmentedlandscapesforsurvival(GSGRSC2005).Theglobaldistribution ofGunnisonsage‐grouseislimitedtosevenpopulations,sixofwhicharelocatedinColorado.The remainingpopulationstraddlestheUtah/Coloradoborder.Gunnisonsage‐grouseoccurinareas 222 Colorado Natural Heritage Program © 2015 withelevationsrangingfrom2,300to2,900m(7,500to9,5000ft)ofelevation.Areasbetween manyoftheColoradopopulationsdonotcontainsuitablehabitatandhaveelevationsmuchhigher thanthedocumentedrangepreferredbythespecies.TheGunnisonRiverandtheBlackCanyon mayalsoposeanaturalbarriertomovement. B2b)Distributionrelativetoanthropogenicbarriers.Increase/SomewhatIncrease.Asnoted aboveinB2a,Gunnisonsage‐grouserelyonlarge,continuous,unfragmentedlandscapesfor survival(GSGRSC2005).Humanpopulationsandassociateddevelopmentareprojectedtoincrease nearmostGunnisonsage‐grousepopulations(USFWS2014).Habitatdeclinefromdisturbanceand fragmentationcausedbyroadsandpowerlinesisacurrentandfuturethreattothesurvivalof Gunnisonsage‐grouseinColorado(USFWS2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin theBasin,itcouldaffectthelong‐termviabilityofGunnisonsage‐grousewithintheBasin(USFWS 2014).Noexisting,pending,orauthorizedwindenergysitesarewithintheColoradoportionof occupiedGunnisonsage‐grousehabitat(USFWS2014).Noinformationregardingsolarenergy developmentwasincludedinthefinalruleissuedbyUSFWSin2014,soitislikelynotathreatin occupiedGunnisonsage‐grousehabitat. C1)Dispersalandmovements.SomewhatDecrease.Gunnisonsage‐grousearegenerally considerednonmigratory,butsomeseasonalmovementshavebeendocumented.IntheGunnison Basin,individualsgenerallymovelessthan10km(GSGRSC2005),butmovementsasgreatas56 kmhavealsobeenreportedintheBasin(Phillips2013). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease. PredictingtemperaturesinoccupiedhabitatforGunnisonsage‐grouseischallenging.Inone scenario,averagesummertemperaturesarepredictedtoincreaseinwesternColoradoby2.8˚Cby 2050(UCAR2009),andaveragewintertemperaturescouldincreaseby2.2˚Cby2050(UCAR 2009).Overtime,increasedtemperaturescouldreducegrowthofmountainbigsagebrush, resultinginareductionofsuitablehabitatforGunnisonsage‐grouse(USFWS2014). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Highqualitybrood‐rearinghabitatincludes mesicmeadows,springs,seeps,andlowvegetationriparianareas,alldependentonadequate Climate Change Vulnerability Assessment for Colorado BLM 223 moisture(GSGRSC2005;USFWS2014).Thesehabitatstypesarehighlyvulnerabletoclimate change. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Inpreviousreports(TNCetal.2011),firehasbeencitedasanaturally occurringeventthatbenefitsGunnisonsage‐grousebycreatingapatchworkoflowerandhigher densitysagebrush,andthatclimatechangeislikelytoalterfireregimestherebyreducinghigh‐ qualityhabitatforthespecies.MorerecentreportsindicatethattheimpactsoffireonGunnison sage‐grousehabitatarenotwellunderstood.However,itisgenerallyacceptedthatfirecancause anincreaseinweedyplantspeciessuchascheatgrass,andcankillmountainbigsagebrush, resultingindirectlossofhabitatduetoreducedcoverandforage(CallandMaser1985;USFWS 2014).FireisnotconsideredacurrentthreattoGunnisonsage‐grouse,butbestavailable informationonclimatechangeindicatesthatfirefrequencyislikelyafuturethreattothespeciesif firefrequencyincreasesaspredictedbyclimatechangemodels(Lukasetal.2014;USFWS2014). C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thisspeciesisnotdirectlydependenton snoworiceforsurvival. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.Thisspeciesrelieson sage‐brushasacriticalcomponentoftheirdiet,aswellasforcoverthroughallseasons(GSGRSC 2005). C4b)Dietaryversatility.Increase.Gunnison’sSage‐grouserelyonsage‐brush(Artemisiaspp.)asa criticalcomponentoftheirdietthroughoutallseasons;theyalsofeedonalargenumberofgrasses, forbs,buds,andinsectswhenavailable(GSGRSC2005).Theyalsodependonherbsandforbsinthe summeralongwiththeinsectsthatusethesamehabitat(importantforchickgrowth);factorsthat couldbeimpactedbyclimatechangetothedegreethatitincludesdroughtsandhotspells(TNCet al.2011). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.GreatlyIncrease.Thisspeciesrelies onsage‐brushasacriticalcomponentoftheirdiet,aswellasforcoverthroughallseasons(GSGRSC 2005). C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Increase/SomewhatIncrease.GeneticdiversityinGunnison sage‐grousehasbeeninvestigatedusingmitochondrialDNAandnuclearmicrosatellitedata(Oyler‐ McCanceetal.2005).Resultsindicatelowlevelsofdiversity,especiallyincomparisontodiversity foundingreatersage‐grouse(Oyler‐McCanceetal.2005). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. 224 Colorado Natural Heritage Program © 2015 C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Neutral.AcrosstheentirerangeofoccupiedhabitatforGunnisonsage‐ grouse,54percentoccursonFederallands,43percentonprivatelands,and3percentonstate lands(USFWS2014). Literature Cited Call,M.W.andC.Maser1985.Call,M.W.andC.Maser.1985.Wildlifehabitatsinmanagedrangelands‐‐thegreatbasinof southeasternOregon:Sagegrouse.Gen.Tech.Rep.PNW‐GTR‐187.Portland,OR:U.S.DepartmentofAgriculture,Forest Service,PacificNorthwestResearchStation. GunnisonSage‐grouseRangewideSteeringCommittee(GSGRSC).2005.Gunnisonsage‐grouserangewideconservation plan.ColoradoDivisionofWildlife,Denver,Colorado.USA. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Oyler‐McCance,S.J.,J.St.John,S.E.Taylor,A.D.Apa,andT.W.Quinn.2005.PopulationgeneticsofGunnisonSage‐Grouse: ImplicationsforManagement.JournalofWildlifeManagement69(2):630‐637. Phillips,M.2013.PreliminarydataonGunnisonsage‐grousemovement,citedinUSFWS2014(seebelow).ColoradoParks andWildlife. TheNatureConservancy(TNC).2011.Gunnisonbasin:climatevulnerabilityassessmentreviewworkshop,Gunnison climateworkinggroup,May12‐13,2011.130pp. UniversityCorporationforAtmosphericResearch(UCAR).2009.RCPMdataandanalysisprovidedbytheInstituteforthe StudyofSocietyandEnvironment(ISSE)attheNationalCenterforAtmosphericResearch(NCAR),basedonmodeldata fromtheWorldClimateResearchProgramme'sCoupledModelIntercomparisonProjectphase3(WCRPCMIP3)multi‐ modeldataset.[http://rcpm.ucar.edu]. U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior. Climate Change Vulnerability Assessment for Colorado BLM 225 Long‐Billed Curlew Numeniusamericanus G5/S2B Family:Scolopacidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialincreaseinwind energydevelopmentinLong‐BilledCurlewbreedinghabitatand2)relianceonwetlands,pondsand playasthatmaybevulnerabletodryingunderprojectedincreasesintemperatureduetoclimate change. Distribution:InColorado,Long‐BilledCurlewbreedontheeasternplainswithpopulations concentratedinthesoutheastcornerofthestate(ColoradoPartnersinFlight2000;ColoradoBird AtlasPartnership1998).Habitat:InColorado,Long‐BilledCurlewsbreedinshortgrassandmixed‐ grassprairiehabitats,usuallyincloseproximitytowater(ColoradoBirdAtlasPartnership1998). Elevation:Noinformationonspecificelevationrangesisavailable,butduetotheirpresenceonthe easternplains,itislikelythattheLong‐BilledCurlewismostcommonlyfoundbetween4,000and 7,000ft. EcologicalSystem:ShortgrassPrairie,Mixed‐GrassPrairie CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.TheRockyMountainsmay actasabarriertomigration(Pageetal.2014). B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Largetractsof Colorado’sshortgrassprairiehavebeenconvertedtocropland.Long‐BilledCurlewusecropland 226 Colorado Natural Heritage Program © 2015 lessthanexpectedbasedonavailability(Dechantetal.1999).Whilethisspeciesishighlymobile andcapableofflyingovertheseareas,theremaybeenergeticcostsassociatedwithcrossingthese croplandsinordertoreachmoresuitablehabitatinshortgrassprairie. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.Long‐BilledCurlewnestprimarilyineasternColoradoinshortgrassprairies, withasmallcontingentinMesaCountyontheWesternSlope(ColoradoBirdAtlasPartnership 1998).AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterofColorado neartheNewMexicoandNebraskabordershasexcellentwindresources(DOE2004).Wind turbinescancausedirectimpactstobirdsviacollisionsthatresultininjuryormortality(Kunzetal. 2007;Kuvleskyetal.2007),aswellasindirectimpactsviahabitatlossandbarrierstomovement (DrewittandLangston2006;Kuvleskyetal.2007;Pruettetal.2009;Kieseckeretal.2011). C1)Dispersalandmovements.Decrease.Long‐BilledCurlewbreedinColoradoandundertake long,seasonalmigrations. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isassociatedwithshortgrassprairieinColoradoandisnotlimitedtocoolorcoldhabitats (ColoradoBirdAtlasPartnership1998). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thisspeciesreliesonbothdryandwetareasinthe shortgrassprairie.GrassyfloodplainsalongcreeksinColoradoprovidenestinghabitatforLong‐ BilledCurlewinColorado;wetmeadowsareoftenusedasforagingareas(Davis1949;Johnsgard 1979and1980). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Long‐BilledCurlewrelyonponds,playas,andlakesforfeeding,bathingand drinking(ColoradoBirdAtlasPartnership1998).Ontheshortgrassprairie,manyofthesearetied toseasonalprecipitationsuchasspringandsummerrainevents. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Long‐ BilledCurlewusewetmeadowsandplayasineasternColorado,whichcanbeunusualfeaturesin manycountieswhereshortgrassprairiehasbeenconvertedtocropland. Climate Change Vulnerability Assessment for Colorado BLM 227 C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.TheLong‐BilledCurlewispredominantlycarnivorous,and consumessmallinvertebrates(grasshoppers,beetles,earthworms,spiders)aswellassomewild fruits(DuggerandDugger2002;seeallauthorsinDark‐SmileyandKeinath2004).Largerprey itemsincludetoadsandsnails,whichareconsumedduringmigration(RedmondandJenni1986). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown.MoreinformationisneededonLong‐BilledCurlew genetics. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver, Colorado:ColoradoBirdAtlasPartnership.636pg. ColoradoPartnersInFlight[CoPIF].2000.ColoradoLandbirdConservationPlan.Available:www.rmbo.org/pif/bcp/ Dark‐Smiley,D.N.andD.A.Keinath.2004.SpeciesAssessmentforLong‐BilledCurlew(Numeniusamericanus)inWyoming. PreparedfortheBureauofLandManagement,Cheyenne,Wyoming.WyomingNaturalDiversityDatabaseReport,60 pages. Davis,W.B.1949.Long‐billedCurlewbreedinginColorado.Auk66:202. Dechant,J.A.,M.L.Sondreal,D.H.Johnson,L.D.Igl,C.M.Goldade,P.A.Rabie,andB.R.Euliss.1999(revised2003).Effectsof managementpracticesongrasslandbirds:Long‐billedCurlew.NorthernPrairieWildlifeResearchCenter,Jamestown,ND. 19pages. DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015. Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42. 228 Colorado Natural Heritage Program © 2015 Dugger.B.D.,andK.M.Dugger.2002.Long‐billedCurlew(Numeniusamericanus).InTheBirdsofNorthAmerica,No.628 (A.PooleandF.Gill,eds.).TheBirdsofNorthAmerica,Inc.,Philadelphia,PA. Johnsgard,P.A.1979.BirdsoftheGreatPlains.UniversityofNebraskaPress,Lincoln,Nebraska.539pages. Johnsgard,P.A.1980.ApreliminarylistofthebirdsofNebraskaandadjacentPlainsstates.UniversityofNebraska, Lincoln,Nebraska.156pages. Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N..Nibbelink,andN.D.Nieumuth. 2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566. Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R..Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.Szewczak. 2007a.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidancedocument. JournalofWildlifeManagement71:2449–4486.Available:http://www.wind‐watch.org/documents/wp‐ content/uploads/wild‐71‐08‐45.pdf. Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐ 2498. Page,G.W.,N.Warnock,T.L.Tibbitts,D.Jorgensen,C.A.Hartman,andL.E.Stenzel.2014.Annualmigratorypatternsof Long‐BilledCurlewsintheAmericanWest.TheCondor116(1):50‐61. Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof WindEnergy.ConservationBiology23(5)1253‐1259. Redmond,R.L.,andD.A.Jenni.1986.PopulationecologyoftheLong‐billedCurlew(Numeniusamericanus)inwestern Idaho.Auk103:755‐767. Climate Change Vulnerability Assessment for Colorado BLM 229 Mountain Plover Charadriusmontanus G3/S2B Family:Charadriidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostatewiderankisbasedon:thelackofnaturaloranthropogenicbarriersforthis highlyvagilebird,theircapabilitytoengageinlongdistancedispersalandmovementsallowingthe plovertotrackshiftingclimateenvelopes,theirpreferenceforburnedsites(AugustineandDerner 2012)coupledwithincreasedfirefrequencyprojectedduetoclimatechange,highratesofadult survivalandnestsuccessratesduringperiodsofdroughtthatisprojectedtoincreasedueto climatechange,andthehighgeneticvariabilityexhibitedwithinMountainploverpopulationsthat shouldincreasetheirabilitytoadapttoclimatechange.Climatemodelsprojectincreasedwarming anddroughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto5.5°Fby 2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2 emissionsscenario),withthegreatestincreasesinthesummerbreedingseasonandduringfall (Melilloetal.2014). Distribution:InColorado,thegreatestnumbersofbreedingMountainPloversoccurinWeld County(GraulandWebster1976).Thebreedingrangeofthisspecieshasundergoneadramatic long‐termcontraction,bothinColorado(AndrewsandRighter1992)andthroughoutthewestern GreatPlains(GraulandWebster1976).Habitat:BreedingMountainPloversoccupyopenhabitats withlow‐growingvegetation,especiallyshortgrassprairiecharacterizedbythepresenceofblue gramagrassandbuffalograss(Graul1975,GraulandWebster1976,KnopfandMiller1994).In grasslandswherevegetationgrowstallerthanapproximatelythreeinchesinheight,Mountain Ploversuseintensivelygrazedareas(GraulandWebster1976,Knopf1996),prairiedogtowns (Knowlesetal.1982;KnowlesandKnowles1984,OlsonandEdge1985,Shackford1991),and falloworrecentlyplowedagriculturalfields(Shackford1991,Shackfordetal.1999). 230 Colorado Natural Heritage Program © 2015 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist forthisspecies.TheMountainPloverisaGreatPlainsinhabitantandishighlyvolant,capableof traversingmountainrangesandlargebodiesofwater.Itisaseasonalmigrant,whosehomeranges averageover50hectaresinsize(KnopfandRupert1996). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Neutral.Significant anthropogenicbarriersdonotexistforthisspecies.Thisbirdisavolantspeciesthatcanflyoveror aroundpotentialanthropogenicbarriers. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. ThehabitatofthisGreatPlainsspeciesishighlysusceptibletopotentialdevelopmentofwind farms/solarfarmsandbiofuelsproduction(AndresandStone2010).Inthefaceofrisingclimate changeandcoststoextractfossilfuels,windenergydevelopmentisexpectedtoincreasewithinthe rangeoftheMountainPloverinColorado(NRDC2014). C1)Dispersalandmovements.Decrease.MountainPloverareknowntodisperseupto50 kilometersfromtheirnatalregions(KnopfandWunder2006). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheMountainploverintheassessedareahasexperiencedanaverage(51.7‐77° F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. Adultsactivelyshadechicksonhotdays,andadultsandchicksoftenseekshade(Knopfand Wunder2006).Increasedtemperaturesassociatedwithclimatechangeintheassessedarea (Melilloetal.2014)couldleadtoincreasedbroodrearingstressforMountainPlover. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.WithintheassessedareatheMountainPlover hasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitationvariationinthepast50 years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatdecrease.Adultsurvivalandnestsuccessishighest duringdroughtperiods,butnestsuccessisalsoenhancedbycoolertemperatures(Dinsmore2008, Dreitzetal.2012).Inthefuture,climatechangeisprojectedtoincreasetemperatures,butitwill alsoincreasedroughtfrequency(Melilloetal.2014),whichmayincreaseadultsurvivaland recruitmentofyoungMountainPlover.However,theinterplayofclimatechangeinduceddrought andwarmingwithinprairieecosystemswillbedynamic,makingitdifficulttoassesshowthiswill impactMountainploverpopulationtrendsovertime. Climate Change Vulnerability Assessment for Colorado BLM 231 C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Somewhatdecrease.MountainPloverreactfavorablytofire,andwiththepredictedincreasein wildfireintheassessedareaduetoclimatechange(Melilloetal.2014),thisshouldleadto somewhatofadecreaseintheirvulnerabilitytohowclimatechangewillimpactthisindexfactor.In somepartsoftheirrange,MountainPloversareattractedtoburnedgrasslandsinbreedingareas fornestingandinnonbreedingareasforforagingandnightroosting(WunderandKnopf2003, Knopf2008).MountainPloverresponsetoburnsisoftenquick,withbirdsappearingonfields wherefiresarestillsmoldering(KnopfandWunder2006).Increaseddroughtassociatedwith climatechangeintheaccessedareaisexpectedtoincreasewildfirefrequency(Melilloetal.2014), potentiallybenefittingMountainPlover. C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheMountainPloverisnotdependenton habitatswithice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheMountainPlover isnotdependentuponanyuncommongeologicalelements. C4a)Dependenceonotherspeciestogeneratehabitat.SomewhatIncrease.TheMountain Ploverusesareasofshortgrassesthathavebeengrazedbyprairiedogs,cattleandother herbivores(Dinsmore2003). C4b)Dietaryversatility.Neutral.MountainPloverareopportunisticforagersthatfeedonabroad rangeofinsects(KnopfandWunder2006). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheMountainPloverisa self‐disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheMountainPlover. C5a)Measuredgeneticvariation.SomewhatDecrease.MountainPloverpopulationsexhibit considerablegeneticmixing,whichresultsinhighgeneticvariabilitywithinpopulations(Oyler‐ McCanceetal.2005). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. 232 Colorado Natural Heritage Program © 2015 Literature Cited Andres,B.A.,andK.L.Stone.2010.ConservationPlanfortheMountainPlover(Charadriusmontanus),Version1.1. ManometCenterforConservationSciences,Manomet,Massachusetts. Andrews,R.,andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.DenverMus.Nat.Hist., Denver.442pp. Augustine,D.J.,andJ.D.Derner.2012.DisturbanceRegimesandMountainPloverHabitatinShortgrassSteppe:Large HerbivoreGrazingDoesNotSubstituteforPrairieDogGrazingorFire.ManagementandConservation76:721‐728. Dinsmore,S.J.2003.MountainPlover(Charadriusmontanus):atechnicalconservationassessment.[Online].USDAForest Service,RockyMountainRegion.Available:http://www.fs.fed.us/r2/projects/scp/assessments/mountainplover.pdf [1/23/2015]. Dinsmore,S.T.2008.InfluenceofdroughtonannualsurvivaloftheMountainPlover.TheCondor,110:45–54. Dreitz,V.J.,R.Y.Conrey,andS.K.Skagen.2012.Droughtandcoolertemperaturesareassociatedwithhighernestsurvival inMountainPlovers.AvianConservationandEcology:[online]URL:http://www.ace‐eco.org/vol7/iss1/art6/. Graul,W.D.1975.BreedingbiologyoftheMountainPlover.WilsonBull.87:6‐31 Graul,W.D.,andL.E.Webster.1976.BreedingstatusoftheMountainPlover.Condor78:265‐267. Knopf,F.L.1996.MountainPlover(Charadriusmontanus).inTheBirdsofNorthAmerica,No.211(A.PooleandF.Gill, eds.).TheAcademyofNaturalSciences,Philadelphia,PA,andTheAmericanOrnithologists’Union,Washington,D.C. Knopf,F.L.2008.MountainPloverstudies,PawneeNationalGrassland,1985–2007.Unpublishedreport,Colorado DivisionofWildlife,Denver,CO. Knopf,F.L.,andB.J.Miller.1994.Charadriusmontanus‐montane,grassland,orbare‐groundplover?Auk111:504‐506. Knopf,F.L.andJ.R.Rupert.1996.ReproductionandmovementsofMountainPloversbreedinginColorado.Wilson Bulletin108:28‐35. Knopf,F.L.andM.B.Wunder.2006.MountainPlover(Charadriusmontanus),TheBirdsofNorthAmericaOnline(A.Poole, Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline: http://bna.birds.cornell.edu/bna/species/211doi:10.2173/bna.211. Knowles,C.J.,andP.R.Knowles.1984.AdditionalrecordsofMountainPloversusingprairiedogtownsinMontana.Prairie Naturalist16:183‐186. Knowles,C.J.,C.J.Stoner,andS.P.Gieb.1982.Selectiveuseofblack‐tailedprairiedogtownsbyMountainPlovers.Condor 84:71‐74. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica. http://www.nrdc.org/energy/renewables/energymap.asp Olson,S.L.,andD.Edge.1985.NestsiteselectionbyMountainPloversinnorthcentralMontana.J.RangeManage.38:280‐ 282. Oyler‐McCance,S.J.,J.St.John,F.L.Knopf,andT.W.Quinn.2005.PopulationgeneticanalysisofMountainPloverusing mitochondrialDNAsequencedata.Condor107:354–362. Climate Change Vulnerability Assessment for Colorado BLM 233 Shackford,J.S.1991.BreedingecologyoftheMountainPloverinOklahoma.Bull.OklahomaOrnithol.Soc.24:9‐13. Shackford,J.S.,D.M.Leslie,Jr.,andW.D.Harden.1999.Range‐wideuseofcultivatedfieldsbyMountainPloversduring thebreedingseason.J.FieldOrnithol.70:114‐120. Wunder,M.B.,andF.L.Knopf.2003.TheImperialValleyofCaliforniaiscriticaltowinteringMountainPlovers.Journalof FieldOrnithology74:74–80. 234 Colorado Natural Heritage Program © 2015 Northern Goshawk Accipitergentilis G5/S3B Family:Accipitridae Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostatewiderankisbasedon:theprojectedincreaseintemperatureanddroughtfor theassessedarea,selectionofcoolmicroclimatesfornestplacement,dependenceonold‐forest structurethatmaybethreatenedbyincreasedfrequencyofwildfirecausedbydroughtand warming,andlowlevelsofgeneticvariabilityquestioningthegoshawksadaptabilitytoachanging environment.Regionalannualaveragetemperaturesareprojectedtoriseby2.5°Fto5.5°Fby 2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2 emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014).Under acontinuationofcurrentrisingemissionstrends(A2),reducedwinterandspringprecipitationis consistentlyprojectedforthesouthernpartoftheSouthwestby2100elevatingthepotentialfor wildfire(Melilloetal.2014). Distribution:TheNortherngoshawkisfoundthroughoutthestateofColoradoabove7500feetin elevation(AndrewsandRighter1992).TheColoradoBreedingBirdAtlas(Kingery1998)shows goshawkstobewelldistributedintheSanJuanMountainsandacrossthenorthernmountain ranges.Habitat:InnorthwesternColorado,northerngoshawkstypicallynestinaspen,sometimes inconiferstandslessthan100yearsold,andupto10,000feetinelevation(Kingery1998). Goshawkstendtochoosenesttreesonshallowslopes,flatbenchesinsteepcountry,andfluvial pansonsmallstreamjunctions(Kingery1998). CCVI Scoring B1)Exposuretosealevelrise.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 235 B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist forthisspecies.Thisraptorisavolantspeciesthatcantraversemountainrangesandlargebodies ofwater(NatureServe2014). B2b)Distributionrelativetoanthropogenicbarriers..Neutral.Significantanthropogenic barriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyoveroraround potentialanthropogenicbarriers(NatureServe2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. AlthoughNorthernGoshawkhavebeenreportedtobeatriskofcollisionwithwindturbinesduring migration(Brandes2005)onlyasmallportionoftheirrangeintheassessedareaissuitablefor windenergydevelopmentandtherearenotimportantflywaysforthisraptorwithinthepotential areasofwinddevelopment(NRDC2014).Thisisalowconcernfortheraptorwithintheassessed area. C1)Dispersalandmovements.Decrease.NorthernGoshawksreadilydispersemorethan10 kilometersfromhatchingsitetobreedingareasandhavehomerangesthatarefromthe100sto 1000sofhectaresinsize(SquiresandReynolds1997). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheNortherngoshawkintheassessedareahasexperiencedanaverage(51.7‐77° F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. InsouthernportionsoftheGoshawkrangeincludingtheassessedareagoshawknestareas typicallyhavenortherlyaspectsindicatingaselectionforcoolermicroclimates(USFWS1998). Climateprojectionssuggestthatsummertemperaturesintheassessedareawillincreasefrom6°F morethan10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009), whichcouldmakethegoshawkmorevulnerabletoclimatechangeintheassessedarea. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatincrease.WithintheassessedareatheNorthern Goshawkhasexperiencedslightlylowerthanaverage(20‐30inches/255‐508mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatdecrease.Reproductivesuccessseemstobe negativelyimpactedbyincreasedspringprecipitationandpositivelyinfluencedbywarmer temperatures(Kennedy2003,Patla2997)andwithincreasingtemperaturesanddroughtprojected fortheassessedarea(Karletal.2009)thiscouldpositivelyimpactrecruitment.However, populationgrowthratesaremostsensitivetochangesinadultsurvivalratesandchangesthat influenceadultsurvivalwouldprobablyhaveagreaterinfluenceonpopulationpersistence (Kennedy2003). 236 Colorado Natural Heritage Program © 2015 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thegoshawkisnot dependentuponanyuncommongeologicalelements. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Goshawksaredependentonold‐foreststructureanddecliningprecipitationcoupledwith increasingtemperaturesanddroughtintheassessedareaisprojectedtoincreasetheareaburned bywildfire(Karletal.2009).Thispotentialthreattooldgrowthforestisaconcernforgoshawks (Boyceetal.2006). C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thegoshawkisnotdependentonhabitats withice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thegoshawkisnot dependentuponanyuncommongeologicalelements. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thegoshawkisnotdependent onanyotherspeciestocreatesuitablehabitatforitsexistence. C4b)Dietaryversatility.Neutral.Thegoshawkcapturesawidevarietyofpreyandisclassifiedas apreygeneralist(SquiresandReynolds1997),typicallypreyingonasuiteof8to15species (Reynoldsetal.1992). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thegoshawkisaself‐ disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceofthegoshawk. C5a)Measuredgeneticvariation.SomewhatIncrease.Thegoshawkexhibitshighhaplotype diversityacrosspopulationsinNorthAmerica,butlownucleotidediversitywithinpopulations includingtheRockyMountainpopulation,whichisgeneticallydifferentiatedfromeasternand otherwesternpopulationsoftheraptor(BayarddeVoloetal.2013). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 237 Literature Cited Andrews,R.,andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.DenverMus.Nat.Hist., Denver.442pp. BayarddeVolo,S.,R.T.Reynolds,S.A.Sonsthagen,S.L.TalbotandM.F.Antolin.2013.Phylogeny,postglacialgeneflow,and populationhistoryofNorthAmericanNorthernGoshawk(Accipitergentilis).TheAuk130:342−354. Boyce,D.A.,Jr.,R.T.ReynoldsandR.T.Graham.2006.Goshawkstatusandmanagement:Whatdoweknow,whathavewe done,wherearewegoing?In:Morrison,Michael,ed.Thenortherngoshawk:atechnicalassessmentofitsstatusecology, andmanagement.StudiesinAvianBiology.31:312‐325. Brandes,D.2005.WindpowerdevelopmentandraptormigrationintheCentralAppalachians.HawkMigrationStudies Spring2005:20‐25. Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge UniversityPress. Kennedy,P.L.2003.NorthernGoshawk(Accipitergentilesatricapillus):atechnicalconservationassessment.[Online]. USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/northerngoshawk.pdf[1/22/2015]. Kingery,H.E.(editor)1998.Coloradobreedingbirdatlas.ColoradoBreedingBirdAtlasPartnership,Denver.Colorado. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:January21,2015). NRDC(NaturalResourcesDefenseCouncil).2014.RenewableenergyforAmerica. http://www.nrdc.org/energy/renewables/energymap.asp Patla,S.M.1997.Nestingecologyandhabitatofthenortherngoshawkinundisturbedandtimberharvestareasonthe TargheeNationalForest,GreaterYellowstoneecosystem.M.S.Thesis,IdahoStateUniversity,Pocatello,ID. Reynolds,R.T.,R.T.Graham,M.H.Reiser,RL.Bassett,P.L.Kennedy,D.A.Boyce,G.Goodwin,R.Smith,andE.L.Fisher.1992. ManagementrecommendationsforthenortherngoshawkinthesouthwesternUnitedStates.U.S.D.A.For.Serv.Gen.Tech. Rep.RM‐217.RockyMt.For.andRangeExp.Stn.FortCollins,CO Squires,J.R.andR.T.Reynolds.1997.NorthernGoshawk(Accipitergentilis),TheBirdsofNorthAmericaOnline(A.Poole, Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline: http://bna.birds.cornell.edu/bna/species/298doi:10.2173/bna.298 U.S.FishandWildlifeService(USFWS).1998.Statusreviewofthenortherngoshawkintheforestedwest.Unpublished Report.OfficeofTechnicalSupport,ForestResources,PortlandOregon.Alsoavailableonlineat http://pacific.fws.gov/news/pdf/gh_sr.pdf. 238 Colorado Natural Heritage Program © 2015 Western Snowy Plover Charadriusalexandrinusnivosus G3T3/S1B Family:Charadriidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)naturalbarrierstomovement; 2)potentialincreaseinwindenergydevelopmentinbreedinghabitat;3)relianceonalkali‐covered playasandsandymarginsofreservoirsthatmaybevulnerabletodryingduetoprojectedwarmer temperatures;4)potentialrelianceonseasonalwetlandscreatedbyspringrunoffthatmaybe alteredduetoclimatechange;5)lowamountsofgeneticdifferentiation. Distribution:TheWesternSnowyPlover(SnowyPloverhereafter)isasmallshorebirdthatbreeds onthePacificcoastfromsouthernWashingtontosouthernBajaCalifornia,Mexico,andininterior westernstatesincludingUtah,Idaho,NevadaandColorado(USFWS2012).InColorado,Snowy Ploversnestonalkali‐coveredplayasintheSanLuisValley,aswellasalongsandyshoresof constructedreservoirsinthesoutheasterncornerofthestateintheLowerArkansasRiverBasin (AndrewsandRighter1992;ColoradoBirdAtlasPartnership1998).Theytypicallyarrivein Coloradoinmid‐Aprilanddepartstartingfrommid‐JulyintoOctober(AndrewsandRighter1992). Habitat:InColorado,SnowyPloversnestonalkali‐coveredplayasintheSanLuisValley,aswellas alongsandyshoresofreservoirsintheLowerArkansasRiverBasin.Elevation:Noinformationis availableontheelevationrangeofSnowyPloverinColorado,butbasedondistribution,thespecies likelybreedsatelevationsrangingfrom4,000ftto8,000ft. EcologicalSystem:ShortgrassPrairie,GreasewoodShrublands Climate Change Vulnerability Assessment for Colorado BLM 239 CCVI Scoring B1)Exposuretosealevelrise.Neutral.Sandyoceanbeachesofferhabitatforsnowyplover,and thesemaybelosttosealevelrise.However,theassessmentareaforthisCCVIislimitedto Colorado,sosealevelriseisnotconsideredhere. B2a)Distributionrelativetonaturalbarriers.Neutral.Thisspeciesishighlymobile. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Thisspeciesishighlymobile. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.SnowyPloverareknowntonestintheSanLuisValleyandineasternColorado alongtheArkansasRiver(ColoradoBirdAtlasPartnership1998).AccordingtoDepartmentof Energywindresourcemaps,theeasternquarterofColoradoneartheNewMexicoandNebraska bordershaveexcellentwindresources(DOE2004).Windturbinescancausedirectimpactstobirds viacollisionsthatresultininjuryormortality(Kunzetal.2007;Kuvleskyetal.2007),aswellas indirectimpactsviahabitatlossandbarrierstomovement(DrewittandLangston2006;Kuvlesky etal.2007;Pruettetal.2009;Kieseckeretal.2011). C1)Dispersalandmovements.Decrease.Thisspeciesishighlymobile.SnowyPloversthatbreed intheGreatPlainswinterontheGulfofMexicocoast(Pageetal.2009). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldhabitats. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.SnowyPloversnestonalkali‐coveredplayas intheSanLuisValley,aswellasalongsandyshoresofreservoirsintheLowerArkansasRiver Basin.TheSanLuisValleyislocatedintheRioGrandeRiverBasin.Manywetlandsinthisbasinare dependentonsnow‐meltfromthesurroundingmountains,andthesewetlandsareexpectedtobe moreacutelyaffectedthanotherecosystemsinthearea(USFWS2012).Climatemodelsprojecta rangeof‐28%to+11%inannualrunofffortheRioGrandeBasin,andarangeof‐10%to+19%for theArkansasRiverBasinformid‐century(Lukasetal.2014).Furthermore,changingdemandsfor waterintheseriverbasinsmayresultingreaterfluctuationsinreservoirlevelsintheseareas, whichinturncouldleadtothefloodingofreservoirshorelinesandresultinglossofSnowyPlover nestinghabitat.Lastly,increasedgroundwaterpumpingforagriculturecouldleadtoareductionin availablesurfacewaterandalossofSnowyPlovernestinghabitat(Busby2002). 240 Colorado Natural Heritage Program © 2015 C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.SnowyPloversintheArkansasBasinhavebeendocumentednestingonthe shorelinesofconstructedreservoirs,butintheSanLuisValley,thealkaliflatsthatprovidenesting habitatarelikelytiedtomoreseasonalhydroperiodsassociatedwithspringrunoff. C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.IntheSanLuisValley,runoff fromsnowmeltprovidesflowstowetlandsthatprovidehabitatforSnowyPlover(Laubhanand Gammonley2000). C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.The SnowyPloveroccursonalkaliflatsaroundreservoirsduringthebreedingseason,whilemigrants occuronmudflatsandsandyshorelines(AndrewsandRighter1992).Furthermore,SnowyPlovers intheGreatPlainsfrequentlynestnearwaterbodiesthatcontainhighsalinitylevels,whichthey mayuseforevaporativecoolingduringperiodsofhightemperatures(Purdue1976). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.IntheGreatPlains,SnowyPloverfeedonavarietyof invertebratesincludingflies(Ephydrasp.),beetles(Blediussp.,Cicindelasp.),andmanyterrestrial insectsblownfromsurroundingareasincludinggrasshoppers,lepidopterans,andbeetles(Busby 2002;Purdue1976,GroverandKnopf1982). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.SomewhatIncrease.Geneticstudieshaverevealedlowamounts ofgeneticdifferentiationamongpopulationsofSnowyPlovers,withalmostallvariabilityfound withinpopulations(Funketal.2007). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Noevidencefora populationbottleneckwasfoundinageneticstudyofGreatBasin,Midwest,GulfCoast,andPacific CoastSnowyPloverpopulations(Funketal.2007). C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 241 Literature Cited Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp27. Busby,W.H.2002.KansasRecoveryPlanfortheSnowyPlover(Charadriusalexandrinus).KansasBiologicalSurveyReport toKansasDepartmentofWildlifeandParks.44pg. ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver, Colorado:ColoradoBirdAtlasPartnership.636pg. DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015. Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42. Funk,W.C.,T.D.Mullins,andS.M.Haig.2007.Conservationgeneticsofsnowyplovers(Charadriusalexandrinus)inthe WesternHemisphere:populationgeneticstructureanddelineationofsubspecies.ConservationGenetics8:1287–1309. Grover,P.B.,andF.L.Knopf.1982.HabitatrequirementsandbreedingsuccessofCharadriaformbirdsnestingatSalt PlainsNationalWildlifeRefuge,Oklahoma.JournalofFieldOrnithology53:139‐148. Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth. 2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566. Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M. Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance document.JournalofWildlifeManagement71:2449–4486.http://www.wind‐watch.org/documents/wp‐ content/uploads/wild‐71‐08‐45.pdf. Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐ 2498. Laubhan,M.K.,andJ.H.Gammonley.2000.DensityandforaginghabitatselectionofwaterbirdsbreedingintheSanLuis ValleyofColorado.JournalofWildlifeManagement64:808‐819. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Page,G.W.,L.E.Stenzel,G.W.Page,J.S.Warriner,J.C.WarrinerandP.W.Paton.2009.SnowyPlover(Charadrius alexandrinus),TheBirdsofNorthAmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;Retrievedfromthe BirdsofNorthAmericaOnline:http://bna.birds.cornell.edu/bna/species/154. Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof WindEnergy.ConservationBiology23(5)1253‐1259. Purdue,J.R.1976.AdaptationsoftheSnowyPloverontheGreatSaltPlains,Oklahoma.SouthwesternNaturalist.21:347‐ 357. U.S.FishandWildlifeService.SanLuisValleyConservationArea,ColoradoandNewMexico.2012.DraftEnvironmental AssessmentandLandProtectionPlan.MountainPrairieRegion.Availableonlineathttps://www.fws.gov/mountain‐ prairie/refuges/lpp_PDFs/slv_lppdraft_all.pdf 242 Colorado Natural Heritage Program © 2015 Western Yellow‐billed Cuckoo Coccyzusamericanusoccidentalis G5T2T3/S1B Family:Cuculidae Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostatewiderankisbasedon:narrowhabitatrequirementsanddifficultiesindispersal byjuvenilesandadultsbetweenpatchesofsuitableriparianhabitat,increaseddryinganddrought projectedduetoclimatechangefortheassessedarea,dryingassociatedwithglobalclimatechange causingincreasedwaterwithdrawalforhumanconsumptionresultinginadditionallossand fragmentationofriparianbreedinghabitat,increasedwildfireduetoincreasedfrequencyof droughtinhistoricallywildfirefreeriparianhabitat,andprojectedincreasesintamariskinvasion intosuitableriparianhabitatduetoclimatechange.Climatemodelsprojectincreasedwarmingand droughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto5.5°Fby 2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2 emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014). Projectionsofprecipitationchangesarelesscertain,butunderacontinuationofcurrentrising emissionstrends(A2),reducedwinterandspringprecipitationisconsistentlyprojectedforthe southernpartoftheSouthwestby2100(Melilloetal.2014).Theseprojectedchangesinclimateare predictedtohavedramaticeffectsonthedistribution,quantity,andqualityofsuitableriparian habitatavailableforbreeding,negativelyimpactingpopulationsofthecuckoowithintheassessed area. Distribution:TheRockyMountainBirdObservatoryconductedsurveysforcuckoosinwestern Coloradoduringthesummersof2008through2011andfoundthemalongtheNorthForkofthe GunnisonRiver(DeltaCounty),theColoradoRiver(MesaCounty),nearNucla(MontroseCounty), andtheYampaRiver(MoffatCounty)(Beason2012).Ahandfulofincidentaldetectionswerealso recordedduringthistime,butitwasconcludedthatthespeciesisaveryrarebreederinwestern Coloradoaftersurveyswerecompleted.Habitat:Ariparianspecies,thewesternyellow‐billed Climate Change Vulnerability Assessment for Colorado BLM 243 cuckoobreedsinlow‐tomoderate‐elevationnativeforestsliningtheriversandstreamsofthe westernUnitedStates.Cottonwoodwillowforests(Populusspp.‐Salixspp.)aremostoftenused, althoughotherripariantreespeciescanbeimportantcomponentsofbreedinghabitataswell,such asalder(Alnusspp.),boxelder(Acernegundo),mesquite(Prosopisspp.),Arizonawalnut(Juglans major),Arizonasycamore(Platanuswrightii),oak(Quercusspp.),netleafhackberry(Celtis reticulata),velvetash(Fraxinusvelutina),Mexicanelderberry(Sambucusmexicanus),seepwillow (Baccharisglutinosa),andoccasionally,tamarisk(Tamarixspp.). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist forthisspecies.Thecuckooisavolantlongdistantmigratorthatcantraversemountainrangesand largebodiesofwater. B2b)Distributionrelativetoanthropogenicbarriers.Increase.Somewhatincreasetoincrease. Habitatdestruction,modification,anddegradationfromdamconstructionandoperations;water diversions;riverflowmanagement;streamchannelizationandstabilization;conversionto agriculturaluses,suchascropsandlivestockgrazingintheassessmentareaareconsidered barrierstodispersalbyjuvenileandadultyellow‐billedcuckoos(USFWS2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Modificationstohydrology(impoundments,channelization,andalterationofriverflows,and surfaceandgroundwaterwithdrawal)resultincuckoohabitatlossandfragmentation(USFWS 2014).Thedryingtrendassociatedwithglobalclimatechangemayresultinmoredams,levees, waterwithdrawalsorotheractivitiestoensurefreshwaterforhumanconsumption,whichmay resultinadditionalhabitatlossandfragmentation(USFWS2014). C1)Dispersalandmovements.Somewhatdecreasetodecrease.Limiteddataondispersal suggestshighsitefidelitywithmatingbirdsreturningtotheirpastnestingsiteswhilenatalbirdsdo disperseupto205metersformalesand33,315metersforfemales(McNeiletal.2013). Additionallycuckoosarelong‐distancemigrants,althoughdetailsoftheirmigrationpatternsare notwellknown(Hughes1999).Matedpairsalsohavelargehomerangesthatvaryinsizefrom6‐ 55hectares(Halterman2009). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheWestern‐yellowbilledcuckoointheassessedareahasexperiencedanaverage (51.7‐77°F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease toincrease.Thereisnodirectevidencethatcuckoosrequirecoolmicroclimatesfornesting,butin thewesternU.S.theyarerestrictedtoriparianhabitatswiththickshadedoverstorythatareof higherhumiditythanthesurroundingaridlandscape(Hughs1999,Wiggins2005). 244 Colorado Natural Heritage Program © 2015 C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.Therangeoccupiedbythecuckoointhe assessedareahasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Greatlyincrease.inthewesternU.S.thecuckooisrestrictedto riparianhabitatswiththickshadedoverstorythatareofhigherhumiditythanthesurroundingarid landscape(Hughs1999,Wiggins2005).Thehighersummertemperatures,earlierspringsnowmelt, andlowersummerflowscausedbyclimatechange(Melilloetal.2014),willresultinbothshort‐ termandlong‐termlossofrequiredriparianhabitatfromexcessivewinterscouring,summer drying,andwildfire(USFWS2014). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Somewhatincrease.Thedryingprojectedfortheassessmentareaduetoclimatechangeisexpected toincreasethefrequencyofwildfire(Melilloetal.2014).Historically,wildfirewasuncommonin nativeriparianwoodlands(BuschandSmith1993)andtheexpectedincreasedincidenceof wildfireintocuckoohabitatwillfurtherdegrade,isolate,orfragmentcuckoohabitat(USFWS2014). C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thecuckooisnotdependentonhabitats withice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thecuckooisnot dependentuponanyuncommongeologicalelements. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thecuckooisnotdependenton anyotherspeciestocreatesuitablehabitatforitsexistence. C4b)Dietaryversatility.Neutraltosomewhatincrease.Cuckoosfeedonabroadrangeofitems, butprimarilyonslowmovinginsectsincludinggrasshoppers,butterfliesandmoths,hemipteraand beetles.However,larvaeofthefamilySphingidae(sphinxmoths)havebeennotedasanimportant foodsourceforyellow‐billedcuckoos,andthelackofsuchpreyhasbeenimplicatedinthedecline ofthewesternsubspecies.(Wiggins2005). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thecuckooisaself‐ disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Somewhatincrease. Throughoutmostofitsrange,habitatfortheWesternyellow‐billedcuckooisthreatenedbythe conversionofnativeriparianwoodlandstoriparianvegetationdominatedbytamariskandother nonnativevegetation(USFWS2014).Modelsbasedonprojectedclimatechangepredictthatthis invasivetamariskwillbecomemoredominantinthisregionoverthenext100years(Kernsetal. 2009). C5a)Measuredgeneticvariation.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 245 C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Winterrangeispredictedto increaseby69%by2080(NAS2014). D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Beason,J.P.2012.2011SurveysforYellow‐billedCuckoosinWesternColorado.TechRep.R‐YBCUUSFWS‐09‐3.Rocky MountainBirdObservatory,Brighton,Colorado.30pp. Busch,D.E.andS.D.Smith.1993.Effectsoffireonwatersalinityrelationsofriparianwoodytaxa.Oecologia94a:186‐194 Halterman,M.M.2009.SexualDimorphism,DetectionProbability,HomeRange,andParentalCareintheYellow‐billed Cuckoo.UniversityofNevadaPhD.Dissertation.Accessedonline[2/4/2015]at http://search.proquest.com/docview/304943422. Hughes,J.M.1999.Yellow‐billedCuckoo(Coccyzusamericanus),TheBirdsofNorthAmericaOnline(A.Poole,Ed.).Ithaca: CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline: http://bna.birds.cornell.edu/bna/species/418 Kerns,B.K.,B.J.Naylor,M.Buonopane,C.G.ParksandB.Rogers.2009.Modelingtamarisk(Tamarixspp.)habitatand climatechangeeffectsintheNorthwesternUnitedStates.InvasivePlantScienceandManagement,2:200‐215. McNeil,S.E.,D.Tracy,J.R.StanekandJ.E.Stanek.2013.Yellow‐billedcuckoodistribution,abundanceandhabitatuseon theLowerColoradoRivertributaries:2008‐2012summaryreport.LowerColoradoRiverMulti‐SpeciesConservation Program.BureauofReclamation, Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NationalAudubonSociety(NAS).2014.Audubon’sBirdsandClimateChangeReport:APrimerforPractitioners.National AudubonSociety,NewYork.Contributors:GaryLangham,JustinSchuetz,CandanSoykan,ChadWilsey,TomAuer,Geoff LeBaron,ConnieSanchez,TrishDistler.Version1.2.Available:http://climate.audubon.org/birds/goleag/golden‐eagle [1/29/2015]. Wiggins,D.2005.Yellow‐billedCuckoo(Coccyzusamericanus):atechnicalconservationassessment.[Online].USDA ForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/yellowbilledcuckoo.pdf[2/4/2015]. U.S.FishandWildlifeService(USFWS).2014.EndangeredandThreatenedWildlifeandPlants;ProposedThreatened StatusfortheWesternDistinctPopulationSegmentoftheYellow‐billedCuckoo(Coccyzusamericanus);FinalRule. FederalRegister79(192:59992‐60038). 246 Colorado Natural Heritage Program © 2015 White‐faced Ibis Plegadischihi G5/S2B Family:Threskiornithidae ©John Breltsch Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialwindfarm developmentonColorado’seasternplainsand2)potentialdecreaseinrunoffandprecipitationthat servesasawatersourceforwetlandsintheSanLuisValley. Distribution:InColorado,individualsprimarilynestintheSanLuisValleyandonportionsofthe easternplains,andaretypicallymigrantsintheeasternplainsandmountainparks(Andrewsand Righter1992).Habitat:TheWhite‐FacedIbisisalarge,long‐leggedbirdthatinhabitsfreshwater wetlandsandmarshes(FieldGuidetotheBirdsofNorthAmerica1999,Dark‐SmileyKeinath2003). EcologicalSystem:ShortgrassPrairie;Wetlands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.White‐facedIbisareahighlymobile species,andindividualsthatsummerinColoradoundertakelongmigrationstowinterinsouthern California,Louisiana,andMexico(Rosenbergetal.1991). B2b)Distributionrelativetoanthropogenicbarriers.Neutral.SeeB2aabove.Thisspeciesis highlymobile. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.White‐facedIbisareknowntonestintheSanLuisValleyandontheeastern plainsofColorado(AndrewsandRighter1992).AccordingtoDepartmentofEnergywindresource maps,theeasternquarterofColoradoneartheNewMexicoandNebraskabordershaveexcellent Climate Change Vulnerability Assessment for Colorado BLM 247 windresources(DOE2004).Windturbinescancausedirectimpactstobirdsviacollisionsthat resultininjuryormortality(Kunzetal.2007;Kuvleskyetal.2007),aswellasindirectimpactsvia habitatlossandbarrierstomovement(DrewittandLangston2006;Kuvleskyetal.2007;Pruettet al.2009;Kieseckeretal.2011). C1)Dispersalandmovements.Decrease.SeeB2a.Thisspeciesishighlymobile,andindividuals thatsummerinColoradotravellongdistancestospendthewinterinthesouthernU.S.andMexico (Rosenbergetal.1991). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,White‐FacedIbisinColoradohas experiencedaverage(57.1‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldenvironments.Droughtcouldaffecttheavailabilityofwetlandhabitats, butthisisvulnerabilityisscoredunderC2bii. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,White‐FacedIbishasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Thisspeciesisawetlandobligatethatprefers(almost exclusively)wetlandswithemergentvegetation(Dark‐SmileyandKeinath2003).Drought conditionscancausedryingofemergentvegetationandsuitablenestinghabitats,causingbreeding adultstorelocate.Furthermore,droughtcanmakeibiseggsandyoungmoresusceptibleto predation(Dark‐SmileyandKeinath2003).InRioGrandeBasin,wetlandsdependentonsnow‐melt fromthesurroundingmountains,areexpectedtobemoreacutelyaffectedthanotherecosystemsin thearea(USFWS2012).Climatemodelsprojectarangeof‐28%to+11%inannualrunoffforthe RioGrandeBasinformid‐century(Lukasetal.2014). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Shallow,seasonallyfloodedwetlandscanprovideforaginghabitatforWhite‐ FaceIbis(LaubhanandGammonley2000). C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.IntheSanLuisValley,runoff fromsnowmeltprovidesflowstowetlandsthatprovidehabitatforWhite‐FacedIbis(Laubhanand Gammonley2000). C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.TheWhite‐FacedIbisfeedsprimarilyoncrustaceans, earthworms,andaquaticinsects(SmileyandKeinath2003). 248 Colorado Natural Heritage Program © 2015 C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp27. Dark‐Smiley,D.D.andD.A.Keinath.2003.SpeciesAssessmentforWhite‐FacedIbis(PlegadisChihi)inWyoming.Prepared forU.S.DepartmentoftheInterior.Cheyenne,Wyoming.59pp. DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015. Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42. FieldGuidetotheBirdsofNorthAmerica,ThirdEdition.1999.NationalGeographicSociety,Washington,D.C. Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth. 2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566. Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M. Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance document.JournalofWildlifeManagement71:2449–4486.http://www.wind‐watch.org/documents/wp‐ content/uploads/wild‐71‐08‐45.pdf. Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐ 2498. Laubhan,M.K.,andJ.H.Gammonley.2000.DensityandforaginghabitatselectionofwaterbirdsbreedingintheSanLuis ValleyofColorado.JournalofWildlifeManagement64:808‐819. Climate Change Vulnerability Assessment for Colorado BLM 249 Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof WindEnergy.ConservationBiology23(5)1253‐1259. Rosenberg,K.V.,R.D.Ohmart,W.C.Hunter,andB.W.Anderson.1991.BirdsofthelowerColoradoRiverValley.University U.S.FishandWildlifeService.SanLuisValleyConservationArea,ColoradoandNewMexico.2012.DraftEnvironmental AssessmentandLandProtectionPlan.MountainPrairieRegion.Availableonlineathttps://www.fws.gov/mountain‐ prairie/refuges/lpp_PDFs/slv_lppdraft_all.pdf. 250 Colorado Natural Heritage Program © 2015 Bluehead Sucker Catostomusdiscobolus G4/S4 Family:Catostomidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) warmingstreamtemperaturesmayaffectblueheadsuckerthatgenerallyinhabitcoolstreams3) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;4) relianceongravelbarsforspawning;5)lackofvariabilityinannualprecipitationinlast50years; 6)hybridizationwiththenonnativewhitesuckercouldaffectthegeneticintegrityofthespecies. Distribution:InColorado,theblueheadsuckerisfoundthroughouttheUpperColoradoRiver drainage.Habitat:InColorado,adultblueheadsuckermostoftenarefoundinswifter,higher gradientstreams;larvalfishinhabitnear‐shore,lowvelocityhabitats(Childsetal.1998).Riffles andpoolssupportalgaeandmacroinvertebratesthatareconsumedbyblueheadsuckers(Sigler andSigler1996).Blueheadsuckeroccupywarmtocoolstreams(20˚C)withrockysubstrates (SiglerandSigler1996;Bestgen2000). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Blueheadsuckerarefoundinthe mainstemandtributariesoftheColoradoRiverwithinthestateofColorado(MillerandRees2000). Thespeciescanoccurinhighgradientstreams.Waterfallscouldcreateupstreammovements withinthesestreams.Althoughtheexactleapingabilitiesofblueheadsuckerarenotknown,many Climate Change Vulnerability Assessment for Colorado BLM 251 streamfishesarenotabletojumpaboveheightsof1.0‐1.5m(BjornnandReiser1991;Holtheetal. 2005). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong theColoradoRiveranditstributariescreatebarriersforblueheadsuckermovement.Thisspecies prefersswiftervelocity,highergradientstreamsanddoesnotdowellinimpoundments (BezzeridesandBestgen2002). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.SomewhatDecrease.Morestudiesareneededtoinvestigate movementpatternsofblueheadsucker.Someinvestigatorshavereportedthatthespecies relativelysedentary,movingonlyafewkilometers(Vanicek1967,ReesandMiller2001),while othersreportrecapturingindividuals19kmfromoriginalcapturelocations(HoldenandCrist 1981). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease. Blueheadsuckerinhabitawidevarietyofriversystemsfromsmallcreekstolargerivers.Although generallyinhabitingstreamswithcooltemperatures,theyhavebeenfoundinsmallcreekswith highwatertemperatures(28degreesC)(Ptaceketal.2005,Smith1966). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Speciesshowsapreferenceforenvironments towardthewarmerendofthespectrum C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Highbaseflowsareimportantforthe reproductionsuccessofblueheadsucker(AndersonandStewart2007).Mostpublishedresearch indicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Ray etal.2008,Lukasetal.2014). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Highbaseflowsareimportantforthereproductionsuccessofblueheadsucker (AndersonandStewart2007).MostpublishedresearchindicatesadeclineinrunoffintheUpper ColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukasetal.2014). C2d)Dependenceonsnow‐coveredhabitats.Neutral C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral 252 Colorado Natural Heritage Program © 2015 C4b)Dietaryversatility.Neutral.Blueheadsuckerlarvaefeedondiatoms,zooplankton,and dipteranlarvae(Carteretal.1986;MuthandSnyder1995;Ptaceketal.2005).Adultsandjuveniles feedonmacroinvertebrates,algae,andinsectlarvae(Vanicek1967,Childsetal.1998,Osmundson 1999). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown C5a)Measuredgeneticvariation.Increase.Althoughstudieshaveshownhighgeneticdiversityin blueheadsuckeracrossthespeciesrange(Douglasetal.2009),hybridizationwiththenonnative whitesuckercouldaffectthegeneticintegrityofthespecies.Hybridizationbetweenthenon‐native whitesucker(Catostomuscommersoni)andblueheadsuckerhasbeendocumented,aswellas individualswithgeneticcontributionsfromthewhitesucker,blueheadsucker,andnative flannelmouthsucker(Catostomuslatipinnus)(McDonaldetal.2008).Thenon‐nativewhitesucker hasfacilitatedintrogressionbetweentwonativespecies,andthereforethreatensthegenetic integrityoftheblueheadandflannelmouthsuckers.Ageneticstudyofthespeciesrevealedthree distinctgeographicareasthatareevolutionarilysignificantformaintainingthegeneticintegrityof theblueheadsucker(referredtoasevolutionarilysignificantunits):theBonnevilleBasin,the UpperLittleColoradoRiver,andtheColoradoRiver(Hopkenetal.2013).Allblueheadsucker populationsinthestateofColoradobelongtotheColoradoRiverunit(Hopkenetal.2013). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Anderson,R.M.andG.Stewart.2007.Fish‐FlowInvestigation:II.Impactsofstreamflowalterationsonthenativefish assemblageandtheirhabitatavailabilityasdeterminedby2Dmodelingandtheuseoffishpopulationdatatosupport instreamflowrecommendationsforthesectionsoftheYampa,Colorado,GunnisonandDoloresRiversinColorado. ColoradoDivisionofWildlifeSpecialReportNo.80,DOW‐R‐S‐80‐07.FortCollins. Beatty,R.J.,F.J.Rahel,andW.A.Hubert.2009.Complexinfluencesoflow‐headdamsandartificialwetlandsonfishesina ColoradoRivertributarysystem.FisheriesManagementandEcology16:457‐467. Climate Change Vulnerability Assessment for Colorado BLM 253 Bestgen,K.R.2000.PersonalcommunicationwithDirectorofColoradoStateUniversity’sLarvalFishLabtoColorado ParksandWildlife,FortCollins,Colorado. Bezzerides,N.andK.Bestgen.2002.StatusreviewofroundtailchubGilarobusta,flannelmouthsuckerCatostomus latipinnis,andblueheadsuckerCatostomusdiscobolusintheColoradoRiverbasin.2002.ColoradoStateUniversityLarval FishLaboratory,FortCollins,CO. BjornnT.C.&ReiserD.W.1991.Habitatrequirementsofsalmonidsinstreams.Bethesda,MD:AmericanFisheriesSociety SpecialPublication19:83–138. Carter,J.G.,V.A.Lamarra,andR.J.Ryel.1986.DriftoflarvalfishesintheupperColoradoRiver.JournalofFreshwater Ecology3:567‐577. Childs,M.R.,R.W.Clarkson,andA.T.Robinson.1998.ResourceusebylarvalandearlyjuvenilenativefishesintheLittle ColoradoRiver,GrandCanyon,Arizona.TransactionsoftheAmericanFisheriesSociety127:620‐629. Douglas,M.R.,M.E.Douglas,andM.W.Hopken.2009.PopulationGeneticAnalysisofBlueheadSucker[Catostomus (Pantosteusdiscobolus]AcrosstheSpecies’Range.Onlineat http://www.fws.gov/southwest/es/NewMexico/documents/ZBSESD/Douglas_et_al_2013.pdf Holden,P.B.andL.W.Crist.1981.DocumentationofchangesinthemacroinvertebrateandfishpopulationsintheGreen RiverduetoinletmodificationofFlamingGorgeDam.ContractNo.0‐07‐40‐S1357forWaterandPowerResources Service.Bio/West,Inc.,Logan,UT. HoltheE.,E.Lund,B.Finstad,E.B.Thorstad,andR.S.McKinley.2005.Afishselectiveobstacletopreventdispersionofan unwantedfishspecies,basedonleapingcapabilities.FisheriesManagementandEcology12,143–147. Hopken,M.W.,M.R.Douglas,andM.E.Douglas.2013.StreamhierarchydefinesriverscapegeneticsofaNorthAmerican desertfish.MolecularEcology22:956–971. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. McDonald,D.B.,T.L.Parchman,M.R.Bower,W.A.Hubert,andF.J.Rahel.2008.Anintroducedandanativevertebrate hybridizetoformageneticbridgetoasecondnativespecies.Proc.Natl.Sci.USA.105:10842‐10847. Miller,W.J.andD.E.Rees.2000.IchthyofaunalsurveysoftributariesoftheSanJuanRiver,NewMexico.MillerEcological Consultants,Inc.,FortCollins,CO. Muth,R.T.andD.E.Snyder.1995.DietsofyoungColoradosquawfishandothersmallfishinbackwatersoftheGreen River,ColoradoandUtah.GreatBasinNaturalist55:95‐104. Osmundson,D.B.1999.LongitudinalvariationinfishcommunitystructureandwatertemperatureintheupperColorado River:implicationsforColoradopikeminnowhabitatsuitability.FinalReportforRecoveryImplementationProgram, ProjectNo.48.U.S.FishandWildlifeService,GrandJunction,CO. Ptacek,J.A.,D.E.Rees,andW.J.Miller.2005.Blueheadsucker(Catostomusdiscobolus):atechnicalconservation assessment.USDAForestService,RockyMountainRegion,FortCollins,Colorado. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. Rees,D.E.andW.J.Miller.2001.HabitatselectionandmovementofnativefishintheColoradoRiver,Colorado.Miller EcologicalConsultants,Inc.,FortCollins,CO. 254 Colorado Natural Heritage Program © 2015 Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah;anaturalhistory.UniversityofUtahPress,SaltLakeCity,UT. Smith,G.R.1966.DistributionandevolutionoftheNorthAmericanCatostomidfishesofSubgenusPantosteus,Genus Catostomus.MiscellaneousPublicationsoftheMuseumofZoology,UniversityofMichigan,No.129.Universityof Michigan,AnnArbor,MI. Vanicek,C.D.1967.EcologicalstudiesofnativeGreenRiverfishesbelowFlamingGorgeDam,1964‐1966.Ph.D.Thesis, UtahStateUniversity,Logan,UT. Climate Change Vulnerability Assessment for Colorado BLM 255 Bonytail Chub Gilaelegans G1/SX ListedEndangered Family:Cyprinidae No photo available Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) relianceonrockysubstratesandgravelbarsforspawning;4)lackofvariabilityinannual precipitationinlast50years;5)lackofgeneticvariation. Distribution:ThebonytailchubisconsideredfunctionallyextinctinColorado(CarlsonandMuth 1989).NoverifiableoccurrencesofwildbonytailchubhavebeendocumentedinColoradosince 1984whenoneindividualwascaughtintheBlackRocksareanearGrandJunction,Colorado (Kaedingetal.1986).Acaptivebroodstockwasestablishedfromsomeofthelastwildbonytail collected,andstockingofcaptive‐rearedindividualsisaprimaryrecoverystrategy(Nesleretal. 2003).ThedistributionmapaboverepresentscriticalhabitatasdesignatedbyUSFWS(2003). Habitat:Bonytailchubpreferbackwaterswithrockyormuddybottomsandflowingpools,but reportssuggesttheycanalsooccurinstreamreacheswithswiftcurrents(USFWS2012). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Naturalphysical barrierstomovementintheColoradoRiveranditstributariesarenaturalrapidsandswift 256 Colorado Natural Heritage Program © 2015 turbulentflows,andthesearelikelytofluctuatedependingonflows(U.S.FishandWildlifeService 2002). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong theColoradoRiveranditstributariescreatebarriersforbonytailchubmovement,andaffect seasonalavailabilityofhabitat(U.S.FishandWildlifeService2002). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Decrease.Littleinformationisknownregardingthelifehistory andmovementsofbonytailchub,butfishreleasedinNevadatraveledasmuchas56km(Marsh andMueller1999). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thebonytail chubisadaptedtothelarge,warm‐waterriversandstreamsoftheColoradoRiverBasin.Changes tothermalhabitatshaveoccurredduetothein‐riverhypolimneticdamreleasesandthelossof warm,floodplainwetlands(Kappenmanetal.2012). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Maintenanceofstreamflowisimportant fortherecoveryandconservationofbonytailchub,aspeciesnowconsideredfunctionallyextinctin theUpperColoradoRiverSub‐basin(USFWS2012).Mostpublishedresearchindicatesadeclinein runoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukaset al.2014). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Littleisknownaboutspawningrequirementsforbonytailchub,butitislikelythatlike othermembersofthegenusGila,theyspawninrockysubstrates(USFWS2002).Pulsesinspring flowsareimportantforcreatingcobblebarsaswellasforfloodingbottomlandthatserveas nurseryhabitatforyoung(USFWS2002).Adequatebaseflowsarenecessaryforthecreationand maintenanceofbonytailchubhabitat.Mostpublishedresearchindicatesadeclineinrunoffinthe UpperColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukasetal.2014), whichcouldleadtofurtherlossanddegradationofhabitatforrazorbacksuckers.Increase.(USFWS 2002). C2d)Dependenceonsnow‐coveredhabitats.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 257 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Rockysubstrates andgravelbarsmaybeimportantspawninghabitatforbonytailchub(USFWS2002).Thecreation andmaintenanceofthesehabitatsarejeopardizedbydamsandimpoundmentsthatalternatural hydrologicregimes. C4a)Dependenceonotherspeciestogeneratehabitat.Unknown. C4b)Dietaryversatility.Neutral.Bonytailchubareomnivorous,andconsumeorganicmaterial, aquaticmacrophytes,invertebrates,bullfrogs,andfish(Marshetal.2013). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Increase.Historicgeneticdiversityofthebonytailchubis unknown,andsofewwildindividualsareleftthattheerosionofgeneticvariabilitymayhave alreadyoccurred(USFWS2002). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Carlson,C.A.,andR.T.Muth.1989.TheColoradoRiver:lifelineoftheAmericanSouthwest.CanadianSpecialPublication, FisheriesandAquaticSciences106:220–239.Keppenman,K.M.,E.S.Cureton,J.Ilgen,M.Toner,W.C.Fraser,andG.A. Kaeding,L.R.,B.D.Burdick,P.A.Schrader,andW.R.Noonan.1986.Recentcaptureofabonytail(Gilaelegans)and observationsonthisnearlyextinctcyprinidfromtheColoradoRiver.Copeia4:1021‐1023. Kappenman,K.M.,E.S.Cureton,J.Ilgen,M.Toner,W.C.Fraser,andG.A.Kindschi.2012.ThermalRequirementsofthe Bonytail(Gilaelegans):ApplicationtoPropagationandThermal‐RegimeManagementofRiversoftheColoradoRiver Basin.TheSouthwesternNaturalist57(4):421‐429. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. 258 Colorado Natural Heritage Program © 2015 Marsh,P.C.,G.A.Mueller,andJ.D.Schooley.2013.SpringtimeFoodsofBonytail(Cyprinidae:Gilaelegans)InALower ColoradoRiverBackwater.TheSouthwesternNaturalist,58(4):512‐516. Marsh,P.C.andG.Mueller.1999.Spring‐summermovementsofBonytailinaColoradoRiverreservoir,LakeMohave, ArizonaandNevada.U.S.GeologicalSurvey.Open‐FileReport99‐103.FortCollins,CO:U.S.GeologicalSurvey.42p. Nesler,T.P.,K.Christopherson,J.M.Hudson,C.W.McAda,F.Pfeifer,andT.E.Czapla.2003.Anintegratedstockingplanfor RazorbackSucker,Bonytail,andColoradoPikeminnowfortheUpperColoradoRiverendangeredfishrecoveryprogram. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. U.S.FishandWildlifeService.2002.Bonytail(Gilaelegans)RecoveryGoals:amendmentandsupplementtotheBonytail ChubRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado. U.S.FishandWildlifeService.2003.Bonytail(Gilaelegans)CriticalHabitatshapefile.U.S.FishandWildlifeService, Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineathttps://catalog.data.gov/dataset/final‐critical‐habitat‐ for‐the‐bonytail‐chub‐gila‐elegans. U.S.FishandWildlifeService.2012.Bonytail(Gilaelegans)5‐YearReview:SummaryandEvaluation.U.S.Fishand WildlifeService,UpperColoradoRiverEndangeredFishRecoveryProgram.Denver,Colorado.July2012,29pp. Climate Change Vulnerability Assessment for Colorado BLM 259 Colorado Pikeminnow Ptychocheiluslucius G1/S1 ListedEndangered Family:Cyprinidae Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) relianceongravel‐cobblesubstratesinhighgradientstreamsforspawning;4)lackofvariabilityin annualprecipitationinlast50years;5)lackofgeneticvariation. Distribution:TheColoradopikeminnownowoccursinapproximately1,090milesofriverhabitat intheupperColoradoRiverBasinaboveLakePowellintheGreenRiver,upperColoradoRiver,and SanJuanRiversub‐basins(USFWS2011).Thedistributionmapprovidedaboveisbasedoncritical habitatdesignatedbyUSFWS(2013).Habitat:Coloradopikeminnowadultsarelong‐distance migratorsthatrequireuninterruptedreachesofmediumtolargeriverswithpools,deeprunsand eddyhabitatsmaintainedbyhighspringflows(USFWS2011).Gravelandcobbledepositsareused forspawninghabitat;watertemperaturesduringspawningaretypically18to23˚C(USFWS2011). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Historically, Coloradopikeminnowmigratedlongdistancestoandfromspawningsites(Tyus1991).Rapidsand 260 Colorado Natural Heritage Program © 2015 swiftturbulentflowscancreatenaturalbarrierstomovementofColoradopikeminnowduringhigh flows,butthesebarriersarelikelyseasonal(USFWS2002). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Extensivedambuildinginthe 1930sthroughthe1960shasbeencitedastheprimarycausefortheextirpationofColorado pikeminnowinthelowerColoradoRiverbasin(MuellerandMarsh2002,Osmundson2011). AlthoughthespeciesstillpersistsintheupperColoradoRiverbasin,damshaveblockedupstream passage,convertedfree‐flowingriverinesegmentsintolenticreservoirhabitat,andcooled downstreamreacheswithhypolimneticreleases(Osmundson2011). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Decrease.ColoradopikeminnowintheSanJuanRiverregularly travelanaverageof4to62km(DurstandFranssen2014). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhat Increase/Neutral.Coloradopikeminnowevolvedinwarm‐waterriversandtributariesinthe ColoradoRiverBasin.Evidencefromrecentstudiessuggestthatwarmerstreamtemperaturesin theSanJuanRiverSub‐basincontributetofastergrowthandmaturityinColoradopikeminnowas comparedtocolderstreamtemperaturesintheUpperColoradoRiverSub‐basin(Durstand Franssen2014).Warmerstreamtemperaturesasaresultofclimatechangecouldresultinhigher ratesofrecruitmentforColoradopikeminnow. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20 inches/255‐508mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease/Neutral.Coloradopikeminnowadults requirepools,deepruns,andeddyhabitatsthatarecreatedandmaintainedbyhighspringflows. Theseasonalhighflowscreatedbyspringrunoff“maintainchannelandhabitatdiversity,flush sedimentsfromspawningareas,rejuvenatefoodproduction,formgravelandcobbledepositsused forspawning,andrejuvenatebackwaternurseryhabitats”(USFWS2002).Mostpublishedresearch indicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Ray etal.2008,Lukasetal.2014).Lowerflowscouldresultinafurtherdeclineinthecreationand maintenanceofColoradopikeminnowhabitat. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.AdultColoradopikeminnowarepiscivorous.Historically,thespeciesreliedonnativeprey fishesasamajorfoodsource.ThesenativefishesspawninMayandJuneduringhighspringflows. Coloradopikeminnowpreyonthesmallyoungoftheyeargeneratedfromthesespawningevents, Climate Change Vulnerability Assessment for Colorado BLM 261 andspawnoncetheyarelargeenough(approx.50mmtotallength)intheearlytomid‐summer (Nesleretal.1988,TyusandHaines1991,Franssenetal.2007).Climatemodelsprojectearlier peaksinstreamflow,andthismayaltertheavailabilityofpreyfishforColoradopikeminnow. Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Colorado pikeminnowspawningravel‐cobblesubstratesinhigh‐gradientstreams(Haynesetal.1984;Tyus andHaines1991);backwatersformedinsilt‐sandbarsareconsideredidealnurseryhabitat (Osmundsonetal.2002).DamsanddiversionsintheColoradoRiveranditstributarieshavealtered naturalflowregimes,andlesshigh‐qualityhabitatisavailablefortheColoradopikeminnow. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Coloradopikeminnowadultsarepiscivorousandarethemain nativepredatoroftheColoradoRiverBasinbecauseoftheirlargesizeandlargemouth(Vanicek andKramer1969,Minckley1973,HoldenandWick1982,USFWS2002).YoungColorado pikeminnowconsumeinsects,copepods,cladocerans,andmidgelarvae(Vanicek1967,Jacobiand Jacobi1982,MuthandSnyder1995,USFWS2002). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Increase.GeneticdiversitystudiesofmitochondrialDNAin hatcherystockandmuseumspecimenshasrevealedlowgeneticdiversityinColoradopikeminnow (BorleyandWhite2006). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.SomewhatIncrease.Apost‐ Pleistocenegeneticbottleneckhasbeenproposedasthecauseoflowlevelsofgeneticvariationin Coloradopikeminnow(BorleyandWhite2006). C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. 262 Colorado Natural Heritage Program © 2015 Literature Cited Borley,K.andM.White.2006:MitochondrialDNAvariationintheendangeredColoradopikeminnow:Acomparison amonghatcherystocksandhistoricspecimens.NorthAmericanJournalofFisheriesManagement26(4):916‐920. Durst,S.L.andN.R.Franssen.2014.MovementandgrowthofjuvenileColoradoPikeminnows(Ptychocheiluslucius)inthe SanJuanRiver,NMandUT.TransactionsoftheAmericanFisheriesSociety143:519–527. Franssen,N.R.,K.B.Gido,andD.L.Propst.2007.Flowregimeaffectsavailabilityofnativeandnonnativepreyofan endangeredpredator.BiologicalConservation138:330–340. Haynes,C.M.,T.A.Lytle,E.J.Wick,andR.T.Muth.1984.LarvalColoradosquawfish(Ptychocheiluslucius)intheUpper ColoradoRiverbasin,Colorado,1979‐1981.TheSouthwesternNaturalist29:21‐33. Holden,P.B.andE.J.Wick.1982.LifehistoryandprospectsforrecoveryofColoradosquawfish.In:W.H.Miller(ed.), FishesoftheUpperColoradoRiverSystem:presentandfuture,pp.98‐108.AmericanFisheriesSociety. Jacobi,G.Z.,andM.D.Jacobi.1982.Fishstomachcontentanalysis.Pages285‐324inColoradoRiverfisheryprojectfinal report.Part3,Contractedstudies.U.S.FishandWildlifeServiceandBureauofReclamation,SaltLakeCity,UT. Minckley,W.L1973.FishesofArizona.ArizonaGameandFishDepartment,Phoenix.pp.158‐159. Mueller,G.A.andP.C.Marsh.2002.Lost,adesertriveranditsnativefishes:ahistoricalperspectiveoftheLowerColorado River.InformationandTechnologyReportUSBS/BRD/ITR‐2002‐0010,U.S.GovernmentPrintingOffice,Denver,CO.69 pp. Muth,R.T.andD.E.Snyder.1995.DietsofyoungColoradosquawfishandothersmallfishinbackwatersoftheGreen River,ColoradoandUtah.TheGreatBasinNaturalist55:95–104. NeslerT.P.,R.T.Muth,andA.F.Wasowicz1988.EvidenceforbaselineflowspikesasspawningcuesforColorado SquawfishintheYampaRiver,Colorado.AmericanFisheriesSocietySymposium5:68‐79. Osmundson,D.B.,R..Ryel,V.L.LamarraandJ.Pitlick.2002.Flowsediment‐biotarelations:implicationsforriver regulationeffectsonnativefishabundance.EcologicalApplications12:1719‐1739. Osmundson,D.B.2011.ThermalRegimeSuitability:AssessmentofUpstreamRangeRestorationPotentialforColorado Pikeminnow,AWarmwaterEndangeredFish.RiverRestorationApplications27:706‐722. Tyus,H.M.1991.EcologyandmanagementofColoradosquawfish.Pages379–402inW.L.MinckleyandJ.E.Deacon(eds.). Battleagainstextinction:nativefishmanagementintheAmericanwest.TheUniversityofArizonaPress,Tucson. Tyus,H.M.,andGB.Haines.1991.Distribution,habitatuse,andgrowthofage‐OColoradosquawfishintheGreenRiver basin,ColoradoandUtah.TransactionsoftheAmericanFisheriesSociety120:79‐89. U.S.FishandWildlifeService[USFWS].2002.Coloradopikeminnow(Ptychocheiluslucius)RecoveryGoals:amendment andsupplementtotheColoradoSquawfishRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6), Denver,Colorado. U.S.FishandWildlifeService[USFWS].2011.Coloradopikeminnow(Ptychocheiluslucius)5‐yearreview:summaryand evaluation.USFWS,UpperColoradoRiverEndangeredFishRecoveryProgram,Denver,Colorado. U.S.FishandWildlifeService[USFWS].2013.Coloradopikeminnow(Ptychocheiluslucius)CriticalHabitatshapefile.U.S. FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineat https://catalog.data.gov/dataset/final‐critical‐habitat‐for‐the‐colorado‐pikeminnow‐ptychocheilus‐lucius Climate Change Vulnerability Assessment for Colorado BLM 263 Vanicek,C.D.1967.EcologicalstudiesofnativeGreenRiverfishesbelowFlamingGorgeDam,1964–1966.Unpublished Ph.D.dissertation,UtahStateUniversity,Logan.i0038‐4909‐49‐2‐203‐Vanicek1 Vanicek,C.D.,andR.Kramer.1969.LifehistoryoftheColoradosquawfish,Ptychocheiluslucius,andtheColoradochub, Gilarobusta,intheGreenRiverinDinosaurNationalMonument1964–1966.TransactionsoftheAmericanFisheries Society98:193–208. 264 Colorado Natural Heritage Program © 2015 Colorado River Cutthroat Trout Oncorhynchusclarkiipleuriticus G4T3/S3 Family:Salmonidae Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialcomplexeffectsofwarmingstreamtemperaturesthatmayincreaseColoradoRiver cutthroattrout(CRCThereafter)recruitment,aswellasprovidemoresuitablehabitatfor nonnativesalmonidsthathybridizeandcompetewithCRCT;3)relianceongravelbarsfor spawning;4)lackofvariabilityinannualprecipitationinlast50years;5)rainbowtroutandother subspeciesofcutthroattrouthybridizewithCRCTandcouldthreatenthegeneticintegrityofCRCT. Distribution:ColoradoRivercutthroattroutarefoundinthefollowingriverbasinsofColorado: Dolores,Gunnison,UpperGreen,UpperColorado,Yampa,White,andSanJuan(Hirschetal.2013). Recentgeneticandmeristicstudieshaveidentifiedtwoextantcutthroatlineageswithinthisrange, provisionallydesignatedtheBlueLineage,nativetotheYampa,GreenandWhiteRiverBasins,and theGreenLineage,nativetotheUpperColorado,GunnisonandDoloresbasins(Metcalfetal.2012, Bestgenetal.2013,USFWS2014).AthirdlineagenativetotheSanJuanbasinisevidentlyextinct, thoughblueandgreenlineagepopulationshavebeenestablishedinthisbasinbystocking.In keepingwithcurrently‐recognizedinlandcutthroattaxonomy,thisassessmentconsidersall cutthroatsindigenoustotheWestSlopeasCRCT.Habitat:InColorado,CRCTrequirecool,clear waterinstreamswithwell‐vegetated,stablebanks;deeppools,boulders,andlogsareimportant forprovidingcoverforCRCT(Young1995,Youngetal.1998).CRCTalsooccurinlakes,butthese arerelativelyrare(Hirshetal.2013).Elevation:CRCToccursfrom4,600fttonearly12,500ft acrossitsrange(Hirshetal.2013).SpecificelevationrangesforColoradoarenotavailable. EcologicalSystem:MontaneStreams Climate Change Vulnerability Assessment for Colorado BLM 265 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Waterfalls,beaver dams,bedrock,debrisandrapidsarenaturalfeaturesintheriverbasinsthatprovidehabitatfor CRCT(Hirshetal.2013).Manyofthesefeaturesmayonlyappearduringhighflows.Nonetheless, theymaycreateseasonalbarrierstomovementforCRCT. B2b)Distributionrelativetoanthropogenicbarriers.Neutral/SomewhatIncrease.Theeffectof barrierscanbecomplexforCRCT.Thepresenceofabarriercanblocktheupstreammovementof nonnativesalmonidsthatnegativelyaffectpopulationsofCRCTthroughhybridization,foodand spacecompetition,andpredation(AllendorfandLeary1988,ForbesandAllendorf1991,Hirshet al.2013).DamsandimpoundmentsintheColoradoRiverBasinanditstributariescreatebarriers toCRCTmovement(Young2008). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.SomewhatDecrease.EvidencefromYoung(1995)suggeststhat summerhomerangesforCRCTrangefrom11to652meters. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhat Increase/Neutral.ClimatewarmingmayhavecomplexeffectsonCRCTpopulations.ManyCRCT populationspersistinhigherelevationstreamsbecauseunlikenonnativesalmonids,theycan toleratecolderwatertemperatures.However,thesecoldtemperaturesmaynotprovideconditions thatCRCTcanthrivein,andgrowthandrecruitmentmaybehinderedbytheselowtemperatures. HigherelevationstreamsthatarecurrentlytoocoldtosustainCRCTpopulationsmaywarmenough inthefuturetoprovidesuitablehabitatforCRCT.Warmerstreamtempscouldresultinearly spawningandhigheroverwintersurvivalforCRCT.Itisalsopossiblethatthesewarmerstream temperatureswillprovidesuitablehabitatfornonnativefishaswell. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20 inches/255‐508mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Lackofinstreamflowsduetodroughtconditionsis consideredthehighestclimatechangeriskfactorforCRCT(Haaketal.2010). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral/SomewhatIncrease.SpawningofCRCTbeginsafterrunoffhaspeakedinspringorearly 266 Colorado Natural Heritage Program © 2015 summer(Young1995).Watertemperaturesmayalsoprovidespawningcues(Young1995). Temperatureincreasesduetoclimatechangemayleadtoearlierpeakrunoffandwarmerwater temperatures.ThesemayresultinearlierspawningandhigheroverwintersurvivalforCRCT. FemaleCRCTdepositeggs10‐25cmdeepinspawninggravel.Naturalhydrologicregimesthathelp creategravelbarshavebeenalteredbydam‐relatedchangesintimingandflowlevels.Most publishedresearchindicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐ late21stcentury(Rayetal.2008,Lukasetal.2014),whichcouldleadtofurtherlackofhydrologic processesrequiredtocreateandmaintainhabitatforCRCT. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease. Requiresgravelsforspawning,seeaboveexplanationinC2C. C4)Relianceoninterspecificinteractions.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Amphipods,plankton,dipterans,andhymenopteransareall importantcomponentsofCRCTdiet(Colburn1966,Bozeketal.1994). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Increase.Nonnativerainbowtrout(Oncorhynchusmykiss)and othersubspeciesofcutthroattrout(Oncorhynchusclarkiispp.)havehybridizedwithCRCT,thus reducingthegeneticintegrityofthesubspecies(AllendorfandLeary1988,ForbesandAllendorf 1991,CRCTConservationTeam2006;Hirschetal.2013).Naturalorconstructedbarriersexistto limitgeneticmixingofrainbowandothersubspeciesofcutthroattroutandCRCT.However,these barriersalsoposeathreattoCRCTasitrestrictsindividualstoshort,headwaterstreamsegments (Young2008).Thisrestrictionrenderspopulationsmorevulnerabletoextirpationfromstochastic events,andcouldresultinthelongtermlossofgeneticvariability(Young2008,Robertsetal. 2013). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 267 D4)Protectedareas.Unknown. Literature Cited Allendorf,F.W.andR.F.Leary.1988.Conservationanddistributionofgeneticvariationinapolytypicspecies,the cutthroattrout.ConservationBiology2:170‐184. Bestgen,K.R.,K.B.Rogers,andR.Granger.2013.Phenotypepredictsgenotypeforlineagesofnativecutthroattroutinthe SouthernRockyMountains.FinalReporttoU.S.FishandWildlifeService,ColoradoFieldOffice,DenverFederalCenter (MS65412),Denver,CO.LarvalFishLaboratoryContribution177. Bozek,M.A.,L.D.DeBrey,andJ.A.Lockwood.1994.DietoverlapamongsizeclassesofColoradoRivercutthroattrout (Oncorhynchusclarkipleuriticus)inahighelevationmountainstream.Hydrobiologia273:9‐17. Colborn,L.G.1966.ThelimnologyandcutthroattroutfisheryofTrappersLake,Colorado.DepartmentofGame,Fish,and Parks,Denver,Colorado.FisheriesResearchDivisionSpecialReport9 Coleman,M.A.andK.D.Fausch.2007.Coldsummertemperaturelimitsrecruitmentofage‐0cutthroattroutinhigh‐ elevationColoradostreams.TransactionsoftheAmericanFisheriesSociety136:1231‐1244. CRCTConservationTeam.2006.ConservationagreementforColoradoRivercutthroattrout(Oncorhynchusclarkii pleuriticus)intheStatesofColorado,Utah,andWyoming.ColoradoDivisionofWildlife,FortCollins.10p. Forbes,S.H.andF.W.Allendorf.1991.Mitochondrialgenotypeshavenodetectableeffectsonmeristictraitsincutthroat trouthybridswarms.Evolution45:1350‐1359. Haak,A.L.,J.E.Williams,D.Isaak,A.Todd,C.Muhlfeld,J.L.Kershner,R.Gresswell,S.Hostetler,andH.M.Neville.2010.The potentialinfluenceofchangingclimateonthepersistenceofsalmonidsoftheinlandwest.U.S.GeologicalSurvey,Open‐ FileReport2010‐1236,Reston,Virginia.AccessedNov13,2014.Onlineat:pubs.usgs.gov/of/2010/1236/. Hirsch,C.L.,M.R.Dare,andS.E.Albeke.2013.Range‐widestatusofColoradoRivercutthroattrout(Oncorhynchusclarkii pleuriticus):2010.ColoradoRiverCutthroatTroutConservationTeamReport.ColoradoParksandWildlife,FortCollins. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Metcalf,J.L.,S.S.Stowell,C.M.Kennedy,K.B.Rogers,D.McDonald,J.Epp,K.Keepers,A.Cooper,J.J.Austin,andA.P.Martin. 2012.Historicalstockingdataand19thcenturyDNArevealhuman‐inducedchangestonativediversityanddistribution ofcutthroattrout.MolecularEcology21:5194‐5207. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. Roberts,J.J.,K.D.Fausch,D.P.Peterson,andM.B.Hooten.2013.Fragmentationandthermalrisksfromclimatechange interacttoaffectpersistenceofnativetroutintheColoradoRiverbasin.GlobalChangeBiology19:1383‐1398. U.S.FishandWildlifeService[USFWS].2014.FinalSummaryReport:GreenbackCutthroatTroutGeneticsandMeristics StudiesFacilitatedExpertPanelWorkshop.USFWSRegion6,Lakewood,CO,OrderNo.F13PB00113.AccessedNov6, 2014.Available: http://cpw.state.co.us/Documents/Research/Aquatic/CutthroatTrout/2014GreenbackCutthroatTroutWorkshopSummar y.pdf. 268 Colorado Natural Heritage Program © 2015 Young,M.K.1995.ColoradoRivercutthroattrout.M.K.Youngtechnicaleditor.Pages16‐23.In:AConservation AssessmentforInlandCutthroatTrout.USDAForestService,RockyMountainForestandRangeExperimentStation,Fort Collins,Colorado.GeneralTechnicalReport.RM‐GTR‐256. Young,M.K.,K.A.Meyer,D.J.Isaak,andR.A.Wilkison.1998.Habitatselectionandmovementbyindividualcutthroattrout intheabsenceofcompetitors.JournalofFreshwaterEcology13:371‐381. Young,M.K.2008.ColoradoRiverCutthroatTrout:ATechnicalConservationAssessment.USDAForestService,Rocky MountainStation,FortCollins,CO. Climate Change Vulnerability Assessment for Colorado BLM 269 Flannelmouth Sucker Catostomuslatipinnis G3G4/S3 Family:Catostomidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) relianceongravelbarsforspawning;4)lackofgeneticvariation. Distribution:InColorado,theflannelmouthsuckerisfoundthroughouttheUpperColoradoRiver drainage.Habitat:InColorado,flannelmouthsuckerresideinmainstemandtributarystreamsin theUpperColoradoRiverBasin.Theyareopportunisticbenthicfeeders.Adultsoccupydeepriffles andrunsaswellasdeep,murkypoolswithsparsevegetation(McAda1977;SiglerandSigler1996; BezzeridesandBestgen2002),whileyoungfisharetypicallyfoundinquiet,shallowrifflesand near‐shoreeddies(Childsetal.1998). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Flannelmouthsuckeraremost commonlyfoundinpoolsanddeeperrunsofthemainstemandtributariesoftheColoradoRiver withinthestateofColorado(BezzeridesandBestgen2002;SiglerandMiller1963;Minckleyand Holden1980). 270 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong theColoradoRiveranditstributariescreatebarriersforflannelmouthsuckermovement.This speciesdoesnotdowellinimpoundments(McAda1977,SiglerandSigler1996,Bezzeridesand Bestgen2002). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Decrease.Flannelmouthsuckerarecapableoflongdistance movementsasfaras229kilometers(Weiss1993). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral/Somewhat Increase.Flannelmouthsuckeroccupywarmandcoolwaterreachesofmostmainstemriversand largetributariesinalltheColoradoRiverBasinsystemsinColoradoincludingthoseintheSanJuan, Dolores,Gunnison,Colorado,White,Yampa(includingtheLittleSnakeRiver),andGreenRiver basins(BestgenandZelasko2004;ColoradoParksandWildlife2015). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Highbaseflowsareimportantforthe reproductionsuccessofflannelmouthsucker,aswellasblueheadandrazorbacksuckers(Anderson andStewart2007).MostpublishedresearchindicatesadeclineinrunoffintheUpperColorado RiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Rayetal.2008).Reducedbaseflows maybeassociatedwithincreasesinthenon‐nativewhitesucker(C.commersonii)populations. Hybridizationofflannelmouthsuckerandwhitesuckerisaveryseriousthreattoflannelmouth suckerintheColoradoRiverBasin(AndersonandStewart2007). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.ThisspeciesevolvedintheColoradoRiverBasinandisadaptedtohighspringrunoff(Rees etal.2005).SpringflowsfortheColoradoRiverareprojectedtopeakearlierandbehigherin2035‐ 2064(Lukasetal.2014). C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease. Femalesspawnovergravel(CPW2014).Hydrologicprocessesthathelpcreateandmaintaingravel barsmaybealteredduettoprojecteddecreasesinflowsintheColoradoRiverBasin(Lukasetal. 2014;Rayetal.2008). Climate Change Vulnerability Assessment for Colorado BLM 271 C4a)Dependenceonotherspeciestogeneratehabitat.Unknown. C4b)Dietaryversatility.Neutral. C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Increase.Althoughthespeciesiswidespreadthroughoutthe ColoradoRiverBasin,arecentstudyfoundverylowlevelsofgeneticdiversitybasin‐wide(Douglas andDouglas2003).Furthermore,hybridsbetweennonnativewhitesucker(Catostomus commersoni)andflannelmouthsuckerhavebeendocumentedintheColorado,Gunnison,and Yamparivers(AndersonandStewart2007;DouglasandDouglas2003;Shiozawaetal.2003). Hybridizationbetweenthenon‐nativewhitesuckerandthenativeblueheadsuckerhasalsobeen documented,aswellasindividualswithgeneticcontributionsfromthewhitesucker,bluehead sucker,andnativeflannelmouthsucker(Catostomuslatipinnus)(McDonaldetal.2008).Thenon‐ nativewhitesuckerhasfacilitatedintrogressionbetweentwonativespecies,andtherefore threatensthegeneticintegrityoftheblueheadandflannelmouthsuckers.Whitesuckershave becomepervasivethroughouttheColoradoRiverBasin,hybridizingreadilywithflannelmouth suckers,thuscreatingaseriousextinctionrisktoflannelmouthsuckers(McDonaldetal.2008). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Anderson,R.M.andG.Stewart.2007.Fish‐FlowInvestigation:II.Impactsofstreamflowalterationsonthenativefish assemblageandtheirhabitatavailabilityasdeterminedby2Dmodelingandtheuseoffishpopulationdatatosupport instreamflowrecommendationsforthesectionsoftheYampa,Colorado,GunnisonandDoloresRiversinColorado. ColoradoDivisionofWildlifeSpecialReportNo.80,DOW‐R‐S‐80‐07.FortCollins. Bestgen,K.R.,andK.A.Zelasko.2004.DistributionandstatusofnativefishesintheColoradoRiverBasin,Colorado.Final ReporttoColoradoDivisionofWildlife.FortCollins,CO Bezzerides,N.,andK.R.Bestgen.2002.StatusReviewofRoundtailChubGilarobusta,FlannelmouthSuckerCatostomus latipinnis,andBlueheadSuckerCatostomusdiscobolusintheColoradoRiverBasin.Finalreport.SubmittedtoU.S. 272 Colorado Natural Heritage Program © 2015 DepartmentoftheInterior,BureauofReclamation,SaltLakeCity,Utah.LarvalFishLaboratoryContribution118, ColoradoStateUniversity,Ft.Collins. Childs,M.R.,R.W.Clarkson,andA.T.Robinson.1998.ResourceusebylarvalandearlyjuvenilenativefishesintheLittle ColoradoRiver,GrandCanyon,Arizona.TransactionsoftheAmericanFisheriesSociety127:620‐629. ColoradoParksandWildlife.2015.StateofColoradoConservationandManagementPlanfortheRoundtailChub(Gilia robusta),BlueheadSucker(Catostomusdiscobolus)andFlannelmouthSucker(Catostomuslatipinnis).UnpublishedDraft. Douglas,M.R.andM.E.Douglas.2003.YampaRiverhybridsuckergeneticassessment.DepartmentofFisheryandWildlife Biology,ColoradoStateUniversity,FortCollins,CO. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. McAda,C.W.1977.AspectsofthelifehistoryofthreeCatostomidsnativetotheUpperColoradoRiverBasin.Master’s thesis,UtahStateUniversity,Logan,Utah. Minckley,W.L.andP.B.Holden.1980.BlueheadsuckerinD.S.Lee,C.R.Gilbert,C.H.Hocutt,R.E.Jenkins,D.E.MacAllister andJ.R.Stauffer,Jr.,editors.AtlasofNorthAmericanfreshwaterfishes.NorthCarolinaStateMuseumofNaturalHistory, Columbia.p.377. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. Rees,D.E.,J.A.Ptacek,R.J.Carr,andW.J.Miller.2005.FlannelmouthSucker(Catostomuslatipinnis):atechnical conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/flannelmouthsucker.pdf[Jan8,2015]. Sigler,W.F.andR.R.Miller.1963.FishesofUtah.UtahDepartmentofGameandFish,SaltLakeCity,UT. Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah;anaturalhistory.UniversityofUtahPress,SaltLakeCity,UT. Weiss,S.J.1993.Spawning,movementandpopulationstructureofflannelmouthsuckerinthePariaRiver.M.S.Thesis. UniversityofArizona,Tucson,AZ. Climate Change Vulnerability Assessment for Colorado BLM 273 Humpback Chub Gilacypha G1/S1 ListedEndangered Family:Cyprinidae No photo available Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) relianceongravelbarsforspawning;4)lackofgeneticvariation. Distribution:OnlytwohumpbackchubpopulationsstillexistinColorado:theYampaCanyon populationontheYampaRiverandtheBlackRockspopulationontheColoradoRiver(U.S.Fishand WildlifeService2002).Thedistributionmapaboveshowscriticalhabitatasdesignatedbythe USFWS(2003).Habitat:InColorado,adulthumpbackchubresideinswift,turbulenthabitatsand indeeppoolsincanyons(Kaedingetal.1990;Leeetal.1981).Theyarealsofoundinwhitewaterin deepeddies(Minckley1991).Juvenilesaregenerallyfoundinmoreshallowareas;youngofthe yearhavebeendocumentedinshallowareasnearshorewithslowcurrentsandfinecobblesand boulders(GormanandSeales1995). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Rapidsand waterfallsmaycreatenaturalbarriersintheColorado,Yampa,andGreenrivers. 274 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsanddiversionsinthe ColoradoRiveranditstributariescreatebarrierstohumpbackchubmovement,andcausechanges inchannelgeomorphology,sedimentregimes,andstreamflows(U.S.FishandWildlifeService 2011). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Neutral/SomewhatDecrease.Althoughmanybigriverfishfrom theColoradoRiverBasintravellongdistances,thehumpbackchubhasbeenreportedtohave relativelylimitedmovement(Paukertetal.2006).Theaveragespawningdistancesforhumpback chubintheBlackRocksareaoftheColoradoRiverhasbeenreportedas6.4km(ValdezandRyel 1995). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral/Somewhat Increase.Thehumpbackchubisadaptedtothelarge,warm‐waterriversandstreamsofthe ColoradoRiverBasin.Humpbackchubgrowrelativelyquicklyinwarmwatertemperatures,and coldertemperaturessuchasthosecausedbyhypolimneticdamreleaseshavebeenshownto significantlylowergrowthrates(ClarksonandChilds2000).Warmerwatertemperaturescaused byprojectedincreasesintemperaturemayhelpincreaserecruitmentratesinhumpbackchub populations. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Maintenanceofstreamflowisimportant fortherecoveryandconservationofbonytailchub(U.S.FishandWildlifeService2011).Flow recommendationshavebeendevelopedforhumpbackchubintheGreenRiver(Muthetal.2000), YampaRiver(Moddeetal.1999),andupperColoradoRiver(McAda2003).However,theremaybe lesswateravailableinfuturetoprovidetheseflows.Mostpublishedresearchindicatesadeclinein runoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Jayet al.2008). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Highspringflowsthatcreateandcleangravelbars,aswellastemporarilyreducenon‐ nativefishpopulations,arepositivelyassociatedwithreproductionofhumpbackchubintheLower ColoradoRiver(Gorman1994). C2d)Dependenceonsnow‐coveredhabitats.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 275 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Humpbackchubare associatedwithcleangravelbarsforspawning(Gorman1994;U.S.FishandWildlifeService2002). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Humpbackchubfeedonsmallfishes,diatoms,planktonic crustaceans,algae,andaquaticandterrestrialarthropods(U.S.FishandWildlifeService2002; ValdezandRyel1995). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.SomewhatIncrease.Geneticdiversityhasbeenidentifiedasan issueforthehumpbackchub.Recentgeneticstudieshaveattemptedtounravelgeneticdifferences betweenroundtailchubandhumpbackchub.Resultsindicatethatacrossitsrange,humpbackchub androundtailchuboccupysixdistinctmanagementunits(DouglasandDouglas2007). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Clarkson,R.W.,andM.R.Childs.2000.Temperatureeffectsofhypolimnial‐releasedamsonearlylifestagesofColorado RiverBasinbig‐riverfishes.Copeia2000:402–412. Douglas,M.R.andM.E.Douglas.2007.GeneticStructureofHumpbackChubGilacyphaandRoundtailChubG.robustain theColoradoRiverEcosystem.Report.DepartmentofFish,WildlifeandConservationBiology,ColoradoStateUniversity. 99pp. Gorman,O.T.andSeales,J.M.1995.Habitatusebytheendangeredhumpbackchub(Gilacypha)intheLittleColorado River,ArizonanearGrandCanyon.ProceedingofDesertFishesCouncil1994annualsymposium.17‐20NovemberDeath ValleyNationalPark,FurnaceCreek,CA. Kaeding,L.R.,Burdick,B.D.,andSchraderP.A.1990.Temporalandspatialrelationsbetweenthespawningofhumpback chubandroundtailchubintheupperColoradoRiver.TransactionsoftheAmericanFisheriesSociety119:135‐144. 276 Colorado Natural Heritage Program © 2015 Lee,D.S.,GilbertC.R.,HocuttC.H.,JenkinsR.E.,CallisterD.E.,andStaufferJ.R.1981.AtlasofNorthAmericanFreshwater Fishes:NorthCarolina,NorthCarolinaStateMuseumofNaturalHistory,1981,c1980. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. McAda,C.W.2003b.FlowrecommendationstobenefitendangeredfishesintheColoradoandGunnisonRivers.U.S.Fish andWildlifeService,GrandJunction,CO. Minckley,W.L.1991.Nativefishesofaridlands:Adwindlingresourceofthedesertsouthwest.USDAForestService. GeneralTechnicalReportRM‐GTR‐206.pp18. Modde,T.,W.J.Miller,andR.Anderson.1999.Determinationofhabitatavailability,habitatuse,andflowneedsof endangeredfishesintheYampaRiverbetweenAugustandOctober.FinalReportofU.S.FishandWildlifeService,Vernal, UtahtoUpperColoradoRiverEndangeredFishRecoveryProgram,Denver,CO.Onlineathttp://www.fws.gov/mountain‐ prairie/crrip/habitat.htm. Muth,R.T.,L.W.Crist,K.E.LaGory,J.W.Hayse,K.R.Bestgen,T.P.Ryan,J.K.Lyons,andR.A.Valdez.2000.Flowand temperaturerecommendationsforendangeredfishesintheGreenRiverdownstreamofFlamingGorgeDam.FinalReport totheUpperColoradoRiverEndangeredFishRecoveryProgram,Denver,CO. Paukert,C.P.,L.G.JrCoggins,andC.E.Flaccus.2006.DistributionandmovementofhumpbackchubintheColorado River,GrandCanyon,basedonrecaptures.Trans.Am.Fish.Soc.135:539–544. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. U.S.FishandWildlifeService.2002.Humpbackchub(Gilacypha)RecoveryGoals:amendmentandsupplementtothe HumpbackChubRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado.Valdezand Ryel.1995. U.S.FishandWildlifeService.2003.Humpbackchub(Gilacypha)CriticalHabitatshapefile.U.S.FishandWildlifeService, Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineathttps://data.doi.gov/dataset/final‐critical‐habitat‐for‐ the‐humpback‐chub‐gila‐cypha. U.S.FishandWildlifeService.2011.Humpbackchub(Gilacypha)5‐YearReview:SummaryandEvaluation.U.S.Fishand WildlifeService,UpperColoradoRiverEndangeredFishRecoveryProgram.Denver,CO.29pp. Valdez,R.A.andR.J.Ryel.1995.LifeHistoryandEcologyoftheHumpbackChubintheColoradoRiverinGrandCanyon, Arizona.InThecontrolledfloodofGrandCanyon,Editedby:Webb,R.H.,Schmidt,J.C.,Marzolf,G.R.andValdez,R.A. 297–307.Washington,D.C.:AmericanGeophysicalUnion.Monograph110. Climate Change Vulnerability Assessment for Colorado BLM 277 Razorback Sucker Xyrauchentexanus G1/S1 ListedEndangered Family:Catostomidae Photo: James E. Johnson, U.S. Fish & Wildlife Service Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) lackofvariationinprecipitationacrossoccupiedhabitatinlast50years;4)requirescleancobble barsforspawning. Distribution:RazorbacksuckerarefoundonlyintheupperGreenRiverinUtah,andthelower YampaRiverinColorado,andoccasionallyintheColoradoRivernearGrandJunction(U.S.Fishand WildlifeService2002).Habitat:Adultrazorbacksuckeroccupydeepruns,eddies,andflooded backwaterhabitatsinthesprings;summerhabitatistypicallylow‐velocityruns,pools,andeddies (USFWS2002).Spawningoccursincobble,gravels,andsand(USFWS2002).Youngrazorback suckersaretypicallyfoundinquiet,warm,shallowbackwaters(USFWS2002). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2)Distributionrelativetobarriers.RazorbacksuckeroccurinthemainstemoftheColorado Riveraswellasitsmajortributaries(U.S.FishandWildlifeService1998). B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Naturalphysical barrierstomovementintheColoradoRiveranditstributariesarenaturalrapidsandswift 278 Colorado Natural Heritage Program © 2015 turbulentflows,andthesearelikelytofluctuatedependingonflows(U.S.FishandWildlifeService 2002). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Thedeclineofthespecies throughouttheColoradoRiverBasinisattributedlargelytoextensivehabitatloss,modification, andfragmentation,andblockedfishpassagefromdamconstructionandoperations(U.S.Fishand Wildlife2012). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Decrease.Razorbacksuckerarecapableoftravelinglong distances.Spawningmigrationsof30to106km(oneway)havebeenreportedintheYampaRiver inDinosaurNationalMonument(Tyus1987;TyusandKarp1990). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Razorback suckerisawarm‐waterfish,andtheavailabilityofwarm,productivewetlandsmaypromotefaster growthandhighersurvivaloflarvae(Bestgen2008). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20 inches/255‐508mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Highspringflowshavebeenreportedtobe importanttoadultsforfeeding,temperatureregulation,andspawning(TyusandKarp1990). Spawningmovementsandtheappearanceofripefishwereassociatedwithincreasingspringflows andaveragewatertemperaturesof14°C(range9‐17°Cor48‐63°F)(TyusandKarp1990).There maybelesswateravailableinfuturetoprovidetheseflows.Mostpublishedresearchindicatesa declineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal. 2014;Rayetal.2008). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase/SomewhatIncrease.Adultrazorbacksuckersspawnovercleancobblebarsduringspring runoff,andtheirlarvaeflowintofloodplainhabitatsinundatedduringthespringfloods(McAdaand Wydoski1980;U.S.FishandWildlifeService2002;Wicketal.1982).Thedam‐relatedchangesin timingandflowlevelsontheColoradoRiveranditstributaries,alongwithchannelization,haveled toalossoffloodplainnurseriesthatarenecessaryforthesurvivalandreproductionofthe razorbacksucker(McAdaandWydoski1980).Mostpublishedresearchindicatesadeclineinrunoff intheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Rayetal. 2008),whichcouldleadtofurtherlossanddegradationofhabitatforrazorbacksuckers. Climate Change Vulnerability Assessment for Colorado BLM 279 C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.SeeC2c. Adultrazorbacksuckersspawnovercleancobblebarsduringspringrunoff,andtheirlarvaeflow intofloodplainhabitatsinundatedduringthespringfloods(McAdaandWydoski1980;U.S.Fish andWildlifeService2002;Wicketal.1982). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Thedietoftherazorbacksuckervariesbylifestage,and includesinsects,zooplankton,phytoplankton,algae,anddetritus(Bestgen1990;Muthetal.2000). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Neutral.Geneticdiversityhasbeenreportedashighforthe razorbacksucker(Dowlingetal.1996;Dowlingetal.2005). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Bestgen,K.R.1990.Statusreviewoftherazorbacksucker,Xyrauchentexanus.FinalReporttoU.S.BureauofReclamation, SaltLakeCity,Utah.Contribution44,LarvalFishLaboratory,ColoradoStateUniversity,FortCollins.92pp. Bestgen, K. 2008. Effects of Water Temperature on Growth of Razorback Sucker Larvae. Western North American Naturalist 68 (1): 15‐20. DowlingT.,W.Minckley,andP.Marsh.1996.MitochondrialDNAdiversitywithinandamongpopulationsofrazorback sucker(Xyrauchentaxanus)asdeterminedbyrestrictionendonucleaseanalysis.Copeia,1996,542–550. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. 280 Colorado Natural Heritage Program © 2015 McAda,C.W.andR.W.Wydoski.1980.Therazorbacksucker(Xyrauchentexanus)intheUpperColoradoRiverBasin.974‐ 976.U.S.FishandWildlifeServiceTechnicalPapers99. Muth,R.T.,L.W.Crist,K.E.LaGory,J.W.Hayse,K.R.Bestgen,T.PRyan,J.K.Lyons,andR.A.Valdez.2000Flowand temperaturerecommendationsforendangeredfishesintheGreenRiverdownstreamofFlamingGorgeDam.FinalReport FG‐53totheUpperColoradoRiverEndangeredFishRecoveryProgram.U.S.FishandWildlifeService,Denver,CO. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. Tyus,H.M.,andC.A.Karp.1990.Spawningandmovementsofrazorbacksucker,Xyrauchentexanus,intheGreenRiver BasinofColoradoandUtah.SouthwesternNaturalist35:427–433. Tyus,H.M.1987.Distribution,reproduction,andhabitatuseoftherazorbacksuckerintheGreenRiver,Utah,1979–1986. TransactionsoftheAmericanFisheriesSociety116:111–116. U.S.FishandWildlifeService.1998.Razorbacksuckerrecoveryplan.U.S.FishandWildlifeService,Region6,Denver, Colorado. U.S.FishandWildlifeService.2002.RazorbacksuckerRecoveryGoals:AmendmentandsupplementtotheRazorback SuckerRecoveryPlan.U.S.FishandWildlifeService,Region6,Denver,Colorado. U.S.FishandWildlifeService.2012.FiveYearReview:SummaryandEvaluation.UpperColoradoRiverEndangeredFish RecoveryProgram.Denver,Colorado,July2012. Wick,E.J.,C.W.McAda,andR.V.Bulkley.1982.Lifehistoryandprospectsforrecoveryoftherazorbacksucker.Pages120‐ 126in:W.H.Miller,H.M.Tyus,andC.A.Carlson(editors).FishesoftheupperColoradoRiversystem:presentandfuture. AmericanFisheriesSociety,Bethesda,Maryland. Climate Change Vulnerability Assessment for Colorado BLM 281 Rio Grande Cutthroat Trout Oncorhynchusclarkiivirginalis G4T3/S3 Family:Salmonidae No photo available Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdewateringofstreamsintheRioGrandeRiverBasin;3)lackofgeneticdiversity. Distribution:InColorado,theRioGrandecutthroattroutoccursintheRioGrandeRiverBasin. Habitat:RioGrandecutthroattroutoccurinclear,cold,highelevationstreams.Adultsusedeep pools,whilefryusebackwatersandsidechannels(USFWS2014). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Insomeheadwaterstreams,waterfalls, cascades,bedrockchutes,orsubterraneanreachesmaypresentnaturalbarriersthatblock movementofRioGrandecutthroattrout(Pritchardetal.2008). B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Damsanddiversions inoccupiedRioGrandecutthroattrouthabitatcanblockdispersalofpopulations,increasingthe riskofextinction(Zeigleretal.2012).However,theeffectsofconstructedbarriersarecomplex. Theyalsoprovideabarriertothemovementofnon‐nativefishspeciesthatcompetewithandprey onRioGrandecutthroattrout(PritchardandCowley2006). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. 282 Colorado Natural Heritage Program © 2015 C1)Dispersalandmovements.SomewhatDecrease.Nodataexistsonaveragemovement capabilitiesforRioGrandecutthroattrout(PritchardandCowley2006).Cutthroattrouton Colorado’swestslopewerefoundtomoveamediandistanceof91m‐1.2kmduringthesummer (SchmetterlingandAdams2004). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.GreatlyIncrease. DroughtandincreasedstreamtemperatureshavebeenidentifiedasamajorthreattoRioGrande cutthroattrout(Haaketal.2010).DroughtsinthesouthwesternUnitedStatesareexpectedto increaseinfrequencyandseverity(HoerlingandEischeid2007).Thiscouldresultinstream dewateringandadecreaseinavailablehabitat(U.S.FishandWildlifeService2014;Zeigleretal. 2012).AverageannualairtemperaturehasincreasedacrosstherangeofRioGrandecutthroat troutsincethemid‐20thcentury,andthistrendcouldresultinelevatedstreamtemperaturesthat areunsuitableforRioGrandecutthroattroutthatrelyoncoldwaterhabitattocompletetheirlife cycle(U.S.FishandWildlifeService2014;Williamsetal.2009;Ziegleretal.2012). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Reducedstreamflowhasalreadybeen observedthroughouttherangeofRioGrandecutthroattrout(Zeigleretal.2012).Recentclimate modelspredictdecreasesinannualstreamflowintheRioGrandeBasin(Lukasetal.2014).Stream dryingreducesavailablehabitatforalllifestagesofRioGrandecutthroattrout(seematrixin USFWS2014). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.RioGrandecutthroattroutarelocatedinheadwaterstreams.Theyspawnfollowingpeak runofflevelsfromsnowmelt(Behnke2002;PritchardandCowley2006).Climatechangehas shiftedpeakrunofffromsnowmeltapproximately10daysearlierthan45yearsago(Zeigleretal. 2012).EarlierrunoffcouldposebenefitsandthreatstoRioGrandecutthroattrout.Young‐of‐year wouldbenefitfromalongergrowingseason,butalongseasonoflowflowscouldleadtoincreased streamtemperaturesandstreamintermittencyoutsideofthetolerancerangeforthespecies (USFWS2014). C2d)Dependenceonsnow‐coveredhabitats.Neutral.AsnotedaboveinC2c,RioGrande cutthroattroutarelocatedinheadwaterstreams.Theyspawnfollowingpeakrunofflevelsfrom snowmelt(Behnke2002;PritchardandCowley2006). Climate Change Vulnerability Assessment for Colorado BLM 283 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease. Sediment‐freegravelsandcobblesarenecessaryforproducingaquaticinsectsforfoodandcreate spawninghabitats(USFWS2014). C4a)Dependenceonotherspeciestogeneratehabitat.Unknown. C4b)Dietaryversatility.Neutral.StudiesofColoradoRiverandRioGrandecutthroattrout indicatethatmidgelarvae,caddisflies,andmayflies,aswellasarangeofotherbenthicpreyitems comprisethemaindietofthesenativetroutspecies(Bozeketal.1994;PritchardandCowley2006; MooreandGregory1988;Youngetal.1997). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral. C5a)Measuredgeneticvariation.Increase.Geneticdiversityisaconservationconcernforthis speciesthathasexperiencedprecipitousdeclinesinthelastcentury.Recentstudieshaveshown thattherearetwo“evolutionarysignificantunits”ofRioGrandecutthroattrout:oneintheRio GrandeBasin,andoneinthePecosandCanadianbasins(Pritchardetal.2009). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Behnke,R.J.2002.TroutandsalmonofNorthAmerica.FreePress,NewYork. Bozek,M.A.,L.D.Debrey,andJ.A.Lockwood.1994.DietoverlapamongsizeclassesofColoradoRivercutthroattrout (Oncorhynchusclarkipleuriticus)inahigh‐elevationmountainstream.Hydrobiologia273:9‐17. Haak,A.L.,J.E.Williams,D.Isaak,A.Todd,C.Muhlfeld,J.L.Kershner,R.Gresswell,S.Hostetler,andH.M.Neville.2010. Thepotentialinfluenceofchangingclimateonthepersistenceofsalmonidsoftheinlandwest.U.S.GeologicalSurvey, Open‐FileReport2010‐1236,Reston,Virginia.AccessedNov13,2014.Onlineat:pubs.usgs.gov/of/2010/1236/. Hoerling,M.,andJ.Eischeid.2007.PastpeakwaterintheSouthwest.SouthwestHydrology6:18–19,35. 284 Colorado Natural Heritage Program © 2015 Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Moore,K.M.S.andS.V.Gregory.1988.SummerhabitatutilizationandecologyofcutthroattroutfrySalmoclarkii.in CascadeMountainUSAstreams.CanadianJournalofFisheriesandAquaticSciences45:921‐1930. PritchardV.L.,J.L.Metcalf,K.Jones,A.P.Martin,D.E.Cowley.2008.PopulationstructureandgeneticmanagementofRio Grandecutthroattrout(Oncorhynchusclarkiivirginalis).ConservationGenetics,10,1209–1221. Pritchard,V.L.,andD.E.Cowley.2006.RioGrandecutthroattrout(Oncorhynchusclarkiivirginalis):atechnical conservationassessment.U.S.DepartmentofAgricultureForestService,RockyMountainRegion,SpeciesConservation Project,FortCollins,Colorado.Available:www.fs.fed.us/r2/projects/scp/assessments.(September2008). Schmetterling,D.A.andS.B.Adams.2004.Summermovementswithinthefishcommunityofasmallmontanestream. NorthAmericanJournalofFisheriesManagement24:1163–1172 U.S.FishandWildlifeService.2014.EndangeredandThreatenedWildlifeandPlants;12‐MonthFindingonaPetitionTo ListRioGrandeCutthroatTroutasanEndangeredorThreatenedSpecies.DocketNo.FWS–R2–ES–2014–0042; 4500030113. Young,M.K.,Rader,R.B.,andBelish,T.A.1997.“InfluenceofMacroinvertebrateDriftandLightontheActivityand MovementofColoradoRiverCutthroatTrout.”TransactionsoftheAmericanFisheriesSociety,126,428‐437. Williams,J.E.,A.L.Haak,H.M.Neville,andW.T.Colyer.2009.Potentialconsequencesofclimatechangetopersistenceof cutthroattroutpopulations.NorthAmericanJournalofFisheriesManagement29:533–548. Ziegler,M.P,A.S.Todd,C.A.Caldwell.2012.EvidenceofRecentClimateChangewithintheHistoricRangeofRioGrande CutthroatTrout:ImplicationsforManagementandFuturePersistence,TransactionsoftheAmericanFisheriesSociety 141(4):1045‐1059. Climate Change Vulnerability Assessment for Colorado BLM 285 Roundtail Chub Gilarobusta G3/S2 Family:Cyprinidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3) potentialshiftintimingofspawningthatcouldleadtolowerrecruitment;4)lackofgenetic diversity. Distribution:InColorado,theroundtailchubisfoundontheWesternSlopeintheUpperColorado RiverBasin.ThemapaboveisbasedoninformationprovidedintheColoradoParksandWildlife (2015)conservationassessmentplandraft.Habitat:Roundtailchuboccupymainstemand tributariesstreamsintheUpperColoradoRiverBasin.Adultsuseeddiesandpoolsnearareaswith strongcurrentsandboulders(CPW2015);whilesjuvenilesaremostfrequentlyfoundinquiet, shallowbackwaters(Brouderetal.2000). EcologicalSystem:Streams CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Adultroundtailchub occupydeeppoolsandrunsinmainstemandsmallertributarysystemoftheColoradoRiverBasin (Bestgenetal.2011).Larvaepreferlowvelocitybackwaters,young‐of‐the‐yearoccupyshallow,low velocityhabitats,andjuvenilesoccupypools(Bestgenetal.2011).Rapids,swiftturbulentflows, andwaterfallscouldcreatenaturalbarrierstomovementofroundtailchubduringhighflows,but thesebarriersarelikelyseasonal.HighsalinitylevelsintheDoloresRiverfromParadoxValley 286 Colorado Natural Heritage Program © 2015 downstreamtoSanMiguelcouldalsoposeasanaturalbarrierwhenconcentrationsarehighduring lowflows(Bestgenetal.2011). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Theconstructionofdamsalong themainstemoftheColoradoRiveranditstributarieshasfragmentedandinundatedriverine habitat;releasedcold,clearwaters;alteredecologicalprocessesandsedimentregimes;affected seasonalavailabilityofhabitat;andblockedfishpassage(MarshandDouglas1997;Minckleyand Deacon1968;U.S.FishandWildlifeService2002;ValdezandRyel1995).Roundtailchubdeclines arecommoninimpoundmentsafterreservoirconstruction(BezzeridesandBestgen2002). WolfordMountainReservoirhoststheonlyreservoir‐dwellingpopulationofroundtailchubin Colorado(Ewert2010).Fishpassagewayshavebeencreatedfortheroundtailchubandother nativefishatdamsitesintheColoradoRivernearPalisadeandontheGunnisonRiver(Landers 2012).TheGreenRiverDaminUtahisslatedforrehabilitation,andthefinalplansforrenovation includeafishpassagewaytoallowfortheupstreamanddownstreammovementofnativefishes, includingroundtailchub(U.S.DepartmentofAgriculture2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Neutral.Roundtailchubtravel5‐80kmduringspawning(Bestgen etal.2011). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.The roundtailchubisadaptedtothelarge,warm‐waterriversandstreamsoftheColoradoRiverBasin. Roundtailchubpreferstreamtemperaturesthatrangefrom18‐20˚C(BezzeridesandBestgen 2002).DamreleaseshaveledtocolderwatertemperaturesintheBasin,andthesearesuggestedas areasonfortheoveralldeclineinroundtailchubpopulations(Bestgenetal.2011). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40 inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Abundanceofroundtailchubwas positivelycorrelatedwithmoderatetohighbaseflowsintheColoradoRiverBasin(Andersonand Stewart2007).However,theremaybelesswateravailableinfuturetoprovidetheseflows.Most publishedresearchindicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐ late21stcentury(Lukasetal.2014;Jayetal.2008). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.RoundtailchubtypicallyspawninJunetoearlyJulywhenwatertemperaturesrangefrom 16‐22˚C(ColoradoParksandWildlife2015).Mostpublishedresearchindicatesadeclineinrunoff Climate Change Vulnerability Assessment for Colorado BLM 287 intheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Jayetal. 2008).ThiscouldcauselowflowsinAprilandMay,creatingwarmerwatertemperaturesthatcould prematurelyinitiatespawningofroundtailchub,andsubsequentcoldhighflowscouldkilleggsand larvae(Bestgenetal.2011). C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Roundtailchub spawnovergravelindeeppoolsandruns(BezzeridesandBestgen2002;Brouderetal.2000). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Roundtailchubfeedonaquaticandterrestrialinsects,fish, snails,algae,andoccasionallylizards(Bestgen2000;Brouder2001;ColoradoParksandWildlife 2015;Osmundson1999;SiglerandSigler1996). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.SomewhatIncrease.Theroundtailchubisverycloselyrelated tothehumpbackchub,andgeneticdiversityhasbeenidentifiedasaconservationissueforthese twospecies(Clarksonetal.2012;DouglasandDouglas2007). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Bestgen,K.R.2000.PersonalcommunicationwithDirectorofColoradoStateUniversity’sLarvalFishLabtoColorado ParksandWildlife,FortCollins,Colorado. Bestgen,K.R.,P.Budy,andW.J.Miller.2011.StatusandtrendsofflannelmouthsuckerCatostomuslapipinnis,bluehead suckerCatostomusdiscobolus,androundtailchubGilarobusta,intheDoloresRiver,Colorado,andopportunitiesfor populationimprovement:PhaseIIreport.PreparedforLowerDoloresPlanWorkingGroup.Onlineat http://warnercnr.colostate.edu/docs/fwcb/lfl/PDF/LFL‐166‐Bestgen_et_al‐2011‐Rpt.pdf. 288 Colorado Natural Heritage Program © 2015 Bezzerides,N.,andK.R.Bestgen.2002.StatusReviewofRoundtailChubGilarobusta,FlannelmouthSuckerCatostomus latipinnis,andBlueheadSuckerCatostomusdiscobolusintheColoradoRiverBasin.Finalreport.SubmittedtoU.S. DepartmentoftheInterior,BureauofReclamation,SaltLakeCity,Utah.LarvalFishLaboratoryContribution118, ColoradoStateUniversity,Ft.Collins. Brouder,M.J.,D.D.Rogers,andL.D.Avenetti.2000.Lifehistoryandecologyoftheroundtailchub(Gilarobusta)fromtwo streamsintheVerdeRiverBasin.TechnicalGuidanceBulletinNo.3–July2000.ArizonaGameandFishDepartment ResearchBranch,FederalAidinSportfishRestorationProjectF‐14‐R,Phoenix. Brouder,M.J.2001.Effectsoffloodingonrecruitmentofroundtailchub,Gilarobusta,inasouthwesternriver.The SouthwesternNaturalist46(3):302‐310. Clarkson,R.W.,P.C.MarshandT.E.Dowling.2012.Populationprioritizationforconservationofimperiledwarmwater fishesinanarid‐regiondrainage.AquaticConservation:MarineandFreshwaterEcosystems22(4):498‐510. ColoradoParksandWildlife.2015.StateofColoradoConservationandManagementPlanfortheRoundtailChub(Gilia robusta),BlueheadSucker(Catostomusdiscobolus)andFlannelmouthSucker(Catostomuslatipinnis).UnpublishedDraft. Douglas,M.R.andM.E.Douglas.2007.GeneticStructureofHumpbackChubGilacyphaandRoundtailChubG.robustain theColoradoRiverEcosystem.Report.DepartmentofFish,WildlifeandConservationBiology,ColoradoStateUniversity. 99pp. Ewert,J.2010.WolfordMountainReservoir,fishsurveyandmanagementdata.ColoradoDivisionofWildlife.Available from http://cpw.state.co.us/documents/fishing/fisherywatersummaries/summaries/northwest/wolfordmountainreservoir.p df Landers,J.2012.ColoradoDamModifiedtoIncludeInnovativeFishwaysandBoatPassage.CivilEngineering82(11):24‐ 28. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater Assessment. Marsh,P.C.,andM.E.Douglas.1997.Predationbyintroducedfishesonendangeredhumpbackchubandothernative speciesintheLittleColoradoRiver,Arizona.TransactionsoftheAmericanFisheriesSociety126:343–346. Minckley,W.L.,andJ.E.Deacon.1968.Southwesternfishesandtheenigmaof“EndangeredSpecies”:man’sinvasionof desertscreatesproblemsfornativeanimals,especiallyforfreshwaterfishes.Science,159:1424‐1432. Osmundson,D.B.1999.LongitudinalvariationinfishcommunitystructureandwatertemperatureintheUpperColorado River:implicationsforColoradopikeminnowhabitatsuitability.FinalReportforRecoveryImplementationProgram, ProjectNo.48.U.S.FishandWildlifeService,GrandJunction,Colorado. Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard. Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah:ANaturalHistory.UniversityofUtahPress,SaltLakeCity. U.S.DepartmentofAgriculture.2014.FinalEnvironmentalImpactStatement.GreenRiverDiversionRehabilitation Project.AccessedOctober14,2014onlineat http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ut/programs/planning/ewpp/?cid=nrcs141p2_034037. Climate Change Vulnerability Assessment for Colorado BLM 289 Great Basin Silverspot Speyerianokomisnokomis G3T1/S1 Family:Nymphalidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostatewiderankisbasedon:theprojectedincreaseintemperatureanddroughtinthe assessedarea,theinabilityofthesilverspottodisperseacrossdrylandscapes,itsdependenceon wetlandhabitatwithinanaridlandscape,thedryingofitswetlandhabitatduetoprojected frequenciesofdrought,modificationstohydrology(e.g.,waterdiversionprojects,cappingsprings, anddrainingwetlands)tosupporttheagricultureandlivestockindustriesastheavailabilityof waterresourcesdeclines,limitedprecipitationvariationthesilverspothashistoricallyexperienced, theincreasedthreattosuitablehabitatfromwildfirecausedbydroughtandwarming,dependence onalarvalhostplantthatisrestrictedtowetlands,andlowlevelsofgeneticvariabilityquestioning thesilverspotsadaptabilitytoachangingenvironment.Regionalannualaveragetemperaturesare projectedtoriseby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099with continuedgrowthinglobalemissions(A2emissionsscenario),withthegreatestincreasesinthe summerandfall(Melilloetal.2014).Underacontinuationofcurrentrisingemissionstrends(A2), reducedwinterandspringprecipitationisconsistentlyprojectedforthesouthernpartofthe Southwestby2100elevatingthepotentialforwildfire(Melilloetal.2014). Distribution:InColorado,coloniesoccuratonlyfourpreviouslyknownlocationsinLaPlata,Mesa, Montrose,andOuraycounties(CNHP2004).Habitat:TheNokomisfritillaryisassociatedwiththe UpperSonoran(pinyon‐juniper,variousshrubs)andCanadian(fir‐spruce‐tamarack,somepine, aspen‐maple‐birch‐alder‐hemlock)LifeZonesofthesouthwesternUnitedStatesandnorthern Mexico(Hammond1974,Scott1986,Selby2007).Habitatsaregenerallydescribedaspermanent spring‐fedmeadows,seeps,marshes,andboggystreamsidemeadowsassociatedwithflowing waterinaridcountry(Hammond1974,Scott1986,TildenandSmith1986,OplerandWright1999, BrockandKaufman2003,Selby2007). 290 Colorado Natural Heritage Program © 2015 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Aridlandscapesseparatingdesert streamsandwetlandsareaseverebarriertothisspecies.GreatBasinsilverspotbutterfliesdonot migratewithdocumentedroutinedispersaldistancesofonlyupto4km(Fleischmanetal.2002). Theyrequirestreamsidemeadowsandseepageareasduringtheiradultflightperiodandfortheir larvalstage.InthearidSouthwest,wherethisbutterflylives,thesehabitatconditionsarewidely separatedandisolated(Selby2007)andpopulationsatonelocalewillnotcrossaridlandscapesto distantcoloniesexistingatotherdesertstreams/wetlands. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Anthropogenicbarriersarenot thoughttobeaconcernforthisspeciesbecauseoftheundevelopeddesertlandscapesthisspecies inhabits. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Modificationstohydrology(e.g.,waterdiversionprojects,cappingsprings,anddrainingwetlands) tosupporttheagricultureandlivestockindustriesarethegreatesthistoric,current,andfuture threattothelong‐termsurvivaloftheGreatBasinsilverspotbutterflyintheassessedarea. Increasedwaterdemand,combinedwithreducedavailabilityduetoclimatechange(Karletal. 2009),willnegativelyimpactthisspecies. C1)Dispersalandmovements.Neutral.TheGreatbasinsilverspothasbeendocumentedto routinelydisperseupto4km(2.5miles),andinonestudy26percentoftherecapturedbutterflies hademigratedfromtheirinitialcapturepatch(Fleischmanetal.2002). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheGreatBasinsilverspotintheassessedareahasexperiencedanaverage(51.7‐77° F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease. TheGreatBasinSilverspothasapreferenceforwarmerenvironmentsandisassociatedwitharid desertlandscapesoftheUpperSonoranLifeZone(Selby2007). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.WithintheassessedareatheGreatBasin silverspothasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitationvariationin thepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Greatlyincrease.TheGreatbasinsilverspotiscompletely dependentuponwidelyseparatedisolatedspotswheretherearepermanentspring‐fedmeadows, seeps,marshes,andboggystreamsidemeadowsassociatedwithflowingwaterinthemidstof otherwisearidcountry(Hovanitz1970,BrockandKaufman2003).Inthefuture,climatechangeis Climate Change Vulnerability Assessment for Colorado BLM 291 projectedtoincreasedroughtfrequency(Melilloetal.2014,whichmayreducethesehabitats withintheassessedarea. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Climatechangeisprojectedtoincreasewildfirefrequencyintheassessedarea(Melillo 2014).Firecancausedirectmortalityoflarvaeandeliminaterequiredhostplants.Giventhese factors,itshouldbeassumedthatextensive(e.g.,burningallormostofthehabitatinanareaatone time)orfrequent(e.g.,everyonetotwoyears)firesarelikelytonegativelyaffectbutterfly populations(Selby2007).Alternatively,lowseverityandinfrequent(every5years)firecan maintainthecomplexofwetmeadows,willows,andotherwoodywetlandspeciesthatprovides optimalmicroclimatesforthelarvalfoodplant(bogviolet)andadultnectarplantstheGreatBasin silverspotbutterflyneeds. C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheGreatBasinsilverspotisnot dependentonhabitatswithice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheGreatBasin silverspotisnotdependentuponanyuncommongeologicalelements. C4a)Dependenceonotherspeciestogeneratehabitat.Increase.TheGreatBasinsilverspotis dependentonthepresenceofanadequatesupplyofthelarvalfoodplant(i.e.,bogviolet[Viola nephrophylla])(NatureServe2014).Microhabitatconditionsforthebogvioletincludesoggysoil andshade,oftenundershrubssuchaswillows(Baird1942).Willowsareusuallypresent (Hammond1974)andprobablyhelptocreatethemicroclimatethatthevioletsneed.Climate changeisprojectedtoincreasedroughtfrequencywithintheassessedarea(Melilloetal.2014), reducingthewateravailableforsustainingtheplantcommunitiesthebogvioletdependsupon. C4b)Dietaryversatility.Bogviolet(Violanephrophylla)istheexclusivelarvalfoodplant.Adults feedonnectarfromawiderangeoffloweringalpineplants(OplerandWright1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGreatBasinfritillaryis aself‐disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheGreatBasinfritillary. C5a)Measuredgeneticvariation.Increase.ColoniesofNokomisfritillarysubspeciestendtobe small,local,restrictedtoarelativelynarrowelevationrange,andsusceptibletooccasionalsevere populationdeclines;consequently,lowlevelsofheterozygosityarenotunexpected.Genetic researchontheGreatBasinsilverspotindicatesthatthereisverylittlegeneticvariationinthese populations(Selby2007). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. 292 Colorado Natural Heritage Program © 2015 C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Baird,V.B.1942.WildvioletsofNorthAmerica.UniversityofCaliforniaPress,Berkeley,CA. Brock,J.P.andK.Kaufman.2003.ButterfliesofNorthAmerica.HoughtonMifflin,NewYork,NY.383pp. ColoradoNaturalHeritageProgram(CNHP).2004.Nokomisfritillaryelementglobalrank(EGR)report.ColoradoNatural HeritageProgram,FortCollins,CO. Fleishman,E.,C.Ray,P.Sjögren‐Gulve,C.L.Boggs,andD.D.Murphy.2002.Assessingtherelativerolesofpatchquality, area,andisolationinpredictingmetapopulationdynamics.ConservationBiology16:706‐716. Hammond,P.C.1974.AnecologicalsurveyofthenymphalidbutterflygenusSpeyeria.M.S.Thesis,UniversityofNebraska, Lincoln,NE. Hovanitz,W.1969(1970).Habitat:Argynnisnokomis.JournalofResearchontheLepidoptera8(1):20. Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge UniversityPress. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org[2/6/2015]. Opler,P.A.andA.BWright.1999.Petersonfieldguidetowesternbutterflies.Revisededition.HoughtonMifflinCo., Boston,MA.540pp. Scott,J.A.1986.ThebutterfliesofNorthAmerica.StanfordUniversityPress,Stanford,CA.583pp. Selby,G.2007.GreatBasinSilverspotButterfly(Speyerianokomisnokomis[W.H.Edwards]):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/greatbasinsilverspotbutterfly.pdf[1/23/2015]. Tilden,J.W.andA.C.Smith.1986.Afieldguidetowesternbutterflies.Houghton‐MifflinCo.,Boston,MA.370pp.23color plates. Climate Change Vulnerability Assessment for Colorado BLM 293 American Beaver Castorcanadensis G5/S4 Family:Castoridae Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedon:thelimitedthermalnicheforC.canadensis;C. canadensis’relianceonaquaticenvironments;andC.canadensis’susceptibilitytovaryingwater availability. Distribution:C.canadensisisfoundinnearlyallwaterwaysinColorado.Habitat:C.canadensis livesandfeedsinandaroundwaterwaysofColorado,butaremostabundantinareaswithaspen, cottonwood,orwillowespeciallyinbroadglacialvalleyswithlowstreamgradients(Armstronget al.2011).Elevation:3,300–11,000feet. EcologicalSystem:Waterwaysandadjacentriparianforests CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Therearefewnaturalbarriersfor beavers. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Becausebeaversareadeptat colonizingwaterbodiesandareubiquitousinNorthAmerica,therearefewanthropogenicbarriers. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Thereisnotclimate‐changemitigatingenergydevelopmentthatwilllimitbeaversuccess. 294 Colorado Natural Heritage Program © 2015 C1)Dispersalandmovements.SomewhatDecrease.Femalestypicallydispersefurtherthan males(10kmvs.3km)(Sunetal.2000).Juvenilesindifferentsystemsmaydispersalless(2–5 km)(McNewandWoolf2005).Dispersaldistancesfortransplantedbeavercanbemuchhigher (BoyleandOwens2007),butnaturaldispersalistypicallylessthan10km(VanDeelenand Pletscher1986,Sunetal.2000). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe beaverrangeinColoradofallswithinthe55‐77°Frange. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase Vulnerability.Thermoneutralzoneforbeaversisbetween32‐82°F(MacArthur1989)andthe speciesspendsmostofitstimeinwaterwherethermoregulationincoolaquaticenvironmentscan bephysiologicallychallenging(MacArthurandDyck1990).However,beaversaretiedtoaquatic environmentsthatmaybecomemorescarceandwarminganddryingcontinue. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncreaseVulnerability.BasedontheClimateWizard mapofhistorichydrologicvariation,muchoftherangeinColoradovariesfromthelowestvariation tomid‐levelsofvariability. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncreasevulnerability.Beaversare100%relianton aquaticenvironmentsforsubsistence,anditislikelyasclimatedriesandwarmsthedistribution (andbeaverabundance)willbereduced. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncreaseVulnerability.Beaversdonotrelyonaparticulardisturbanceregimeanddo notneedanabsenceofdisturbance.Themostregularnon‐essentialdisturbanceiswater availability.Populationsofbeaveronlow‐flowstreamswilllikelybethemostdisturbedby alternationsinhydrology(BoyleandOwens2007).Beaversandtheirhabitatcanbechallengedby theabsenceofwater(drought)oranabundanceofwater(flooding),butcanmodifytheir environmenttolimittheimpactofthesestressors.Climatechangeislikelytoincreasethe frequencyofdroughtandthismaylimitbeaverdistributionandnumbers. C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis speciestosnoworice‐coveredhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot knowntospecializeonuncommongeologicalfeatures. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Beaversgeneratetheirown habitatviadambuilding. C4b)Dietaryversatility.Neutral.Beaversaregeneralistherbivoresfeedingoninnerbark,twigs, leaves,andbudsofdeciduouswoodyplants,andherbaceousandaquaticplants(BoyleandOwens 2007). Climate Change Vulnerability Assessment for Colorado BLM 295 C5a)Measuredgeneticvariation.Unknown.Nodataareavailableforgeneticvariabilitywithin NorthAmericanbeavers. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown.Nodataavailable. D1)Responsetorecentclimatechange.Unknown.Nodataavailable. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Neutral.Veryfewrivermilesareconsideredprotected,butwetlandsand waterwaysreceivelegalprotectionthroughCleanWaterActandotherlegislation. Literature Cited Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado. 704pp. Boyle,S.,andS.Owens.2007.NorthAmericanBeaver(CastorCanadensis):atechnicalconservationassessment.[Online]. USDAForestService,RockyMountainRegion.Available:: http://www.fs.fed.us/r2/projects/scp/assessments/northamericanbeaver.pdf[5January2015]. MacArthur,R.A.1989.Energymetabolismandthermoregulationofbeaver(Castorcanadensis).CanadianJournalof Zoology67:651‐657. MacArthur,R.A.,andA.P.Dyck.1990.Aquaticthermoregulationofcaptiveandfree‐rangingbeavers(Castorcanadensis). CanadianJournalofZoology68:2409‐2416. McNew,L.B.,Jr.,andA.Woolf.2008.Dispersalandsurvivalofjuvenilebeavers(Castorcanadensis)insouthernIllinois. AmericanMidlandNaturalist154:217‐228. Sun,L.,D.Müeller‐Schwarze,B.A.Schulte.2000.Dispersalpatternsandeffectivepopulationsizeofthebeaver.Canadian JournalofZoology78:393‐398. VanDeelen,T.R.,andD.H.Pletscher.1996.Dispersalcharacteristicsoftwo‐year‐oldbeavers,Castorcanadensis,inwestern Montana.CanadianField‐Naturalist110:318‐321. 296 Colorado Natural Heritage Program © 2015 Desert Bighorn Sheep Oviscanadensisnelsoni G4/S4 Family:Bovidae No photo available Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostate‐widerankisbasedon:transportationcorridorsthatcanlimitO.canadensis nelsonidispersal;likelyincreaseindroughtconditionsthroughitsrange;geneticbottlenecks;and modeledimpactsfromclimatechange.Despitethesethreats,O.canadensisnelsoniarewelladapted todroughtconditions,havebroadrangesthatmayallowsomepopulationstomigrateawayfrom inhospitablehabitatsandconditions,andhaveshownflexibilityintimingofparturitionthatmay bettermatchperiodsofheightenedresourceavailability. Distribution:O.canadensisnelsoniarefoundinwesternColoradoinafewspecificpopulations neartheUtahborder.Habitat:canbefoundinavarietyofhabitats,butpreferareaswithhigh‐ visibilitywithgrass,lowshrubs,muchrockcoverandtopographicrelief,andwithabundantopen areasforescape.Elevation:Varies,buttypicallylessthan10,000feet. EcologicalSystem:Cliffs,grasslands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Thereissomedesertbighornsheep habitatnorthofcurrentreintroductionsites(BlackRidge,Uncompahgre,andDoloresRiver populations),butitisseparatedbylowerelevationvalleys.Givenbighornsheepabilitytoutilize lowerelevationhabitats(KrausmanandBowyer2003),populationshavethepotentialtomigrate northasclimateschange. Climate Change Vulnerability Assessment for Colorado BLM 297 B2b)Distributionrelativetoanthropogenicbarriers.IncreaseVulnerability.Urban,suburban, andtransportationdevelopmentborderbighornsheeppopulationstothenorth.Thesemaybe minimallyrestrictiveinsomeareas,butmajortransportationcorridorscanprohibitmovementand restrictgeneflow(Eppsetal.2005).Additionally,becausehuntedbighornsheepshowagreater responsetohumandisturbance(Geist1971,KingandWorkman1986)thisdevelopmentpressure andthehumanpopulationsinproximitytoitmayfurtherprohibitmigration.Becauseitisunclearif thepotentialisolationandsheepbehaviorareidenticaltothosedocumentedinCalifornia populations,thisisconsidered“increasevulnerability”insteadof“greatlyincreasevulnerability”. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Neithersolar,wind,orbiomassenergyproductionappeartobehigh‐rewardtargetsforthisregion ofwesternColoradobasedonNationalRenewalEnergymaps (apps1.eere.energy.gov/states/maps.cfm/state=CO). C1)Dispersalandmovements.DecreaseVulnerability.Bighornsheepcanmoveupto70km betweenseasonalranges(Beechametal.2007). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe desertbighornrangeinColoradofallswithinthe55‐77°Frange. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatDecrease Vulnerability.Hottertemperaturesdonotappeartochallengebighornphysiology(Turner1973). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncreaseVulnerability.BasedontheClimateWizardmap ofhistorichydrologicvariation,muchofthedesertbighornsheeprangeinColoradovariesfromthe lowestvariationtomid‐levelsofvariability. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Desertbighornsheeparewell adaptedtoheatanddroughtstress,evenabletoconcentrateurinebetterthancamels(Turner 1973). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Desertbighornsheepareoccasionallyexposedtoandadaptedtodrought conditions.However,therecenttrendsinwarminganddroughtmaybeimpactingviability. Prolongeddroughtcancauseincreasedsheepmortality(Monson1960),impactrecruitment (Wehausenetal.1987),andcontributetodecreasedpopulationviability(WeaverandMensch 1971).Climatedatasuggestthatdroughtwillpossiblyincreaseinfrequency,intensityandduration. Diseaseisacommonfactorcausingperiodicdesertbighorndecline(Singeretal.2001). C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis speciestosnoworice‐coveredhabitats. 298 Colorado Natural Heritage Program © 2015 C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot knowntospecializeonuncommongeologicalfeatures. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Norelianceonotherspeciesfor habitatgeneration. C4b)Dietaryversatility.Neutral.Desertbighornsheepareherbivorous,feedinglargelyon grassesandforbs,supplementingthisdietwithsomeshrubs(Armstrongetal.2011). C5a)Measuredgeneticvariation.Neutral.Geneticdiversityofdesertbighornpopulationsis relativelyhighinsomepopulations(Gutierrez‐Espeletaetal.2000)whilelowinothers(Hedrick andWehausen2014). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.SomewhatIncrease VulnerabilitytoNeutral.Populationisolationandreintroductioneffortswithsmallpopulations havecreatedgeneticbottlenecksinsomeregions(Rameyetal.2001,Hedricketal.2001). C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. SomewhatDecreaseVulnerabilitytoNeutral.Desertbighornsheephaveshownsite‐specific variabilityinparturitionthatallowsflexibilitytocapitalizingonavailableresources,butthismay comewithfitnessconsequencesfornewlyreintroducedpopulations(Whitingetal.2011) D1)Responsetorecentclimatechange.Neutral.Nothingreported. D2)Modeledfuturechangeinpopulationorrangesize.SomewhatIncreaseVulnerability.Epps etal.(2004)modeledthepotentialoffuturepopulationdeclineoverthenext60years.With minimumtemperaturechangescenariosaverageextinctionprobabilityofpopulationswas20%. Whencombinedwiththeprojecteddeclineinprecipitationtheprobabilityincreasedto30%. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.Nothingdocumented. D4)Protectedareas.SomewhatIncreaseVulnerability.Withinthecurrentrangetherearefew protectedareasthatwouldprotectpopulations. Literature Cited Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado. 704pp. BeechamJr,J.J.,C.P.Collins,andT.D.Reynolds.2007.RockyMountainBighornSheep(OvisCanadensis):atechnical conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/rockymountainbighornsheep.pdf[6January2015]. Epps,C.W.,D.R.McCullough,J.D.Wehausen,V.C.Bleich,andJ.L.Rechel.2004.Effectsofclimatechangeonpopulation persistenceofdesert‐dwellingmountainsheepinCalifornia.ConservationBiology18:102‐113. Epps,C.W.,P.J.Palsbell,J.D.Wehausen,G.K.Roderick,R.R.Ramey,andD.R.McCullough.2005.Highwaysblockgeneflow andcausearapiddeclineingeneticdiversityofdesertbighornsheep.EcologyLetters8:1029‐1038. Climate Change Vulnerability Assessment for Colorado BLM 299 Geist,V.1971.Mountainsheep:astudyinbehaviorandevolution.UniversityofChicagoPress,Chicago,383pp. Gutierrez‐Espeleta,G.A.,S.T.Kalinowski,W.M.Boyce,andP.W.Hedrick.2000.Geneticvariationandpopulationstructure indesertbighornsheep:implicationsforconservation.ConservationGenetics1:3‐15. Hedrick,P.W.,G.A.Gutierrez‐Espeleta,andR.N.Lee.2001.Foundereffectsinanislandpopulationofbighornsheep. MolecularEcology10:851‐857. Hedrick,P.W.,andJ.D.Wehausen.2014.Desertbighornsheep:changesingeneticvariationovertimeandtheimpactof mergingpopulations.JournalofFishandWildlifeBiology5:3‐13. King,M.M.,andG.W.Workman.1986.Responseofdesertbighornsheeptohumanharassment:managementimplications. TransactionsoftheNorthAmericanWildlifeandNaturalResourcesConference51:74‐85. Krausman,P.R.,andR.T.Bowyer.2003.Mountainsheep,OviscanadensisandO.dalli.Pp.1095‐1115inWildmammalsof NorthAmerica:biology,management,andeconomics.2nded.(G.A.Feldhamer,B.C.Thompson,andJ.A.Chapman,eds.). JohnHopkinsUniversityPress,Baltimore,MD.1216pp. Monson,G.1960.Effectsofclimateondesertbighornnumbers.DesertBighornCouncilTransactions4:12‐14. Ramey,R.R.,G.Luikart,andF.J.Singer.2001.Geneticbottlenecksresultingfromrestorationefforts:thecaseofthedesert bighornsheepinBadlandsNationalPark.RestorationEcology8:85‐90. Singer,F.J.,L.C.Zeigenfuss,andL.Spicer.2001.Roleofpatchsize,disease,andmovementinrapidextinctionofbighorn sheep.ConservationBiology15:1347‐1354. Turner,J.C.1973.Water,energyandelectrolytebalanceinthedesertbighornsheep,Oviscanadensis.PhDThesis. UniversityofCalifornia,Riverside.138pp. Weaver,R.A.,andJ.L.Mensch.1971.BighornsheepinnortheasternRiversideCounty.Wildlifemanagement administrativereport71‐1.CaliforniaDepartmentofFishandGame,Sacramento,California. Wehausen,J.D.,V.C.Bleich,B.Blong,andT.L.Russi.1987.RecruitmentdynamicsinasouthernCaliforniamountain sheeppopulation.JournalofWildlifeManagement51:86‐98. Whiting,J.C.,R.T.Bowden,J.T.Flinders,andD.L.Eggert.2011.Reintroductionbighornsheep:fitnessconsequencesof adjustingparturitiontolocalenvironments.JournalofMammalogy92:213‐220. 300 Colorado Natural Heritage Program © 2015 Fringed Myotis Myotisthysanodes G4/S3 Family:Vespertilionidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement; 2) associationwithcavesandminesasgeologicfeaturesmaybeincreasevulnerabilityunder projectedincreasesintemperatureduetoclimatechange,howeverthisspeciesisnotfound exclusivelyincavesandmines. Distribution:InColorado,Thefringedmyotisthisspecieshasbeenfoundsparinglyonboththe easternandwesternsidesoftheContinentalDivide(Armstrongetal.2011).Habitat:InColorado, thefringedmyotisisfoundinconiferouswoodlandsandshrublandssuchasponderosapine, greasewood,oakbrush,andsaltbrush(Armstrongetal.2011).Elevation:Thisspecieshasbeen recordedupto7,500feetinColorado(Armstrongetal.2011). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It isunlikelythatanyclimatemitigation‐relatedlandusechangeswilloccurwithinthisspecies’range withinColorado. C1)Dispersalandmovements.Decrease.Long‐distancedispersalabilities. Climate Change Vulnerability Assessment for Colorado BLM 301 C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincrease.AdamsandHayes(2008)postulatedthat theimpactofreducedwaterstoragecapacityasaresultofclimatechangeinthearidwestern UnitedStateswouldnegativelyimpactlactatingfemalesofthisspecies,especiallyatalocalscale. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Thisbat isfoundincavesandmines,butinColoradoisnotrestrictedtothesefeatures. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral. This species feeds broadly on moths, beetles, and other flying insects (Keinath 2004; Armstrong et al. 2011). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. 302 Colorado Natural Heritage Program © 2015 Literature Cited Adams,R.A.andM.A.Hayes.2008.Wateravailabilityandsuccessfullactationbybatsasrelatedtoclimatechangeinarid regionsofwesternNorthAmerica.JournalofAnimalEcology77:1115‐1121. Armstrong,D.M.,J.P.Fitzgerald,andC.A.Meaney.2011.MammalsofColorado,2ndedition.DenverMuseumofNatureand ScienceandUniversityPressofColorado,Boulder,CO. Keinath,D.A.2004.Fringedmyotis(Myotisthysanodes):atechnicalconservationassessment.[Online].USDAForest Service,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/townsendsbigearedbat.pdf Climate Change Vulnerability Assessment for Colorado BLM 303 Gunnison Prairie Dog Cynomysgunnisoni G5/S5 Family:Sciuridae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable DespiteC.gunnisonibeingrankedasStable,thefactorsthatwouldleadittobemorevulnerableare: predicteddecreasesinprecipitation;habitatloss;prairiedogsusceptibilitytoplague:andlimited geneticvariability.Currently,noneoftherankingfactorsconsiderthethreatshighenoughthatC. gunnisoniwouldbeinimminentthreatfromon‐goingclimatechange.Thespeciesabilityto disperseanditslackofrelianceofmesichabitatsbufferitfromclimatechangethreats. Distribution:C.gunnisoniisfoundinsouthwesternandsouth‐centralColoradoingrasslands,and semi‐desertandmontaneshrublands(Armstrongetal.2011).Habitat:C.gunnisoniarehabitat architects,modifyingthesoilandvegetativecharacteristicsaroundcolonies.Theyinhabit shortgrassandmid‐grassprairies,shrublandsinlowvalleys,andwetter,high‐elevationprairies. Elevation:6000‐12000feet. EcologicalSystem:Grasslands,Shrublands CCVI Scoring B1)Exposuretosealevelrise‐Neutral. B2a)Distributionrelativetonaturalbarriers.NeutraltoSomewhatIncreaseVulnerability. TherearevariouslowpassesinandoutofprairiedograngeinColoradothatwillnotpreventthe GunnisonPrairiedogfromemigrating,butmaylimitdispersalifsubjectedtoclimate‐causedshifts. Populationsareknowntohaveoccurredashighas~12,000’elevationinColorado(Armstronget 304 Colorado Natural Heritage Program © 2015 al.2011).However,theUSFWS(2010)pointedoutthatnumerouspartsoftherangeareseparated bymountainrangesthatalmostcompletelylimitprairiedogmovementbetweenthem. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Muchoftheprairiedograngein Coloradoisonpublicland.FutureplanningscenariosforSouthParksuggestincreasedsuburban andinfrastructuredevelopmentthatmaylimitdispersalcapacityforpopulationsinthisregion. Muchoftherangeisnothinderedbyanthropogenicdisturbancetogreatlylimitrangewideclimate‐ causeddispersal. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutralto SomewhatIncreaseVulnerability.Wind‐energydevelopmentisincreasinginColorado.Alongthe easternedgesoftheGunnisonandSanLuisvalleyswindspeedsareattractiveandmaytargetwind‐ energydevelopmentinthisareaoftheprairiedogsrange.Similarly,solarenergymaybetargeted fortheSanLuisValleywheresolarexposureispromising(NaturalResourcesEnergyLaboratory, ConcentratingSolarPowerEnergymapforColorado,2007andGlobalSolarRadiationatLatitude TiltmapforColorado,2007).Itisunclearhowthisspeciesrespondstoenergydevelopment,butit islikelysuchdevelopmentwouldfurthersegmentpopulations. C1)Dispersalandmovements.SomewhatDecrease.Themovementsanddispersalarepoorly studiedinthisspecies.However,inotherspeciesofprairiedogsmovementsareknowntobe around2‐8km(GarrettandFranklin1988;Knowles1985).SeglundandSchnurr(2010)reported dispersaldistancesaslongas7.7km. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Basedon ClimateWizard.orgPastExposureTemperatureVariation,muchofGunnison’sprairiedograngein Coloradoisfrom55‐77°F. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.NeutraltoSomewhat IncreaseVulnerability.Becausethisspeciesofprairiedogisanobligatehibernator(Shalawayand Slobodchikoff1988)itsoverwintersurvivalcanbechallengedifoverwinterthermalconditionsdo notmaintainlong,stableperiodsofcoldtemperatures(Arnoldetal.1991,Schorretal.2009).Thus, ifthermalconditionsarenotappropriateforhibernation,survivalmaybedepressed. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncrease.BasedonClimateWizard.orgAverageAnnual Precipitation1951‐2006,muchofGunnison’sprairiedograngeinColoradoismiddle‐to‐low precipitationvariation. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Gunnison’sprairiedogsinhabit grasslandsandsemidesertandmontaneshrublands(Armstrongetal.2011).Vegetationconditions ofmanylandswithintherangeofGunnison’sprairiedoghavebeenalteredthroughgrazing (Fleischner1994).Theprairiedogsarepossiblymoresusceptibletostressfromdroughtwhere nativevegetationhasbeenseverelyaltered(SeglundandSchnurr2010).Mostvegetationwithin Climate Change Vulnerability Assessment for Colorado BLM 305 usedhabitathassomeleveloftolerancetoaridconditionsandmaynotbedramaticallyimpacted byincreaseddryingpredictedbyclimatemodeling. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncreasetoIncrease.Themostdramaticandrecurringdisturbancethatcanimpact Gunnison’sprairiedogsisplague(Cullyetal.1997).Gunnison’sprairiedogsareoccasionally exposedtodroughtconditions.Theseconditionscausestressandevenpopulationreduction/local extirpationintheblack‐tailedprairiedog(Fackaetal.2010).Climatedatasuggestthatdroughtwill possiblyincreaseinfrequency,intensityandduration. C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis speciestosnoworice‐coveredhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot knowntospecializeonuncommongeologicalfeatures. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Generatesandmodifiesitsown habitatbyburrowingandgrazing. C4b)Dietaryversatility.Neutral.Gunnison’sprairiedogisanherbivore,feedinglargelyon grassesandforbs,supplementingthisdietwithsomeshrubs(FitzgeraldandLechleitner1974; Longhurst1944). C5a)Measuredgeneticvariation.NeutraltoSomewhatIncreaseVulnerability.Geneticdiversity inthisspecieswasdeterminedtobelow(Travisetal.1997). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Noobservationsmade. D1)Responsetorecentclimatechange.Neutral.Nothingreported. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Neutral. Literature Cited Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado. 704pp. Arnold,W.,G.Heldmaier,S.Ortmann,H.Pohl,T.Ruff,andS.Stenlechner.1991.Ambienttemperaturesinhibernaculaand theirenergeticconsequencesforalpinemarmots(Marmotamarmota).JournalofThermalBiology16:223‐226. 306 Colorado Natural Heritage Program © 2015 Cully,Jr.,J.F.,A.M.Barnes,T.J.Quan,andG.Maupin.1997.DynamicsofplagueinaGunnison’sprairiedogcolonycomplex fromNewMexico.JournalofWildlifeDiseases33:706‐719. Facka,A.N.,etal.2010.Droughtleadstocollapseofblack‐tailedprairiedogpopulationsreintroducedtotheChihuahuan Desert.JournalofWildlifeManagement74:1252‐1762. Fitzgerald,J.P.andR.R.Lechleitner.1974.ObservationsonthebiologyofGunnison’sprairiedogincentralColorado.J. Colorado‐WyomingAcad.Sci.21:22. Fleischner,T.L.1994.EcologicalcostsoflivestockgrazinginwesternNorthAmerica.ConservationBiology8:629‐644. Garrett,M.G.,andW.L.Franklin.1988.Behavioralecologyofdispersalintheblack‐tailedprairiedog.Journalof Mammalogy69:236‐250. Knowles,C.J.1985.ObservationonprairiedogdispersalinMontana.PrairieNaturalist17:33‐40. Longhurst,W.1944.ObservationsontheecologyoftheGunnisonprairiedoginColorado.JournalofMammalogy25:24‐ 36. Schorr,R.A.,P.M.Lukacs,andG.L.Florant.2009.Bodymassandwinterseverityaspredictorsofoverwintersurvivalin Preble’smeadowjumpingmouse.JournalofMammalogy90:17‐24. Seglund,A.E.andP.M.Schnurr.2010.ColoradoGunnison’sandwhite‐tailedprairiedogconservationstrategy.Colorado DivisionofWildlife,Denver,Colorado,USA. Shalaway,S.,andC.N.Slobodchikoff.1988.SeasonalchangesinthedietofGunnison’sprairiedog.JournalofMammalogy 69:835‐841. Travis,S.E.,C.N.Slobodchikoff,andP.Keim.1997.DNAfingerprintingrevealslowgeneticdiversityinGunnison’sprairie dog(Cynomysgunnisoni).JournalofMammalogy78:725‐732. U.S.FishandWildlifeService.2010.SpeciesassessmentandlistingpriorityassignmentforCynomysgunnisoni(central andsouth‐centralColorado,north‐centralNewMexico).Available: http://ecos.fws.gov/docs/candidate/assessments/2010/r6/A0IB_V01.pdf Climate Change Vulnerability Assessment for Colorado BLM 307 Townsend’s Big‐eared Bat Corynorhinustownsendiipallescens G3G4T3T4/S2 Family:Vespertilionidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement; 2) associationwithcavesandminesasgeologicfeaturesmaybeincreasevulnerabilityunder projectedincreasesintemperatureduetoclimatechange. Distribution:InColorado,Townsend’sbig‐earedbatoccursthroughoutthewesterntwo‐thirdsof thestate,includingthesoutheasterncanyonlands(Armstrongetal.2011).Habitat:InColorado, Townsend’sbig‐earedbatsoccurinawiderangeofhabitatsincludingsemi‐desertshrublands, pinyon‐juniperwoodlands,anddryconiferousforests(Armstrongetal.2011).Itismostoften foundroostingincavesandmines,butusesbuildings,crevices,andclifffacesduringthesummer (Armstrongetal.2011).Elevation:Thisspecieshasbeenrecordedupto9,500feetinColorado (Armstrongetal.2011). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It isunlikelythatanyclimatemitigation‐relatedlandusechangeswilloccurwithinthisspecies’range withinColorado. 308 Colorado Natural Heritage Program © 2015 C1)Dispersalandmovements.Decrease.Long‐distancedispersalabilities. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutral/Somewhatincrease.AdamsandHayes(2008) postulatedthattheimpactofreducedwaterstoragecapacityasaresultofclimatechangeinthe aridwesternUnitedStateswouldnegativelyimpactlactatingfemalesofMyotisthysanodes, especiallyatalocalscale.ThisproposedimpactcouldaffectotherspeciessuchasCorynorhinus townsendiiaswell. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonsnow‐coveredhabitats.Neutral. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Thisbat isacaveandmineobligate,butinColoradoisfoundinminesmorefrequentlythancaves. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4b)Dietaryversatility.Neutral.Thisspeciesisamothspecialist,butwillfeedopportunistically onotherflyinginsects(GruverandKeinath2006). C4c)Pollinatorversatility(Plantsonly,notapplicable). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown. C5a)Measuredgeneticvariation.NeutraltoSomewhatDecrease.Inananalysisofgenetic diversityamongsubspeciesofC.townsendii,Piaggioetal.(2009)foundthatC.t.pallescenshada levelofdiversitysimilartoC.t.townsendiiandbothofthesesubspecieshadagreaterlevelof diversitythantheendangeredC.t.virginianusasmeasuredbytheaveragenumberofallelesper locusandaverageallelicrichnessperpopulation. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 309 D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Adams,R.A.andM.A.Hayes.2008.Wateravailabilityandsuccessfullactationbybatsasrelatedtoclimatechangeinarid regionsofwesternNorthAmerica.JournalofAnimalEcology77:1115‐1121. Armstrong,D.M.,J.P.Fitzgerald,andC.A.Meaney.2011.MammalsofColorado,2ndedition.DenverMuseumofNatureand ScienceandUniversityPressofColorado,Boulder,CO. Gruver,J.C.,andD.A.Keinath.2006.Townsend’sBig‐earedBat(Corynorhinustownsendii):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/townsendsbigearedbat.pdf Piaggio,A.J.,K.W.Navo,andC.W.Stihler.2009.Intraspecificcomparisonofpopulationstructure,geneticdiversity,and dispersalamongthreesubspeciesofTownsend'sbig‐earedbats,Corynorhinustownsendiitownsendii,C.t.pallescens,and theendangeredC.t.virginianus.ConservationGenetics10:143‐159. 310 Colorado Natural Heritage Program © 2015 White‐tailed Prairie Dog Cynomysleucurus G4/S4 Family:Sciuridae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable SimilartoC.gunnisoni,C.leucurusisconsideredStable,butthefactorsthatwouldleadittobemore vulnerableare:predicteddecreasesinprecipitation;necessityforcoldenvironsforhibernation; habitatloss;prairiedogsusceptibilitytoplague:andlimitedgeneticvariability.Currently,noneof therankingfactorsconsiderthethreatshighenoughthatC.leucuruswouldbeinimminentthreat fromon‐goingclimatechange.Thespeciesabilitytodisperseanditslackofrelianceofmesic habitatsbufferitfromclimatechangethreats. Distribution:C.leucurusisfoundinnorthwestandwest‐centralColoradoinsemi‐aridgrasslands andshrublands,andmountainvalleys(Armstrongetal.2011).Habitat:C.leucurusaremoreoften foundinsemidesertshrublands,butoccasionallyinvadingpasturesandagriculturallandsatlower elevations(Armstrongetal.2011).Elevation:typicallybelow8,500ft. EcologicalSystem:Grasslands,Shrublands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Therearenoobviousnaturalbarriersto white‐tailedprairiedogmovementinColorado.Populationsareknowntohaveoccurredashighas ~10,000’elevationinColorado(Armstrongetal.2011). Climate Change Vulnerability Assessment for Colorado BLM 311 B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Muchoftheprairiedograngein Coloradoisonpubliclandandmuchoftherangeisnothinderedbyanthropogenicdisturbanceto greatlylimitrangewideclimate‐causeddispersal. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Wind‐energydevelopmentisincreasinginColorado.InnorthwesternColoradowindspeedsmaybe attractiveforwind‐energydevelopmentinthisareaoftheprairiedogsrange.However,itis unlikelythatdevelopmentwillsignificantlyimpactbymitigation‐relatedlandusechanges. C1)Dispersalandmovements.SomewhatDecrease.Maximummovementdistancesdocumented forwhite‐tailedprairiedogsis8km(Cooke1993,citedinSeglundetal.2006),butmost documentedmovementsarelessthanthis. C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Basedon ClimateWizard.orgPastExposureTemperatureVariation,muchofwhite‐tailedprairiedograngein Coloradoisfrom55‐77°F. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.NeutraltoSomewhat IncreaseVulnerability.Becausethisspeciesofprairiedogisanobligatehibernator(Harlow1995) itsoverwintersurvivalcanbechallengedifoverwinterthermalconditionsdonotmaintainlong, stableperiodsofcoldtemperatures(Arnoldetal.1991,Schorretal.2009).Thus,ifthermal conditionsarenotappropriateforhibernation,survivalmaybedepressed. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.SomewhatIncrease.BasedonClimateWizard.orgAverageAnnual Precipitation1951‐2006,muchofwhite‐tailedprairiedograngeinColoradoismiddle‐to‐low precipitationvariation. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche..NeutraltoSomewhatDecrease.White‐tailedprairiedogs inhabitaridgrasslandsandshrublandsinColorado(Armstrongetal.2011).Mostvegetationwithin usedhabitathassomeleveloftolerancetoaridconditionsandmaynotbedramaticallyimpacted byincreaseddryingpredictedbyclimatemodeling. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncreasetoIncrease.Themostdramaticandrecurringdisturbancethatcanimpact white‐tailedprairiedogsisplague(MenkensandAnderson1991).White‐tailedprairiedogsare occasionallyexposedtodroughtconditions.Theseconditionscausestressandevenpopulation reduction/localextirpationintheblack‐tailedprairiedog(Fackaetal.2010).Climatedatasuggest thatdroughtwillpossiblyincreaseinfrequency,intensityandduration. C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis speciestosnoworice‐coveredhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot knowntospecializeonuncommongeologicalfeatures. 312 Colorado Natural Heritage Program © 2015 C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Generatesandmodifiesitsown habitatbyburrowingandgrazing. C4b)Dietaryversatility.Neutral.White‐tailedprairiedogslargelyfeedongrassesandforbs, supplementingthisdietwithsomeshrubs(Armstrongetal.2011). C5a)Measuredgeneticvariation.NeutraltoSomewhatIncreaseVulnerability.Geneticdiversity inthisspecieswasdeterminedtobelowcomparetoblack‐tailedprairiedogs(Cooke1993,citedin Seglundetal.2006). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Onlyif5Aisunknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown.Noobservationsmade. D1)Responsetorecentclimatechange.Unknown.Nothingreported. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Neutral. Literature Cited Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado. 704pp. Arnold,W.,G.Heldmaier,S.Ortmann,H.Pohl,T.Ruff,andS.Stenlechner.1991.Ambienttemperaturesinhibernaculaand theirenergeticconsequencesforalpinemarmots(Marmotamarmota).JournalofThermalBiology16:223‐226. Cooke,L.1993.TheroleoflifehistorytraitsintheevolutionofsocialityintheWTPD(Cynomysleucurus).Finalreportto ArapahoNationalWildlifeRefuge,Walden,CO.CollegeoftheHolyCross,Worchester,MA. Facka,A.N.,etal.2010.Droughtleadstocollapseofblack‐tailedprairiedogpopulationsreintroducedtotheChihuahuan Desert.JournalofWildlifeManagement74:1252‐1762. Harlow,H.J.1995.Fastingbiochemistryofrepresentativespontaneousandfacultativehibernators:thewhite‐tailed prairiedogandtheblack‐tailedprairiedog.PhysiologicalZoology68:915‐934. Menkens,Jr.,G.E.,andS.H.Anderson.1991.Populationdynamicsofwhite‐tailedprairiedogsduringanepizooticof sylvaticplague.JournalofMammalogy72:328‐331. Schorr,R.A.,P.M.Lukacs,andG.L.Florant.2009.Bodymassandwinterseverityaspredictorsofoverwintersurvivalin Preble’smeadowjumpingmouse.JournalofMammalogy90:17‐24. Seglund,A.E.,A.E.Ernst,M.Grenier,B.Luce,A.Puchniak,andP.Schnurr.2006.White‐tailedprairiedogconservation assessment.WesternAssociationofFishandWildlifeAgencies,Laramie,WY.136pp. Climate Change Vulnerability Assessment for Colorado BLM 313 Desert Spiny Lizard Sceloporusmagister G5/S2 Family:Phrynosomatidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostatewiderankisbasedon:theDesertspinylizardspreferenceforwarm temperaturescoupledwiththeincreasingtemperaturesprojectedunderclimatechange,a thermoregulatoryrangeof27⁰to37⁰C(Brattstrom1965)whichshouldallowthelizardtocope withrisingtemperatures,thelizard’spreferenceforaridandhotlandscapesthatareactually expectedtoincreaseinsizewithintheassessedareaduetoincreaseddroughtandtemperatures projectedunderclimatechange,anda20percentexpansionintherangeofthelizardinthe assessedareaasaresultofclimatechange(Buckley2010).Climatemodelsprojectincreased warminganddroughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto 5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions (A2emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014). Distribution:InColorado,thislizardoccursintheextremesouthwesterncorneroftheStateat elevationsbelow5,100feet(Hammerson1999).Habitat:ThehabitatinColoradoincludesshrub‐ covereddirtbanksandsparselyvegetatedrockyareasnearflowingstreamsandarroyos.They prefersoftsoilsbeneathgreasewood,rabbitbrush,saltcedar,andothershrubsandfrequently perchonlargerocksorinshrubsandtrees(Hammerson1999). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Largeriversandlakesactaseffective barriersforthisspeciesasdootherwaterobstructionssuchaspondsandmarshes(NatureServe 314 Colorado Natural Heritage Program © 2015 2014),butsmallerwaterobstacleswouldnotimpedelargescalemigratorymovementslikeshifts indistributionduetoachangingclimate.However,therearenolargeriversorwaterbodieswithin theassessmentareathatwouldpreventlargescalemovementsoftheDesertspinylizard. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Busyhighways,highwayswith obstructions,andurbanareascanactasbarrierstodispersal(NatureServe2014),butinthe assessmentareatherearenolarge,busyhighwaysorlargeurbancenters,rathertherearefew roadsandsmallhumanpopulations. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Changesinlanduseassociatedwithclimatechangearenotconsideredathreat. C1)Dispersalandmovements.Neutral.Desertspinylizardjuvenileswilldisperseseveral100 metersfromtheirnatalareabeforeestablishingaterritoryoftheirown(TannerandKrogh1973) C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheDesertspinylizardintheassessedareahasexperiencedanaverage(51.7‐77° F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease. TheDesertspinylizardprefersratherwarmtemperatures,attemptingtothermoregulatesuchthat ithasameanbodytemperatureofabout35⁰C(range27⁰to37⁰C)(Brattstrom1965). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.TherangeoccupiedbytheDesertspinylizardinthe assessedareahasexperiencedaverage(4‐10inches/100‐254mm)precipitationvariationinthe past50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Neutraltosomewhatdecrease.TheDesertspinylizardis adaptedtoaridlandscapesinhabitingareasreceivinglessthan30centimetersofrainperyear(Vitt andOhmart1974)andwiththeincreasedprojectionsfordroughtduetoclimatechangeinthe assessmentarea(Melilloetal.2014),changingclimatecouldevenbenefitthespecies. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.TheDesertspinylizardisnotdependentuponspecificdisturbanceregimessuchasfires, floods,severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheDesertspinylizardisnotdependent onhabitatswithice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Desert spinylizardsarerestrictedtosparselyvegetatedrockyareasnearflowingstreamsorarroyos withintheassessmentarea(Hammerson1999).Suchareas,althoughnothighlyuncommonwithin theassessmentarea,arecertainlynotadominantlandscapetype Climate Change Vulnerability Assessment for Colorado BLM 315 C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheDesertspinylizardisnot dependentonanyotherspeciestocreatesuitablehabitatforitsexistence. C4b)Dietaryversatility.Neutral.Desertspinylizardsareopportunisticpredatorswithaflexible diet,feedingmainlyonavarietyofinsectswithsomesmalllizardsandplantmaterialalsotaken (Hammerson1999). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheDesertspinylizardisa self‐disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheDesertspinylizard. C5a)Measuredgeneticvariation.Neutral.ThegeneticvariationoftheDesertspinylizardis aboutaverage,whencomparedtorelatedtaxa(Woodetal.2013). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Somewhatdecrease.Thepredicted futurerangeoftheDesertspinylizardisexpectedtoincreasewithintheassessmentareabymore than20percent(Buckley2010). D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited Brattstrom,B.H.1965.BodyTemperaturesofReptiles.AmericanMidlandNaturalist73:376‐422. Buckley,L.B.2010.Therangeimplicationsoflizardtraitsinchangingenvironments.GlobalEcologyandBiogeography, 19:452‐464. Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364 pp. Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:February17,2015). Tanner,W.W.andJ.E.Krogh.1973.EcologyofSceloporusmagisterataNevadatestsite,NyeCounty,Nebraska.Great BasinNaturalist,33:133‐146. 316 Colorado Natural Heritage Program © 2015 Vitt,L.J.andR.D.Ohmart.1974.ReproductionandEcologyofaColoradoRiverPopulationofSceloporusmagister(Sauria: Iguanidae).Herpetologica,30:410‐417. Wood,D.A.,A.G.Vandergast,K.R.Barr,R.D.Inman,T.C.Esque,K.E.NussearandR.N.Fisher.2013.Comparative phylogeographyrevealsdeeplineagesandregionalevolutionaryhotspotsintheMojaveandSonoranDeserts.Diversity andDistributions,19:722–737 Climate Change Vulnerability Assessment for Colorado BLM 317 Longnose Leopard Lizard Gambeliawislizenii G5/S1 Family:Crotaphytidae Climate Vulnerability Rank: Not Vulnerable/Presumed Stable ThisColoradostate‐widerankisbasedon:G.wislizeniirestrictedtoanareaofColoradothathas seenlittletemperatureandhydrologicvariabilityandtheirsusceptibilitytohabitatlossfrom encroachingweedygrasses.However,G.wislizeniiiswell‐adaptedtodroughtstress. Distribution:G.wislizeniiisattheeasternlimitofitsrangeinwesternandsouthwesternColorado. Habitat:G.wislizeniicanbefoundinflat,aridandsemiaridplainsandcanyonlandswithvarious desertshrubs,includingsagebrush,greasewood,saltbush,andjunipers.Elevation:below6,000 feet. EcologicalSystem:Xericshrublandswithmuchbareground. CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncreaseVulnerabilitytoNeutral. Areasofexcessivegrasscovercanprohibitlizarduse(Schorretal.2011),butitisuncleartowhat degreesuchexpansesofgrassexistaroundhabitatsinColorado.However,somepopulationsin westernColoradoareborderedtothenorthbylargeriversthatmaybeunpassable. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Therearefewknownhuman barrierstodispersalwherelizardsarefound. 318 Colorado Natural Heritage Program © 2015 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Neithersolar,wind,orbiomassenergyproductionappeartobehigh‐rewardtargetsforthisregion ofwesternColoradobasedonNationalRenewalEnergymaps (apps1.eere.energy.gov/states/maps.cfm/state=CO). C1)Dispersalandmovements.Neutral.Individualscanmoveupto1.5km(ParkerandPianka 1976,SchorrandLambert2010). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe desertbighornrangeinColoradofallswithinthe55‐77°Frange. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatDecrease Vulnerability.Hottertemperaturesdonotappeartochallengelizardphysiology.InColorado,mean soilsurfacetemperatureswherelizardswerefoundwas100°F(SchorrandLambert2010). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.IncreaseVulnerability.BasedontheClimateWizardmapofhistoric hydrologicvariation,muchoftheleopardlizardrangeinColoradoininthelowervariabilityrange. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Leopardlizardsareadaptedto heatanddroughtstress. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. NeutraltoSomewhatIncreaseVulnerability.Leopardlizardsarenotdependentonparticular disturbanceregimes.However,undisturbedhabitatswithintheirrangeappeartopreventexpanse ofinvasivegrasses(Westobyetal.1989,Hammerson1999). C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis speciestosnoworice‐coveredhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot knowntospecializeonuncommongeologicalfeatures. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thisspeciesdoesnotrelyon otherspeciesofhabitatdevelopment. C4b)Dietaryversatility.Neutral.Leopardlizardsfeedonavarietyofinsectsandsome vertebrates(Hammerson1999). C5a)Measuredgeneticvariation.Neutral.Therearenodataonthegeneticvariabilityofthis species. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Neutral.Therearenodataonseasonaldynamics. Climate Change Vulnerability Assessment for Colorado BLM 319 D1)Responsetorecentclimatechange.Neutral.Nothingreported. D2)Modeledfuturechangeinpopulationorrangesize.Unknown. D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Neutral.ThesouthwesternColoradopopulationsexistwithinanational monument,whilethecentral‐westernColoradopopulationsarewithinunprotectedfederallands. Literature Cited Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364 pp. Parker,W.S.,andE.R.Pianka.1976.Ecologicalobservationsontheleopardlizard(Crotaphytuswislizenii)indifferent partsofitsrange.Herpetologica32:95‐114. Schorr,R.A.,andB.Lambert.2010.Longnoseleopardlizard(Gambeliawislizenii)homerangeandhabitatuseon CannonballMesa,Colorado.ColoradoNaturalProgramReport.17pp. Schorr,R.A.,B.A.Lambert,andE.Freels.2011.Habitatuseandhomerangeoflong‐nosedleopardlizards(Gambelia wislizenii)inCanyonsoftheAncientsNationalMonument,Colorado.HerpetologicalConservationandBiology6:312‐323. Westoby,M.,B.Walker,andI.Noy‐Meir.1989.Opportunisticmanagementforrangelandsnotatequilibrium.Journalof RangeManagement42:266‐274. 320 Colorado Natural Heritage Program © 2015 Midget Faded Rattlesnake Crotalusoreganusconcolor G5T4/S3? Family:Viperidae Climate Vulnerability Rank: Highly Vulnerable ThisColoradostatewiderankisbasedon:theMidgetfadedrattlesnakesrelianceonrockoutcrops suitablefordenningandthenarrowtemperaturerangessuitableforhibernatingrattlesnakesat thosedens,barrierstomovementcreatedbylargeriverswithintheassessedarea,fragmentationof theassessedareabybothpavedandunpavedroadsthatsignificantlyimpairmovement,thelowto moderategeneticvariabilityofthesnakelesseningtheadaptabilityofthesnaketoclimatechange, andtheincreaseintemperaturesprojectedfortheassessedareaduetoclimatechange.Climate modelsprojectincreasedwarminganddroughtacrosstheassessedareawithannualaverage temperaturesrisingby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099with continuedgrowthinglobalemissions(A2emissionsscenario),withthegreatestincreasesinthe summerandfall(Melilloetal.2014). Distribution:Coloradoisattheeasternmarginofthesubspecies'range.InColorado,itoccursin westcentralColoradoinMesa,Delta,Garfield,Montrose,andSanMiguelcounties(CNHP1998). Habitat:Midgetfadedrattlesnakesoccurininawidevarietyofterrestrialhabitatsincluding pinyon‐juniperwoodlands,plainsgrasslands,anddesertandmountainshrublands.Theytendto preferaridtosemi‐aridsitesandtypicallyavoidwetsites.Theywilloccupysiteswithawiderange ofsoiltypesfromsandytorocky(Hammerson1999). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncreasetoneutral.Large,fastflowing riversareabarriertothisrattlesnake,riversliketheYampa,Colorado,andothersthatoccurwithin Climate Change Vulnerability Assessment for Colorado BLM 321 theassessedareashouldbeconsideredbarriers(ReedandDouglas2002).Theseriverswillimpede distributionalshiftsintheassessmentarea,butwillnotgreatlyorcompletelyimpairdistributional shiftscausedbyclimatechange.Busyhighways,likeInterstate70thatbisectsthedistributionof therattlesnakeintheassessedarea,alsoimpedemovements,butdonotcompletelyrestrict movements(NatureServe2014). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Somewhatincreasetoneutral. Roads(bothpavedandunpaved)restrictfine‐scalemovementpatternsoftheMidgetfaded rattlesnakebutnotbroadscalemovements(Spearetal.2011)anddenselyurbanizedareas dominatedbybuildingsandpavementaresufficientbarrierstomovementfortherattlesnake (NatureServe2014).TheonlylargecityintheassessmentareaisGrandJunctionandthissingle urbancentershouldnotsignificantlyimpedetherattlesnake’sabilitytoshiftitsdistributionwithin theareainresponsetoclimatechange. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Neutral.Changesinlanduseassociatedwithclimatechangearenotconsideredathreat. C1)Dispersalandmovements.Somewhatdecreasetoneutral.Midgetfadedrattlesnakesare dependentuponwinterdensandmigratetoandfromthosedensonanannualbasis.Althoughthey havesomeofthelargestactivityrangesreportedinrattlesnakes,annualmovementsstillonly movementsaveragearound2000metersperyear,only300metersforgravidfemales(Parkerand Anderson2007). C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange occupiedbytheMidgetfadedrattlesnakeintheassessedareahasexperiencedanaverage(51.7‐ 77°F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.TheMidget fadedrattlesnakeisrestrictedtorockoutcropswheretheirhibernaculaarelocated.Modelingof denninghabitatindicatesaverynarrowtemperaturerangethatrepresentssuitabilityfor rattlesnakedenning(Spearetal.2011)suggestingthatincreasingtemperaturesprojectedforthe assessmentarea(Melilloetal.2014)couldnegativelyimpactcurrentlysuitabledenninghabitat, influencingthefuturedistributionoftheMidgetfadedrattlesnake. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.TherangeoccupiedbytheMidgetfadedrattlesnakeinthe assessedareahasexperiencedaverage(21‐40inches/509‐1,016mm)precipitationvariationin thepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincreasetoneutral.Thereissomeevidenceto suggestthatreproductivesuccessispositivelyinfluencedbyprecipitation,butlong‐term continuousmonitoringisneededtounderstandwhetherprecipitationconsistentlyexplains reproductiveoutputandtopredictthepotentialeffectsoffutureclimatechangeonrattlesnake recruitment.(Spearetal.2011). 322 Colorado Natural Heritage Program © 2015 C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.TheMidgetfadedrattlesnakeisnotdependentuponspecificdisturbanceregimessuchas fires,floods,severewinds,pathogenoutbreaks,orsimilarevents. C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheMidgetfadedrattlesnakeisnot dependentonhabitatswithice,snow,oronsnowpack. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Midgetfaded rattlesnakesrequirerockoutcropsforhibernacula/denning(ParkerandAnderson2007andSpear etal.2011). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheMidgetfadedrattlesnakeis notdependentonanyotherspeciestocreatesuitablehabitatforitsexistence. C4b)Dietaryversatility.Neutral.Midgetfadedrattlesnakesmainlypreyonlizards,buteatabroad rangeofpreyincludingsmallmammalsandbirds(ParkerandAnderson2007). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheMidgetfaded rattlesnakeisaself‐disperser. C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother interspecificinteractionsareimportanttothepersistenceoftheMidgetfadedrattlesnake. C5a)Measuredgeneticvariation.Somewhatincreasetoneutral.Overall,geneticdiversityislow tointermediateacrossmidgetfadedrattlesnake(Spearetal.2011). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)Responsetorecentclimatechange.Unknown. D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Winterrangeispredictedto increaseby69%by2080(NAS2014). D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown. D4)Protectedareas.Unknown. Literature Cited ColoradoNaturalHeritageProgram(CNHP).1998.Midgetfadedrattlesnakeelementglobalrank(EGR)report.Colorado NaturalHeritageProgram,FortCollins,CO. Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364 pp. Climate Change Vulnerability Assessment for Colorado BLM 323 Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org[2/6/2015]. Parker,J.M.andS.H.Anderson.2007.Ecologyandbehaviorofthemidgetfadedrattlesnake(Crotalusoreganusconcolor) inWyoming.JournalofHerpetology,41:41‐51. Reed,R.N.,andM.E.Douglas.2002.EcologyoftheGrandCanyonrattlesnake(Crotalusviridisabyssus)intheLittle ColoradoRivercanyon,Arizona.SouthwesternNaturalist47:30‐39. Spear,S.F.,J.M.Parker,C.R.PetersonandC.L.Jenkins.2011.Conservationandmanagementofmidgetfadedrattlesnakes: statewildlifegrantfinalreport.TheOrianneSociety,Clayton,GA. 324 Colorado Natural Heritage Program © 2015 4 PLANTS Authors: Jill Handwerk Bernadette Kuhn Delia Malone Recommended chapter citation: Handwerk, J., B. Kuhn, and D. Malone. 2015. Plants. Chapter 4 In Colorado Natural Heritage Program 2015. Climate Change Vulnerability Assessment for Colorado Bureau of Land Management. K. Decker, L. Grunau, J. Handwerk, and J. Siemers, editors. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Climate Change Vulnerability Assessment for Colorado BLM 325 Table of Contents – 4 Plants Methods .................................................................................................................................................... 329 Results ....................................................................................................................................................... 333 Plant Species CCVA Summaries................................................................................................................. 336 Aletes latilobus (Lomatium latilobum) ...................................................................................................... 337 Aletes lithophilus (Neoparrya lithophila) .................................................................................................. 340 Amsonia jonesii ......................................................................................................................................... 344 Aquilegia chrysantha var. rydbergii .......................................................................................................... 348 Asclepias uncialis ssp. uncialis .................................................................................................................. 351 Astragalus anisus ....................................................................................................................................... 354 Astragalus debequaeus ............................................................................................................................. 357 Astragalus equisolensis (Astragalus desperatus var. neeseae) ................................................................ 361 Astragalus microcymbus ........................................................................................................................... 364 Astragalus naturitensis ............................................................................................................................. 367 Astragalus osterhoutii ............................................................................................................................... 370 Astragalus piscator .................................................................................................................................... 373 Astragalus rafaelensis ............................................................................................................................... 376 Astragalus ripleyi ....................................................................................................................................... 379 Astragalus tortipes .................................................................................................................................... 383 Bolophyta ligulata (Parthenium ligulatum) ............................................................................................... 386 Camissonia eastwoodiae........................................................................................................................... 390 Cleome (Peristome) multicaulis ................................................................................................................ 393 Corispermum navicula .............................................................................................................................. 396 Cryptogramma stelleri .............................................................................................................................. 399 Erigeron kachinensis ................................................................................................................................. 402 Eriogonum brandegeei.............................................................................................................................. 405 Eriogonum clavellatum ............................................................................................................................. 408 Eriogonum coloradense ............................................................................................................................ 411 Eriogonum contortum............................................................................................................................... 414 Eriogonum ephedroides ............................................................................................................................ 419 Eriogonum pelinophilum .......................................................................................................................... 424 Eutrema penlandii ..................................................................................................................................... 427 Gentianella tortuosa ................................................................................................................................. 430 326 Colorado Natural Heritage Program © 2015 Gilia (Aliciella) stenothyrsa ....................................................................................................................... 435 Gutierrezia elegans ................................................................................................................................... 440 Ipomopsis polyantha ................................................................................................................................. 443 Lomatium concinnum ............................................................................................................................... 446 Lupinus crassus ......................................................................................................................................... 449 Mimulus eastwoodiae ............................................................................................................................... 452 Nuttallia (Mentzelia) chrysantha .............................................................................................................. 455 Nuttallia (Mentzelia) densa ....................................................................................................................... 458 Nuttallia (Mentzelia) rhizomata ................................................................................................................ 461 Oenothera acutissima ............................................................................................................................... 465 Oreocarya (Cryptantha) caespitosa .......................................................................................................... 468 Oreocarya (Cryptantha) osterhoutii ......................................................................................................... 473 Oreocarya revealii (Cryptantha gypsophila) ............................................................................................. 476 Oreocarya (Cryptantha) rollinsii ................................................................................................................ 479 Pediomelum aromaticum ......................................................................................................................... 484 Penstemon debilis ..................................................................................................................................... 487 Penstemon degeneri ................................................................................................................................. 490 Penstemon gibbensii ................................................................................................................................. 493 Penstemon grahamii ................................................................................................................................. 496 Penstemon harringtonii ............................................................................................................................ 499 Penstemon penlandii ................................................................................................................................ 503 Penstemon scariosus var. albifluvis .......................................................................................................... 506 Phacelia formosula .................................................................................................................................... 509 Phacelia submutica ................................................................................................................................... 512 Physaria (Lesquerella) congesta ................................................................................................................ 515 Physaria obcordata ................................................................................................................................... 518 Physaria (Lesquerella) parviflora .............................................................................................................. 521 Physaria (Lesquerella) pruinosa ................................................................................................................ 524 Physaria pulvinata ..................................................................................................................................... 527 Physaria (Lesquerella) vicina ..................................................................................................................... 530 Sclerocactus glaucus ................................................................................................................................. 533 Sisyrinchium pallidum ............................................................................................................................... 536 Thalictrum heliophilum ............................................................................................................................. 539 Climate Change Vulnerability Assessment for Colorado BLM 327 List of Figures and Tables Figure 4.1. Summary of climate change vulnerability scores for plant species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. ...... 335 Table 4.1. Climate Change Vulnerability Scores for Plant Species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. .......................... 333 328 Colorado Natural Heritage Program © 2015 METHODS NatureServe Climate Change Vulnerability Index Overview Thisoverviewhasbeensynthesizedandreprinted,withpermission,fromYoungetal.(2011).The ClimateChangeVulnerabilityIndex(CCVI),developedbyNatureServe,isaMicrosoftExcel‐based toolthatfacilitatesrapidassessmentofthevulnerabilityofplantandanimalspeciestoclimate changewithinadefinedgeographicarea.Inaccordancewithwell‐establishedpractices(Schneider etal.2007,Williamsetal.2008),theCCVIdividesvulnerabilityintotwocomponents: exposuretoclimatechangewithintheassessmentarea(e.g.,ahighlysensitivespecieswill notsufferiftheclimatewhereitoccursremainsstable). sensitivityofthespeciestoclimatechange(e.g.,anadaptablespecieswillnotdeclineeven inthefaceofsignificantchangesintemperatureand/orprecipitation). Exposuretoclimatechangeismeasuredbyexaminingthemagnitudeofpredictedtemperatureand moisturechangeacrossthespecies’distributionwithinthestudyarea.CCVIguidelinessuggest usingthedownscaleddatafromClimateWizard(http://climatewizard.org)forpredictedchangein temperature.ProjectionsforchangesinprecipitationareavailableinClimateWizard,but precipitationestimatesaloneareoftenanunreliableindicatorofmoistureavailabilitybecause increasingtemperaturespromotehigherratesofevaporationandevapotranspiration.Moisture availability,ratherthanprecipitationperse,isacriticalresourceforplantsandanimalsand thereforeformstheotherpartoftheexposuremeasurewithintheCCVI,togetherwith temperature.Topredictchangesinmoistureavailability,NatureServeandpartnersdevelopedthe HamonAET:PETmoisturemetricaspartoftheCCVI.Themetricrepresentstheratioofactual evapotranspiration(i.e.,theamountofwaterlostfromasurfacethroughevaporationand transpirationbyplants)topotentialevapotranspiration(i.e.,thetotalamountofwaterthatcould beevaporatedundercurrentenvironmentalconditions,ifunlimitedwaterwasavailable).Negative valuesrepresentdryingconditions. Sensitivityisassessedusing20factorsdividedintotwocategories:1)indirectexposuretoclimate change;and2)speciesspecificfactors(includingdispersalability,temperatureandprecipitation sensitivity,physicalhabitatspecificity,interspecificinteractions,andgeneticfactors).Foreach factor,speciesarescoredonaslidingscalefromgreatlyincreasing,tohavingnoeffecton,to decreasingvulnerability.TheCCVIaccommodatesmorethanoneanswerperfactorinorderto addresspoordataorahighlevelofuncertaintyforthatfactor.Thescoringsystemintegratesall exposureandsensitivitymeasuresintoanoverallvulnerabilityscorethatindicatesrelative vulnerabilitycomparedtootherspeciesandtherelativeimportanceofthefactorscontributingto vulnerability. Climate Change Vulnerability Assessment for Colorado BLM 329 TheIndextreatsexposuretoclimatechangeasamodifierofsensitivity.Iftheclimateinagiven assessmentareawillnotchangemuch,noneofthesensitivityfactorswillweighheavily,anda speciesislikelytoscoreattheNotVulnerableendoftherange.Alargechangeintemperatureor moistureavailabilitywillamplifytheeffectofanyrelatedsensitivity,andwillcontributetoascore reflectinghighervulnerabilitytoclimatechange.Inmostcases,changesintemperatureand moistureavailabilitywillcombinetomodifysensitivityfactors.However,forfactorssuchas sensitivitytotemperaturechange(factor2a)orprecipitation/moistureregime(2b),onlythe specifiedclimatedriverwillhaveamodifyingeffect. Thesixpossiblescoresare: ExtremelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessed extremelylikelytosubstantiallydecreaseordisappearby2050. HighlyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikelyto decreasesignificantlyby2050. ModeratelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikely todecreaseby2050. NotVulnerable/PresumedStable:Availableevidencedoesnotsuggestthatabundanceand/or rangeextentwithinthegeographicalareaassessedwillchange(increase/decrease)substantially by2050.Actualrangeboundariesmaychange. NotVulnerable/IncreaseLikely:Availableevidencesuggeststhatabundanceand/orrangeextent withingeographicalareaassessedislikelytoincreaseby2050. InsufficientEvidence:Availableinformationaboutaspecies'vulnerabilityisinadequateto calculateanIndexscore. Scoring Factors in the CCVI ThefactorsusedtogeneratetheCCVIscorearelistedinthefollowingsection.Detaileddefinitions ofscoringcategoriesarelistedinAppendixB. A. Exposure to Local Climate Change 1. 2. B. Indirect Exposure to Climate Change 1. 2. 330 Temperature Moisture Exposuretosealevelrise.(NotapplicabletoColorado) Distributionrelativetonaturalandanthropogenicbarriers. Colorado Natural Heritage Program © 2015 3. C. Sensitivity 1. 2. 3. 4. 5. 6. D. Predictedimpactoflandusechangesresultingfromhumanresponsestoclimate change. Dispersalandmovements. Predictedsensitivitytotemperatureandmoisturechanges. a.Predictedsensitivitytochangesintemperature. b.Predictedsensitivitytochangesinprecipitation,hydrology,ormoisture regime. c.Dependenceonaspecificdisturbanceregimelikelytobeimpactedby climatechange. d.Dependenceonice,ice‐edge,orsnow‐coverhabitats. Restrictiontouncommongeologicalfeaturesorderivatives. Relianceoninterspecificinteractions. a.Dependenceonotherspeciestogeneratehabitat. b.Dietaryversatility(animalsonly). c.Pollinatorversatility(plantsonly). d.Dependenceonotherspeciesforpropaguledispersal. e.FormspartofaninterspecificinteractionnotcoveredbyC4a‐d. Geneticfactors. a.Measuredgeneticvariation. b.Occurrenceofbottlenecksinrecentevolutionaryhistory. Phenologicalresponsetochangingseasonaltemperatureandprecipitation dynamics. Documented or Modeled Response to Climate Change 1. 2. 3. 4. Documentedresponsetorecentclimatechange. Modeledfuturechangeinrangeorpopulationsize. Overlapofmodeledfuturerangewithcurrentrange. Occurrenceofprotectedareasinmodeledfuturedistribution. Factorsnotconsidered—TheIndexdevelopmentteamdidnotincludefactorsthatarealready consideredinconservationstatusassessments.Thesefactorsincludepopulationsize,rangesize, anddemographicfactors.ThegoalisfortheNatureServeClimateChangeVulnerabilityIndexto complementNatureServeConservationStatusRanksandnottopartiallyduplicatefactors.Ideally, Indexvaluesandstatusranksshouldbeusedinconcerttodetermineconservationpriorities. Application of Climate Data Scoringfactorsrelatedtohistoricandpredictedfutureclimate(temperature,precipitation,and moistureavailability,FactorsA1,A2,C2ai,andC2biintheCCVI)werecalculatedinGISusingthe methodsdescribedbelow.Refertothespeciesprofilesinthefollowingsectionofthisreportfor detailsonscoringrationaleandreferencesforallotherfactors. Climate Change Vulnerability Assessment for Colorado BLM 331 Exposuretopredictedtemperatureincreasewascalculatedusingspeciesdistributiondataandan ensembleaverageof16CMIP3climatepredictionmodels(seeAppendixA)averagedoverthe summerseason(June–August)usingthehigh(A2)CO2emissionsscenario.Thehighemissions scenariowasusedbecauseitismostsimilartocurrentemissions.DatawasobtainedfromClimate Wizard,andtheanalysisperiodwastotheyear2050(whichisactuallyanaverageofprojections foryears2040–2069).Thesummerseason–growingseasonforplants,breedingseasonfor animals–wasusedbecauseitwasconsideredthemostcriticaltimeperiodformostspecies. Exposuretoprojecteddrying(integrationofprojectedtemperatureandprecipitationchange,i.e., theHamonAET:PETmoisturemetric)wascalculatedusingthedatasetcreatedbyNatureServeas partoftheCCVI.NotethatNatureServebasedtheirmoisturemetriccalculationsonthesame ClimateWizarddatasetasabove,exceptthattheyusedtheA1Bcarbondioxideemissionsscenario. BecausethemodelingmethodsusedbyNatureServewerenotavailable,wewereunableto recalculateusingtheA2scenario.Thus,weusedthedataasprovided,whichweconsidereda reasonablealternativesincetheA1BandA2scenariospredictsimilarchangesthroughthemid‐21st Century,theperiodusedinthisanalysis.Wecalculatedthepercentofeachspecies’ range/distributionthatfallswithineachratingcategory.Allcalculationsusedthe“summer”(June– August)datasubset. Thehistoricalthermalnichefactormeasureslarge‐scaletemperaturevariationthataspecieshas experiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanseasonal temperaturevariation(differencebetweenhighestmeanmonthlymaximumtemperatureand lowestmeanmonthlyminimumtemperature).Itisaproxyforspecies'temperaturetoleranceata broadscale.ThisfactorwascalculatedinGISbyassessingtherelationshipbetweenspecies’ distributionsandhistoricaltemperaturevariationdatadownloadedfromNatureServe.Historical temperaturevariationwasmeasuredasthemeanJulyhighminusthemeanJanuarylow,using PRISMdatafrom1951‐2006,expressedasasingleaveragedvaluefortheentirespeciesrange. Thehistoricalhydrologicalnichefactormeasureslarge‐scaleprecipitationvariationthataspecies hasexperiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanannual precipitationvariationacrossoccupiedcellswithintheassessmentarea.Ratingsforthisfactor werecalculatedinGISbyoverlayingthespecies’distributionsonmeanannualprecipitationdata (PRISM4kmannualaverageprecipitation,ininches,1951‐2006)downloadedfromClimateWizard, andsubtractingthelowestpixelvaluefromthehighestvalue. Representing Species’ Distributions Forplantspecies,weusedelementoccurrencesfromCNHP’sBIOTICSdatabasetogenerate distributionmapsandperformtheGIScalculationsreferencedabove. Theplantspeciesincludedinthisclimatechangevulnerabilityassessmentincludeallthefederally listed(threatened,endangeredandcandidate)speciesknowntooccuronBLMlands.Alsoincluded arealltheplantspeciesfromtheBLMSensitiveSpecieslist,withtheexceptionof13speciesfor whichtherewasnotsufficientinformationavailabletoevaluatetheeffectsofclimatechange.The omittedspecieswere:Arabiscrandallii(Boecheracrandallii),Astragalusmusiniensis,Astragalus 332 Colorado Natural Heritage Program © 2015 sesquiflorus,Cymopterusduchesnensis,Eriogonumacaule,Eriogonumtumulosum,Eriogonum viridulum,Fraserapaniculata,Lygodesmiadoloresensis,Packerapauciflora,Sphaeromeriacapitata, Townsendiastrigosa,Trichophorumpumilum(Scirpusrollandii). RESULTS CCVIresultsaresummarizedinTable4.1,andpresentedinfullinAppendixC.Plantspeciesresults aresortedalphabeticallybyscientificname.Therationaleforscoringandliteraturecitationsare includedinthefollowingspeciesprofiles. Table 4.10. Climate Change Vulnerability Scores for Plant Species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. Species English name Aletes latilobus (Lomatium latilobum) Canyonlands aletes EV Aletes lithophilus (Neoparrya lithophila) Rock‐loving neoparrya EV Amsonia jonesii Jones' bluestar MV Aquilegia chrysantha var. rydbergii Golden columbine EV Asclepias uncialis ssp. uncialis Dwarf milkweed EV Astragalus anisus Gunnison milkvetch EV Astragalus debequaeus DeBeque milkvetch EV Astragalus equisolensis Horseshoe milkvetch EV Astragalus microcymbus Skiff milkvetch EV Astragalus naturitensis Naturita milkvetch EV Astragalus osterhoutii Kremmling milkvetch EV Astragalus piscator Fisher Towers milkvetch EV Astragalus rafaelensis San Rafael milkvetch EV Astragalus ripleyi Ripley milkvetch EV Astragalus tortipes Sleeping Ute milkvetch EV Bolophyta ligulata (Parthenium ligulatum) Ligulate feverfew EV Camissonia eastwoodiae Eastwood evening primrose HV Cleome multicaulis Slender spiderflower EV Corispermum navicula Boat‐shaped bugseed EV Cryptogramma stelleri Slender rock‐brake EV Erigeron kachinensis Kachina daisy EV Eriogonum brandegeei Brandegee wild buckwheat EV Eriogonum clavellatum Comb Wash buckwheat EV Eriogonum coloradense Colorado wild buckwheat EV Eriogonum contortum Twisted Buckwheat EV Eriogonum pelinophilum Clay‐loving wild buckwheat EV Climate Change Vulnerability Assessment for Colorado BLM Score 333 Species English name Score Eriogonum ephedroides Ephedra buckwheat EV Eutrema penlandii Penland alpine fen mustard EV Gentianella tortuosa Utah gentian EV Gilia (Aliciella) stenothyrsa Narrow‐stem Gilia EV Gutierrezia elegans Lone Mesa snakeweed EV Ipomopsis polyantha Pagosa skyrocket EV Lomatium concinnum Colorado desert‐parsley EV Lupinus crassus Payson lupine EV Mimulus eastwoodiae Eastwood's monkeyflower EV Nuttallia (Mentzelia) chrysantha Golden blazing star EV Nuttallia (Mentzelia) densa Arkansas Canyon stickleaf EV Nuttallia (Mentzelia) rhizomata Roan Cliffs Blazingstar EV Oenothera acutissima Narrow‐leaf evening primrose HV Oreocarya (Cryptantha) caespitosa Tufted Cryptanth EV Oreocarya (Cryptantha) rollinsii Rollins' Cats‐eye EV Oreocarya osterhoutii (Cryptantha osterhoutii) Osterhout's cat's‐eye EV Oreocarya revealii (Cryptantha gypsophila) Gypsum Valley cat's‐eye EV Pediomelum aromaticum Paradox breadroot EV Penstemon debilis Parachute penstemon EV Penstemon degeneri Degener beardtongue EV Penstemon gibbensii Gibben's beardtongue EV Penstemon grahamii Graham beardtongue EV Penstemon harringtonii Harrington's beardtongue EV Penstemon penlandii Penland penstemon EV Penstemon scariosus var. albifluvis White River penstemon EV Phacelia formosula North Park phacelia EV Phacelia submutica DeBeque phacelia EV Physaria (Lesquerella) congesta Dudley Bluffs bladderpod EV Physaria (Lesquerella) parviflora Piceance bladderpod EV Physaria (Lesquerella) pruinosa Pagosa bladderpod EV Physaria (Lesquerella) vicina Good‐neighbor bladderpod EV Physaria obcordata Piceance twinpod EV Physaria pulvinata Cushion bladderpod EV Sclerocactus glaucus Colorado hookless cactus EV Sisyrinchium pallidum Pale blue‐eyed grass EV Thalictrum heliophilum Sun‐loving meadow rue EV 334 Colorado Natural Heritage Program © 2015 Nearlyallofthe62plantspeciesanalyzedscoredasextremelyvulnerabletopredictedclimate changeinColorado.Onlythreespecies(Amsoniajonesii,CamissoniaeastwoodiaeandOenothera acutissima)werehighlytomoderatelyvulnerable.Noneoftheplantspeciesscoredaspresumed stableorlikelytoincreaseundertheclimatechangescenariousedinthisanalysis.(Table4.1). Factorsthatweremostlikelytocontributetothevulnerabilityofplantsinclude:naturalbarriersto movementandpoordispersalability,physiologicalhydrologicalniche,restrictiontouncommon geologicfeaturesorsubstrates,andpollinatorspecificity.Ofthe62plantspeciesevaluatedfor Coloradotheconfidenceratingswereveryhighforallspecies. Despitethedevelopmentofnumerousclimatechangemodels,thereremainssomeuncertainty aboutwhatclimaticchangeswillactuallyoccurandhowspeciesfitnessandpopulationstability willbeaffected.Whenevaluatedataregional(i.e.,smallerthanstatewide)scale,somespecies scoredaslessvulnerabletoclimatechange.Forexample,intheSanJuanregionofColorado, Amsoniajonesiiispresumedstablewheretherearefewnaturaloranthropogenicbarriersto movementandithasbeenexposedtogreaterhistoricaltemperaturevariation,whereasitscoresas moderatelyvulnerableonastatewidescalewherethepresenceofnaturalandanthropogenic barriersincreasesandthereislessexposuretohistorictemperatureextremes.Mimulus eastwoodiaescoredashighlyvulnerableintheSanJuanregionbutisconsideredextremely vulnerableonastatewidescaleforthesamereasons,increasedbarrierstomovementandless exposuretohistorictemperaturevariation.ThesamewastrueforPediomelumaromaticumwhich ismoderatelyvulnerableintheSanJuan’sandextremelyvulnerablestatewide.Thus,itisimportant toconsiderthespeciesrangeinrelationtotheassessmentareawhendevelopingadaption strategies,andtoconsiderhowsuchfactors,suchasprecipitationandtemperatureaveragescan affectthescoreswhenspeciesareevaluatedatdifferentscales. Figure 4.1. Summary of climate change vulnerability scores for plant species. EV = Extremely Vulnerable; HV = Highly Vulnerable; MV = Moderately Vulnerable; PS = Presumed Stable; IL = Increase Likely. Climate Change Vulnerability Assessment for Colorado BLM 335 PLANT SPECIES CCVI SUMMARIES 336 Colorado Natural Heritage Program © 2015 Aletes latilobus (Lomatium latilobum) Canyonlandsaletes G1G2/S1 Family:Apiaceae Photo: Gina Glenne Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)1)Aleteslatilobushabitatis surroundedbyanthropogenicandnaturalbarriersthatmayinhibitrangeshift2)potentialincrease inenergydevelopmentinA.latilobushabitat;3)A.latilobushasexperiencedasmallrangeinmean annualprecipitationoverthelast50years;4)seeddispersaldistancesareprobablyfairlylimited; 5)potentialdecreaseinsoilmoistureavailabilityunderprojectedwarmertemperatures;6) restrictiontosandstoneEntradaandNavajoFormations. Distribution:ColoradoPlateau,NavajoBasin;GrandandSanJuanCounties,Utah,andMesa County,Colorado.Habitat:OnEntradaSandstoneandNavajoSandstone,betweenfinsandinslot canyons,insandysoilandincrevices.Surroundingplantcommunitiesaredesertshrub,pinyon‐ juniper,orponderosapine‐mountainbrush.Foundincanyonlandsinpinyon‐juniperanddesert shrubcommunities;onsandstoneledgesandinsandysoilsderivedfromtheEntradaFormationor thecontactpointoftheWingateandChinleFormations(Spackmanetal.1997,Ackerfield2012, WeberandWittmann2012).Elevation:4541‐5807feet. EcologicalSystem:CliffandCanyon,DesertShrub CCVI Scoring B1)Exposuretosealevelrise.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 337 B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate changeisinhibitedbyunsuitablegeologyandtheColoradoRiverValley(tothenorth)thatdonot containsuitablehabitatforthisspecies(USGS2004). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Extensivehabitatalterationdue tooilandgasextractioninandaroundhabitatoccupiedbythisspecies(FracFocusWells2013) inhibitsrangeshift.Additionally,muchofthelandscapesurroundingoccurrencesofA.latilobushas beenalteredbylivestockgrazing(CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Desertshrublandshavehighpotentialfornaturalgasextraction,andsolarandwindenergy development(Grunauetal.2011;NRDC2011). C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Cliffand canyonspecieswererated‘Increase’basedontheassumptionthatthesehabitatsarelikelytobe alteredasColoradobecomeswarmer. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A. latilobusoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear (WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin stressfulconditionsforA.latilobus. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease. RestrictedtosandstonesoftheEntradaandNavajoFormations(CNHP2014). 338 Colorado Natural Heritage Program © 2015 C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Unknown. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Ackerfield,J.2012.TheFloraofColorado.ColoradoStateUniversityHerbarium.433pp. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ Grunau,L.,J.Handwerk,andS.Spackman‐Panjabi,eds.2011.ColoradoWildlifeActionPlan:proposedrareplant addendum.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. NaturalResourcesDefenseCouncil[NRDC].2011.RenewableenergyforAmerica:harvestingthebenefitsofhomegrown, renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp(accessed2014). Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. Weber,W.A.andR.C.Wittmann.2012.ColoradoFlora,WesternSlope,AFieldGuidetotheVascularPlants,FourthEdition. Boulder,Colorado.532pp. WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015. Climate Change Vulnerability Assessment for Colorado BLM 339 Aletes lithophilus (Neoparrya lithophila) Rock‐lovingneoparrya G3/S3 Family:Apiaceae Photo: Jim McCain Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedon:predicteddecreasesinprecipitation;thediscontinuityof suitablehabitatthatisolatespopulationsandcreatesnaturalbarriersandhabitatalterationthat resultsfromlivestockgrazingwhichactsasananthropogenicbarriers;possiblewindpower developmentthatmayoccurincurrentandpotentialfuturerange;limitedsuccessfulseed dispersal;andalterationofthenaturalfiredisturbanceregime.Suitablehabitatislikelytobe reducedasthisspecies’rangebecomesdrier.Climatemodelsprojectannualnetdryingacrossthe rangeofthisspecies(NatureServe2012)withresultingtrendstowardmoreseveresoil‐moisture droughtconditionsinColorado(Lukasetal.2014) Distribution:AleteslithophilusisendemictothesouthernRockyMountainswherethisspeciesis knownfromsevencountiesinsouth‐centralColorado:Chaffee,Conejos,Fremont,Huerfano, Mineral,RioGrande,andSaguache;andhasalsobeenreportedfromonesiteinnorth‐centralRio BravoCountyinNewMexico(Anderson2004,SEINet2014).Mostoccurrencesareknownfromthe westernrimoftheSanLuisValley,butimportantoutlyingoccurrencesarealsofoundinthe ArkansasValleyintheSalidaareaandatFarisitaDikeinHuerfanoCounty(Anderson2004). EcologicalSystem/Habitat:AleteslithophilusisfoundintheSouthernRockyMountainSteppe‐ OpenWoodland‐ConiferousForest‐AlpineMeadowProvince(Anderson2004).InthisecosystemN. lithophilatypicallyoccupiesvolcanicsubstrates,inthecracksorshelvesofmoderatetosteeprock outcrops,oroutcropsofvolcanicsoils,usuallywithminimaltalusbutisalsoknowntooccuron sedimentaryrockderivedfromextrusivevolcanics.Habitatsurroundingtherockoutcropsis typicallygrasslandsorpinon‐juniperwoodlandswithassociatedtaxaoftenincludingFestuca, Artemisia,Muhlenbergia,Hymenoxys,andRibes(NatureServe2014).Elevation:Reportsdocument 340 Colorado Natural Heritage Program © 2015 thatAleteslithophilusrangesfrom6,700to10,000feet,butismostcommonlyfoundbetween7,280 to9,800feetinelevation(Anderson2004). CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.OccurrencesofAleteslithophilusare naturallyisolatedbythediscontinuityofsuitablehabitat(Anderson2004).Thisspeciesoccupies rockoutcrops,dikesandcliffsthataredistributedonthelandscapeasislandssurroundedbyasea ofgrasslandandwoodlandhabitatswheretheinterveningenvironmentisapparentlyunsuitable fortheestablishmentofA.lithophilusandactsasbarrierstorangeshift. B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Habitatalterationas aconsequenceoflivestockgrazingbothindirectlyanddirectlyimpairsrangeshiftdrivenbyclimate change.Aleteslithophilusishighlyvulnerabletohabitatalterationasindicatedbya“coefficientof conservatism”value(Cvalue)of“9”(Rocchio2007).ThemajorityofA.lithophilusoccurrencesare eitheronoradjacenttolandthatismanagedforlivestockgrazing(BLM2014,CNHP2014)andthe majorityofthosegrazingallotmentsarecategorizedas“improve”(BLM2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.NaturalhistoryrequirementsofAleteslithophilusareincompatiblewiththe landusechangesthatmaypossiblyoccurinitscurrentandfuturerangeasaresultofwindenergy development.Potentialforwindpowerdevelopmentishighthroughoutthewesternperimeterof theSanLuisvalley(NRDC2011)wherethemajorityofthedocumentedoccurrencesofN.lithophila arelocated(CNHP2014). C1)Dispersalandmovements.Somewhatincrease.Successfulseeddispersalislimitedby unsuitablehabitat.AlthoughAleteslithophilusseedsmaybedispersedbyavarietyofmechanisms, includingwindandanimals,withpotentialmaximumdispersaldistancesofupto15and1,500 metersrespectively(JongejansandTelenius2001,VittozandEngler2007),theprobabilityof dispersaldecreasesrapidlywithincreasingdistancefromthesource(Barbouretal.1987).Flat areassurroundingtherockoutcropsinhabitedbyN.lithophilapresentunsuitablehabitatthat undoubtedlyactassinkswhenseedsareblownorwashedontotheseareas(Anderson2004). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral. Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage temperaturevariation(57.1‐77oF)inthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Aletes lithophilusisnotrestrictedtocoolorcoldenvironments.Additionally,habitatpreferences (Anderson2004)suggestthatA.lithophilusistolerantofwarmertemperatures. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross Climate Change Vulnerability Assessment for Colorado BLM 341 occupiedcells,thespecieshasexperiencedaverageprecipitationvariation(36.5inches)inthepast 50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincrease.Aleteslithophilusissomewhatdependent onaseasonalhydrologicregimethatisvulnerabletoalterationwithclimatechangeandassociated predictedincreasedseverityandfrequencyofdrought(USGCRP2009).AlthoughA.lithophilus occupiesxericsites,populationmaintenanceviarecruitmentisdependentonseedlingsuccess whichappearstobedependentonperiodsofoneorseveralwetyearsduringwhichplantscan becomeestablished(Anderson2004). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.WhileseveredroughtsarealreadypartoftheSouthwestclimate,human‐inducedclimate changewilllikelyresultinmorefrequentandmoreseveredroughtswithassociatedincreasesin wildfires(USGCRP2009).Additionally,thepresenceofcheatgrass(Bromustectorum)inmany occurrencesmayfurtherexacerbateclimatechange‐inducedalterationtonaturalfireregimes. Increasedfirefrequencywillfavorfire‐dependentorfire‐tolerantspecies,whichthisspeciesisnot (Anderson2004),leadingtowardchangesinspeciescomposition(Noss2001). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Aletes lithophilusisprimarilyrestrictedtoTertiaryvolcanicsubstrateswiththespeciesprimarily distributedalongtheeasternmarginoftheSanJuanVolcanicArea(Anderson2004).Tertiary volcanicsubstratesarewidelydistributedinsouthcentralandsouthwesternColoradowith Tertiaryashflowtuffandpre‐ashflowvolcanicsunderlyingmuchoftheeasternSanJuan Mountains(Tweto1979,ChronicandWilliams2002). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Aleteslithophilusisnotknown tobedependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.SpeciesinthefamilyApiaceaehaveahighdegreeoffloral uniformitywithverylittlefloralspecializationandthusutilizeabroadsuiteofpollinatorsfor pollenvectors(Anderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Aleteslithophilusisnot knowntobedependentonotherspeciesfordispersal. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. 342 Colorado Natural Heritage Program © 2015 Literature Cited Anderson,D.G.2004.NeoparryalithophilaMathias(Bill’sneoparrya):atechnicalconservationassessment.[Online].USDA ForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/neoparryalithophila.pdf Barbour,M.G.,J.H.Burk,andW.D.Pitts.1987.TerrestrialPlantEcology.Benjamin/CummingsPublishingCompany,Inc., MenloPark,CA. Chronic,H.andF.Williams.2002.RoadsideGeologyofColorado,2nded.MountainPressPublishingCO.,Missoula, Montana. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Jongejans,E.andA.Telenius.2001.Fieldexperimentsonseeddispersalbywindintenumbelliferousspecies(Apiaceae). PlantEcology152:67–78. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:November14,2014) Noss,R.(2001).BeyondKyoto:Forestmanagementinatimeofrapidclimatechange.ConservationBiology15(3):578‐ 590. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage Program,ColoradoStateUniversity,FortCollins,CO. SouthwestEnvironmentalInformationNetwork(SEINet).2014.Cryptanthacaespitosa.Availableat: http://swbiodiversity.org/.Accessed2014. Tweto,O.1979.GeologicMapofColorado.CompiledbytheU.S.GeologicalSurveywithtechnicalassistancebythe ColoradoGeologicalSurvey. U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Geocommunicator.Availableat: http://www.geocommunicator.gov/GeoComm/.Accessed:2014. VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv. 117:109–124. Climate Change Vulnerability Assessment for Colorado BLM 343 Amsonia jonesii Jones’bluestar G4/S2 Family:Apocynaceae Photo: Joe Leahy Climate Vulnerability Rank: Moderately Vulnerable ThisColoradostatewiderankisbasedon:predictedincreasedtemperatureanddecreased precipitationduringperiodoffloweringandfruiting;thepresenceofhighescarpmentsthatactas naturalbarriersaswellashabitatalterationthatresultsfromenergyextraction,agricultural developmentandlivestockgrazingthatactasanthropogenicbarrierstorangeshift;possiblewind powerdevelopmentwhichmayimpactpotentialfuturerange;alterationtothenaturalfire disturbanceregime;pollinatorlimitation;predicteddecreaseinmodeledfuturerangewithlittle habitatincludedinprotectedareas.Suitablehabitatislikelytobelosttothisspeciesand reproductivesuccessdiminished.Climatemodelsprojectannualnetdryingthroughouttherangeof thisspecies(NatureServe2012)whichmayimpactrecruitmentandpopulationsurvivability. Distribution:A.jonesiiisknownfromNEArizona,Utah,NWNewMexico,andSWColoradointhe UnitedStates(NatureServe2014).InColorado,itisknownfromMesaandMontezumacounties (USDANRCS2013,CNHP2014).Habitat:Dry,openareaswithclay,sandy,orgravellysoils,in desert‐steppe,rockydrainagesanddraws(CNHP2014).Elevation:4400‐5800feet. EcologicalSystem:DesertShrublands,Pinyon‐JuniperWoodlands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Withachangingclimate Amsoniajonesiiispredictedtomovenorthward,trackingclimatemoresuitabletoitsevolved environmentaltolerancesandecologicalniche(UVUH2014).Coloradopopulationswillencounter 344 Colorado Natural Heritage Program © 2015 theRoanPlateau,aneast‐westtrendingescarpment,whichpresentsanaturalelevational, environmentalandhabitatbarrierthatrestrictstheabilityofthisspeciestoshiftrange. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.SomeColorado populationsinwillbeinhibitedfromrangeshiftbyoilandgasdevelopment(FracFocusWells 2013),habitatconversiontohayagricultureandhabitatalterationbylivestock(USDA2012). B3)Predictedimpactoflandusechangesresultingfromhumanresponsestoclimatechange. Neutral.AlthoughportionsofwesternColoradohavehighpotentialforwindandsolarenergy development,thespeciesisunlikelytobesignificantlyaffectedbymitigation‐relatedlanduse changesthatmayoccurwithinitscurrentand/orpotentialfuturerange(NRDC2011). C1)Dispersalandmovements.Somewhatincrease.Similartorelatedspecies,thecylindricaland corkyseedsofAmsoniajonesiimaybedispersedbywater.Dispersalbywaterishighly unpredictableandundocumented(VittozandEngler2007)butingeneralmostplantseedsdonot dispersefartherthan100m(Cainetal.2000). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationovertherangeofthisspecies,Amsoniajonesiihas experiencedaveragetemperaturevariation(57.1‐77°F)overthepast50years(NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease. Thisspeciesisnotrestrictedtocoolorcoldenvironmentsandshowsapreferencefor environmentstowardthewarmerendofthespectrum. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcells,A.jonesiihasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation variationinthepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Speciesisfoundincoarse,sandysoilsoften inthebottomsofdrawsanddrainages.Predictedclimatedryingduringthespringgrowingseason willreducethisspeciesrecruitment,abundanceandhabitatsuitability.Longtermsurvivabilitymay consequentlybediminishedeventhoughincreasedautumnmoisturemayenhancedispersaland germinationpotential.Duringlatesummerandearlyautumn,A.jonesiiispredictedtobeexposed toprecipitationdecreasesofupto3percentoverapproximately30percentofitsrangeand increasesofupto6percentover70percentofitsrange. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.FirefrequenciesinthePinyon‐Juniperwoodlandsandsageanddesertshrublands occupiedbythisspeciesareexpectedtoincreaseinthefuture,followingtrendsthatalreadyshow increasedfirefrequencies,areaburnedandfireseverity(Littleetal.2009,Stephens2005, Westerlingetal.2006,USFSnodate). Climate Change Vulnerability Assessment for Colorado BLM 345 C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatdecrease.Speciesis reportedtobewidelyadaptableinthenurserytrade,andisreportedtogrowonvarioussubstrates. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesdependsonotherspeciestogenerateitshabitat. C4c)PollinatorVersatility.Neutral.InferredfromarelatedspeciesAmsoniakearneyanawhich hasawidevarietyofpollinators(USFWS2013). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Similartootherrelated species,seedmorphologysuggeststhatthisspeciesmaydispersebywaterandisthusnotlikely reliantonotherspeciesfordispersal. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. D1)DocumentedResponsetoRecentClimateChange(e.g.,rangecontractionorphenology mismatchwithcriticalresources).Unknown. D2)ModeledFuture(2050)ChangeinRangeorPopulationSize.Increase.Rangewide predictedfuturerangerepresentsa20percentto50percentdeclinerelativetocurrentrange (UVUH2014). D3)OverlapofModeledFuture(2050)RangewithCurrentRange.Neutral.Predictedfuture rangeoverlapsthecurrentrangebygreaterthan60percentwithintheassessmentarea(UVUH 2014). D4)OccurrenceofProtectedAreasinModeledFuture(2050)Distribution.Somewhat Increase.Fivetothirtypercentofthemodeledfuturedistributionwithintheassessmentareais encompassedbyoneormoreprotectedareas(USDI2014). Literature Cited Cain,M.L.,B.G.Milligan,andA.E.Strand.2000.Long‐distanceSeedDispersalinPlantPopulations.AmericanJournalof Botany87(9):1217–1227. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. 346 Colorado Natural Heritage Program © 2015 ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. U.S.DepartmentofAgriculture(USDA).2012.2012CensusofAgriculture.Availableat: http://www.agcensus.usda.gov/index.php U.S.D.A.ForestService(USFS).NoDate.Pinyon‐JuniperNaturalRangeofVariation.Availableat: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5434337.pdf. U.S.DepartmentoftheInterior(USDI),U.S.GeologicalSurvey.2014.NationalGapAnalysisProgram,ProtectedAreasData Viewer.Availableat:http://gapanalysis.usgs.gov/padus/viewer/ U.S.FishandWildlifeService(USFWS).2013.AmsoniakearneyanaKearneyblue‐star5‐YearReview:Summaryand Evaluation.ArizonaEcologicalServicesTucsonSub‐office,Tucson,Arizona. UtahValleyUniversityHerbarium(UVUH).2014.Availableat:http://herbarium.uvu.edu/herbInfo.shtml VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Botanica Helvetica,117(2),109–124.DOI:10.1007/s00035‐007‐0797‐8 Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463. Climate Change Vulnerability Assessment for Colorado BLM 347 Aquilegia chrysantha var. rydbergii Goldencolumbine G4T1Q/S1 Family:Ranunculaceae Photo: Steve Olson Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widevulnerabilityrankisbasedonthefollowing:1)restrictiontomoistmicro‐ habitatsincliffs,canyons,andseeps2)relianceonhawkmothsasamajorpollinator3)shortseed dispersaldistances. Distribution:KnownfromFremont,ElPaso,Jefferson,andLasAnimascounties.ThePlants Database(USDANRCS2015)showsA.chrysanthavar.rydbergiiinArizona,Colorado,andNew Mexico.TheFloraofNorthAmerica(Vol.3,1997)statesthatColoradopopulationshavebeencalled A.chrysanthavar.rydbergiianddoesnotmentionNewMexicoorArizona.ReportsfromNew MexicoandArizona(USDANRCS2015)areprobablyerroneous,possiblyoriginatingbecauseNM andAZarelistedintherangeofvar.rydbergiiinthe1985NoticeofReviewforListingas EndangeredorThreatenedSpecies.Thesereportshavenototherwisebeensubstantiated.Habitat: Incanyonsandfoothillsalongstreamsorinrockyravines(Spackmanetal.1997,Weberand Wittmann2012).Aquilegiachrysanthavar.rydbergiigrowsinorganicsoilsandhasalsobeen observedingravelderivedfromgraniteparentmaterial.Oftenfoundnearthebaseofboulderson thecanyonsidesandfloor,itmayalsogrowonseep‐fedrockyledges.Itgrowsinshadyandmoist areasonslopesaboveacreek,alongthesidedrainages,andwithintheriparianareaofaperennial stream.Elevation:5,000‐8,240feet. EcologicalSystem:MountainStreams,SeepsandSprings,DouglasFir 348 Colorado Natural Heritage Program © 2015 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Increase.Seedslikelyfallclosetotheparentplant,anddonot containspecializedstructuresfordispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatIncrease. Consideringthemeanseasonaltemperaturevariationovertherangeofthisspecies,Aquilegia chrysanthavar.rydbergiihasexperiencedslightlylowerthanaveragetemperaturevariation(47.1‐ 57°F)overthepast50years(NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.This speciesoccursincool,shaded,moisthabitatsthatmaybereducedifColoradobecomeswarmerand drier,asprojectedinmanyclimatemodels. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcellsinColorado,A.chrysanthavar.rydbergiihasexperiencedslightlylowerthanaverage (15.56inches)precipitationvariationinthepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Thisspeciesoccursincool,shadedareasin cliffsandcanyons.Thesemicro‐habitatsoftencontainmoistsoilsandseasonalseepsthatmaybe vulnerabletoclimatechange. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatdecrease.This speciesoccursinseveralhabitattypes. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4c)PollinatorVersatility.SomewhatIncrease.Crepuscularhawkmothsserveasamajor pollinatorforA.chrysanthavar.rydbergiiinthesouthwestU.S.andnorthernMexico(Miller1985). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 349 C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Miller,R.B.HawkmothPollinationofAquilegiachrysantha(Ranunculaceae)inSouthernArizona.TheSouthwestern Naturalist30(1):69‐76. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. USDA,NRCS.2015.ThePLANTSDatabase(http://plants.usda.gov).NationalPlantDataTeam,Greensboro,NC27401‐ 4901USA. Weber,W.A.andR.C.Wittmann.2012.ColoradoFlora,EasternSlope,AFieldGuidetotheVascularPlants,FourthEdition. Boulder,Colorado.532pp. 350 Colorado Natural Heritage Program © 2015 Asclepias uncialis ssp. uncialis Dwarfmilkweed G3G4T2T3/S2 Family:Asclepiadaceae Photo: Steve Olson Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)lackofvariabilityinmean annualprecipitationinthepast50years;2)shortseeddispersaldistances;3)croplandandurban developmentmayactasabarriertoseeddispersal;and4)potentialforwindenergydevelopment onColorado’seasternplains. Distribution:Estimatedrangeis71,964squarekilometers(27,785squaremiles),calculatedinGIS bydrawingaminimumconvexpolygonaroundtheknownoccurrences.Thereispotentiallyabout 40,000squaremilesofhabitatineasternColorado(althoughperhapsasmuchas50%ofthisarea isnolongersuitablehabitat),roughly45%ofthetotalpotentialrangeofthespecies.Thecurrent knowndistributionofAsclepiasuncialisssp.uncialisformsanarcalongtheflankoftheSouthern RockyMountainsfromnortheasternColoradotosouthwesternNewMexicoandadjacent southeasternArizona.CurrentlyknownfromnineColoradocounties(LasAnimas,Weld,KitCarson, Huerfano,Pueblo,Otero,Prowers,Fremont,andElPaso),andhistoricallyknownfromatleasteight additionalcounties(Arapaho,Adams,Baca,Bent,Cheyenne,Larimer,DenverandWashington). OccurrencesareprimarilyinsoutheasternColorado.Habitat:Asclepiasuncialisssp.uncialisis primarilyassociatedwithspeciestypicalofshortgrassprairie.Associatedvegetationiscomprised mostlyofgrasses,withforbs,shrubs,andtreestypicallycomprisinglessthan15%ofthetotal vegetationcover.Althoughplantsareoftenfoundatthebaseofescarpmentsormesas,thespecies doesnotoccuronrockledgesoroutcroppings,andisabsentfromhighlydisturbedhabitatssuchas sanddunes,erosionchannels,washslopes,andbadlands.Occurrencesareknownfromsoils derivedfromavarietyofsubstrates,includingsandstone,limestone,andshale,butaremostoften foundinsandyloamsoils.Itdoesnotoccurinpuresand. Elevation:3890‐7730feet. Climate Change Vulnerability Assessment for Colorado BLM 351 EcologicalSystem:ShortgrassPrairie,Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Croplandand urban/ex‐urbandevelopmentintheshortgrassprairiemayactasbarriersforseeddispersal. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterofColoradonearthe NewMexicoandNebraskabordershasexcellentwindresources(DOE2004).Winddevelopment couldresultinthelossofA.uncialisvar.uncialishabitat. C1)Dispersalandmovements.SomewhatIncrease.Seedscontainatuftofsilkyhairstoaidin winddispersal(Decker2006). C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Not restrictedtocoolorcoldclimatesthatareprojectedtobelostduetoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedA.uncialisvar.uncialishabitat,thespecieshasexperiencedsmall(4‐10inches/100‐254 mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Occurrencesare knownfromsoilsderivedfromavarietyofsubstrates,includingsandstone,limestone,andshale, butaremostoftenfoundinsandyloamsoils(CNHP2014;Decker2006).Itdoesnotoccurinpure sand. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. 352 Colorado Natural Heritage Program © 2015 C4c)PollinatorVersatility.Neutral.Likelytobepollinatedbygeneralistspecies(Decker2006). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.2006.AsclepiasuncialisGreene(wheelmilkweed):atechnicalconservationassessment.[Online].USDAForest Service,RockyMountainRegion.Available:http://www.fs.fed.us/r2/projects/scp/assessments/asclepiasuncialis.pdf DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Climate Change Vulnerability Assessment for Colorado BLM 353 Astragalus anisus Gunnisonmilkvetch G2G3/S2S3 Family:Fabaceae Photo: Lori Brummer Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)highmountainranges surroundingA.anisuspopulationscreatenaturalbarrierstodispersal;2)probablelimitedseed dispersaldistances;3)potentialgeothermalenergydevelopmentintheGunnisonBasin;4)species hasexperiencedasmallrangeofprecipitationinthelast50yearsand5)possiblyrelianceon nodulization. Distribution:ThespeciesentireglobalrangeiscontainedwithintheupperGunnisonBasin,in GunnisonandSaguachecounties,Colorado.Estimatedrangeis1,962squarekilometers(757 squaremiles),calculatedinGISin2008bytheColoradoNaturalHeritageProgrambydrawinga minimumconvexpolygonaroundtheknownoccurrences.Habitat:Drygravellyflatsandhillsides, insandyclaysoilsoverlyinggraniticbedrock,usuallyamongorunderlowsagebrush.Elevation: 7500‐8500feet. EcologicalSystem:Sagebrush CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Rangeshiftinresponseto climatechangeisinhibitedbyhighmountainrangesthatsurroundtheGunnisonBasin. 354 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncreaseUrbanandexurban developmentintheGunnisonBasinactascurrentandpotentialfuturebarrierstoA.anisus movement. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin theBasin,itcouldfragmenthabitatintheBasin(USFWS2014). C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant,anddonotcontain specializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.anisushasexperienced greaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years(NatureServe 2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Basedon fieldobservations,thisplantiswelladaptedtodroughtandtemperatureextremes(Johnston,pers. comm.2011). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Thespecieshasexperiencedsmall(4‐10inches/100‐254 mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Speciesissomewhatdependentona stronglyseasonalhydrologicregimeorlocalizedmoistureregimethatishighlyvulnerabletoloss orreductionwithclimatechange.Precipitationamountsarefairlyevenlydistributedthroughout theseasons,withsomewhatmoremoistureoccurringduringthe“monsoon”seasonofJulyand August(DeckerandAnderson2004). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Astragalusanisusrequiresahighqualitymatrixcommunityofsagebrush shrublandorpinyon‐juniperwoodlandswhichdependonanaturalfireregimetomaintain appropriatevegetationstructure(NatureServe2014)Further,modeledfuturechangesinfire probabilityandofvegetationpatternsshowincreasedprobabilityoffirethroughouttheregion occupiedbythisspecies(Krawchuketal.2009). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.Nodata,forcedscore. Climate Change Vulnerability Assessment for Colorado BLM 355 C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Nodata,forcedscore. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease. AlthoughAstragalusanisushasnotbeeninvestigatedfornodulization,noduleshavebeenreported forseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.anisusalsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. Johnston,B.2011.PersonalcommunicationatGunnisonClimateChangeWorkshop,May13,2011.Gunnison,Colorado. KrawchukM.A,M.A.Moritz,M‐A.Parisien,J.VanDorn,K.Hayhoe.2009.GlobalPyrogeography:theCurrentandFuture DistributionofWildfire.PLoSONE4(4):e5102doi:10.1371/journal.pone.0005102.Availableat: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior. 356 Colorado Natural Heritage Program © 2015 Astragalus debequaeus DeBequemilkvetch G2/S2 Family:Fabaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)Astragalusdebequaeushabitatis surroundedbyanthropogenicandnaturalbarriersthatmayinhibitrangeshift2)potentialincrease innaturalgasdevelopmentinA.debequaeushabitat;3)A.debequaeushasexperiencedasmall rangeinmeanannualprecipitationoverthelast50years;4)seeddispersaldistancesareprobably fairlylimited;5)potentialsymbioticrelationshipwithroot‐nodulatingbacteria. Distribution:KnownfromDelta,GarfieldandMesacounties,intheColoradoRiverValleynear DeBeque.Theplant'srangeevidentlycorrespondstotheextentoftheAtwellGulchMemberofthe WasatchFormation.Estimatedrangeis1,736squarekilometers(670squaremiles),calculatedin 2008bytheColoradoNaturalHeritagePrograminGISbydrawingaminimumconvexpolygon aroundtheknownoccurrences.Habitat:Astragalusdebequaeusoccursinvari‐colored,fine textured,seleniferous,andapparentlysalinesoilsoftheWasatchFormation‐AtwellGulchMember (Welsh1985).Itisfoundinareassurroundedbypinyon‐juniperwoodlandsanddesertshrub (Scheck1994).Astragalusdebequaeusisfoundonbarrenoutcropsofdarkclayinterspersedwith lensesofsandstone.Theplantsoccuronsandyspots.Plantsaremostlyclusteredontoeslopesand alongdrainages,butmanyoccuronsteepsideslopes.Soilsareclayeybutlitteredwithsandstone fragments.Elevation:4950‐6680feet. EcologicalSystem:Barrens,Pinyon‐Juniper,DesertShrub,Sagebrush CCVI Scoring B1)Exposuretosealevelrise.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 357 B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate changeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthatwouldnotcontain suitablehabitatforthisspecies(USGS2004). B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Extensivehabitat alterationduetooilandgasextractioninandaroundhabitatoccupiedbythisspecies(FracFocus Wells2013)inhibitsrangeshift.Additionally,muchofthelandscapesurroundingoccurrencesofA. debequaeushasbeenalteredbylivestockgrazing(CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. ThehabitatofA.debequaeushasahighpotentialfornaturalgasextraction,andmoderatepotential forsolarandwindenergydevelopment(Grunauetal.2011;NRDC2011). C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA. debequaeusseedsdonotcontainanyspecializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.debequaeushas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A. debequaeusoccupiesopensitesoverawiderangeofelevations(CNHP2014)withtemperatures thatvaryadiabaticallywithelevation,suggestingthatthisspeciesisnotlimitedtocool environments. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,A.debequaeushasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A. debequaeusoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear (WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin stressfulconditionsforA.debequaeus. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Although thisspeciesoccursinseveralhabitattypesincludingbarrens,pinyon‐juniper,desertshrub,and 358 Colorado Natural Heritage Program © 2015 sagebrush,ithasapreferenceforbarrenoutcropsofdarkclaysoilsoftheAtwellGulchMemberof the.WasatchFormation‐. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease. Astragalus.debequaeushasnotbeeninvestigatedfornodulization.However,noduleshavebeen reportedforseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A. mollissimus,andA.purshii),soitispossiblethatA.equisolensisalsopossessesthisability(Decker andAnderson2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.(2004,April21).AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnical conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Climate Change Vulnerability Assessment for Colorado BLM 359 NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Scheck,C.1994.SpecialStatusPlantsHandbookGlenwoodSpringsResourceArea.Unpublishedreportpreparedforthe BureauofLandManagement,GlenwoodSprings,CO. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. Welsh,S.L.1985.NewspeciesofAstragalus(Leguminosae)fromMesaCounty,Colorado.GreatBasinNaturalist45(1):31‐ 33. WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015. 360 Colorado Natural Heritage Program © 2015 Astragalus equisolensis (Astragalus desperatus var. neeseae) Horseshoemilkvetch G5T1/S1 Family:Fabaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:1)A.equisolensishasexperiencedasmallrangeinmean annualprecipitationoverthelast50years;2)seeddispersaldistancesareprobablyfairlylimited; 3) pinyon‐juniperhabitatsoccupiedbyA.equisolensismaybesubjecttoincreasedwildfiresand decreasesinsoilmoistureundertheclimatechangeprojectionsofhottertemperatures;4) potentialsymbioticrelationshipwithroot‐nodulatingbacteria. Distribution:KnownfromonecountyinUtah(USDANRCS2015)andonecountyinColorado (CNHP2014).Habitat:A.equisolensisisassociatedwithmixeddesertandsaltdesertshrub vegetationcommunitiesthataregenerallydominatedbysagebrush,shadscaleandhorsebrush.The populationsinMesaCountyareinanopenjuniper/blackbrushcommunityonrockyconvexslopes withredsoils.Elevation:4520‐6030feet. EcologicalSystem:Pinyon‐JuniperWoodlands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Rangeshiftin responsetoclimatechangeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthat wouldnotcontainsuitablehabitatforthisspecies(USGS2004). B2b)Distributionrelativetoanthropogenicbarriers.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 361 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.Habitatdisturbanceandalterationmayoccurwithincreaseddevelopmentof uraniumminesinthearea. C1)Dispersalandmovements.Increase.SeeddispersaldistancesarelikelyshortsinceAstragalus seedsgenerallydonotcontainspecializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thisspecieshasexperiencedaverage(57.1 ‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A. equisolensisoccupiesopensitesoverawiderangeofelevations(CNHP2014)withtemperatures thatvaryadiabaticallywithelevation,suggestingthatthisspeciesisnotlimitedtocool environments. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A. equisolensisoccursinasemi‐aridclimatewithanaverageof8.7inchesofprecipitationperyear (WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin stressfulconditionsforA.equisolensis. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.A.equisolensisoccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikely toburnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisethe understory,suchascheatgrass. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). 362 Colorado Natural Heritage Program © 2015 C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease. Astragalusequisolensishasnotbeeninvestigatedfornodulization.However,noduleshavebeen reportedforseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A. mollissimus,andA.purshii),soitispossiblethatA.equisolensisalsopossessesthisability(Decker andAnderson2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. USDA,NRCS.2015.ThePLANTSDatabase(http://plants.usda.gov).NationalPlantDataTeam,Greensboro,NC27401‐ 4901USA. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. WesternRegionalClimateCenter.2015.AverageannualprecipitationforGateway,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1947to2015. Climate Change Vulnerability Assessment for Colorado BLM 363 Astragalus microcymbus Skiffmilkvetch G1/S1 Family:Fabaceae Photo: Michelle DePrenger‐Levin Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)movementbarriers;2)poor dispersalcapacity;3)restrictiontospecificgeologicfeatures;4)potentialfuturethreatsfrom livestockgrazingandgeothermalenergydevelopment;5)potentialincreaseinfirefrequencyin occupiedhabitat;6)potentialrelianceonseasonalmoistureregimesforfruitproduction. Distribution:GunnisonCounty,andextendingintotheedgeofSaguacheCounty.Estimatedrange is168squarekilometers,calculatedinGISbydrawingaminimumconvexpolygonaroundthe knownoccurrences.Habitat:Opensagebrushorjuniper‐sagebrushcommunitiesonmoderately steeptosteepslopes.Oftenfoundinrockyareaswithavarietyofsoilconditionsfromclayto cobbles,graytoreddishincolor.Elevation:7600‐8400feet. EcologicalSystem:Sagebrush,Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Rangeshiftin responsetoclimatechangeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthat wouldnotcontainsuitablehabitatforthisspecies(USGS2004). B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease/Neutral.The followingpotentialfactorsthatmayaffectthehabitatorrangeofAstragalusmicrocymbusare(1) Residentialandurbandevelopment;(2)recreation,roads,andtrails;(3)utilitycorridors;(4) nonnativeinvasiveplants;(5)wildfire;(6)contourplowingandnonnativeseedings;(7)livestock, 364 Colorado Natural Heritage Program © 2015 deerandelkuseofhabitat;(8)mining,oilandgasleasing;(9)climatechange;and(10)habitat fragmentationanddegradation(USFWS2010). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin theBasin,itcouldaffectthelong‐termviabilityofA.microcymbuswithintheBasin(USFWS2014). C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA. microcymbusseedsdonotcontainanyspecializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.A. microcymbushasexperiencedagreaterthanaveragetemperature(>70°F/43.0°C)variationinthe past50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease. Speciesissomewhatrestrictedtocoolorcoldenvironmentsthatmaybelostasaresultofclimate change.TemperaturesintheAstragalusmicrocymbusoccupiedhabitatcandipbelowfreezingany monthoftheyear.Climatemodelspredictearlier,fastersnowmeltalongwithdecreasedsummer precipitationandincreasedsummertemperatures(Barsugli2010).Thiswouldresultin significantlyloweramountsofwaterstoredinthesoilsduringthesummer. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Thespecieshasexperiencedsmall(4‐10inches/100‐254 mm)precipitationvariationinthepast50years. C2bii) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime: physiologicalhydrologicalniche.SomewhatIncrease.Precipitationinfluencesfruitproductionin A.microcymbuswithadditionalfruitproducedinyearswithhigherthanaveragewinterprecipitation (DePrenger‐Levinetal.2013). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Sagebrushshrublandsandpinyon‐juniperhabitatsmayexperienceincreased firefrequenciesduetoincreasedtemperatures. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 365 C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease. AlthoughA.microcymbushasnotbeenstudiedfornodulization,manyspeciesofAstragalusform mycorrhizalassociations. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Barsugli,J.2010.HydrologicProjectionsfortheGunnisonBasin.PresentationatFollow‐upmeetingfortheClimate ChangeAdaptationWorkshop.Gunnison,Colorado. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. DePrenger‐Levin,M.,J.M.RampNeale,T.A.GrantIII,C.DawsonandY.E.Baytok.2013.LifeHistoryandDemographyof AstragalusmicrocymbusBarneby(Fabaceae).2013.NaturalAreasJournal,33(3):264‐275. U.S.FishandWildlifeService(USFWS).2010.EndangeredandThreatenedWildlifeandPlants;TwelveMonthFindingon aPetitiontoListAstragalusmicrocymbusandAstragalusschmolliaeasEndangeredorThreatened.FederalRegister:Vol. 75,No.240,December10,2010. U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. 366 Colorado Natural Heritage Program © 2015 Astragalus naturitensis Naturitamilkvetch G2G3/S2S3 Family:Fabaceae Photo: B. Kuhn Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors1)barrierstomovement;2)limited seeddispersalcapabilities;3)lackoftemperatureandprecipitationvariabilityinlast50years;4) potentialdecreaseinsoilmoistureavailabilitywithincreasedtemperatures;5)restrictionto specificgeologicfeaturesandsoiltypes;6)potentialforincreasedfirefrequencyinoccupiedA. naturitensishabitat. Distribution:KnownfromNewMexico,Utah,theNavajoNationandColorado(Garfield,Mesa, Montezuma,Montrose,andSanMiguelcounties).Habitat:Astragalusnaturitensisoccurson sandstoneledges,crevicesofsandstonebedrock,dryrockmesas,ledges,anddetritalslopesat 5000‐7000feet.Pinyon‐juniperwoodlandsinareaswithshallowsoilsoverexposedbedrock. Usuallyitisinsmallsoilpocketsorrockcrevicesinsandstonepavementalongcanyonrims. Sometimesitisfoundnearbyindeepersandysoilswithorwithoutsoil.Elevation:4830‐7030feet. EcologicalSystem:CliffandCanyon,Pinyon‐Juniper,Sagebrush CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase/SomewhatIncrease.Highmountains, unsuitablehabitat,andlargerivervalleys(Gunnison,Colorado,andSanMiguelrivers)mayactas naturalbarriersthatinhibitrangeshiftsassociatedwithclimatechange. Climate Change Vulnerability Assessment for Colorado BLM 367 B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease/Neutral.Extensive habitatalterationduetooilandgasextractioninWesternColorado(FracFocusWells2013) inhibitsrangeshift. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA. naturitensisseedsdonotcontainanyspecializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.naturitensishas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.naturitensishas experiencedsmall(37‐47°F/20.8‐26.3°C)temperaturevariationinthepast50years. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A. naturitensisoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear innearbyGrandJunction,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimits forlackofmoistureareunknownforthisspecies,ahotterclimatecombinedwithhigher evapotranspirationmayresultinstressfulconditionsforA.naturitensis. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Sagebrushshrublandsandpinyon‐juniperhabitatsmayexperienceincreased firefrequenciesduetoincreasedtemperatures. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease. Astragalusnaturitensisoccursonsandstoneledges,crevicesofsandstonebedrock,dryrockmesas, ledges,anddetritalslopesat5000‐7000feet(CNHP2014).Itisoftenfoundgrowinginshallowsoils ontopofsandstoneledgesandslickrock,butoccasionalisfoundindeeper,sandysoils. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. 368 Colorado Natural Heritage Program © 2015 C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. naturitensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.naturitensisalsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Climate Change Vulnerability Assessment for Colorado BLM 369 Astragalus osterhoutii Kremmlingmilkvetch G1/S1 ListedEndangered Family:Fabaceae Photo: Denise Culver Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)limited seeddispersaldistance;3)lackofvariationinannualprecipitationinthelast50years;4)potential lackofsoilmoistureduetoprojectionsofhottertemperatures;5)potentialincreaseinfire frequencyinsagebrushecosystems;6)restrictiontohighlyseleniferoussoilsanduniquegeologic substrates6)potentialsymbioticrelationshipwithroot‐nodulatingbacteria. Distribution:EndemictoGrandCounty,Colorado.Estimatedrangeis120squarekilometers, calculatedinGISbydrawingaminimumconvexpolygonaroundtheknownoccurrences. Impreciselyreportedoccurrencesarenotincluded.Habitat:Highlyseleniferoussoils(grayish‐ brownclay)derivedfromNiobraraShale;sometimesgrowingupthroughsagebrush.Elevation: 7370‐8000feet. EcologicalSystem:Sagebrush CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.AccordingtoSWReGAP vegetationlayers,unsuitablehabitatandgeologysurroundingknownlocationsofA.osterhoutiimay restrictrangeshiftsduetoclimatechange(USGS2004). 370 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Housingdevelopment,motorized recreationareas,oilandgasdrilling,androadsallcreatebarrierstomovementforA.osterhoutii. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.IncreasedoilandgasdrillingcouldleadtolossofindividualA.osterhoutii plants,andincreasedhabitatfragmentationanddegradation. C1)Dispersalandmovements.Increase.Seeddispersaldistancesarelikelysomewhatlimiteddue tothelackofspecializedstructurestoaidindispersal. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A. osterhoutiiisnotlimitedtocoolorcoldhabitatsthatmaybelosttoclimatechange.Lessthan10% ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimaticenvelope (SeeEcosystemSectionofreport). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Climatemodelsprojecthotter temperaturesforColorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsin Colorado(Lukasetal.2014).Warmertemperatureswillresultinhigherevapotranspirationrates forplants.A.osterhoutiioccursinasemi‐aridclimatewithanaverageof11.88inchesof precipitationperyear(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlack ofmoistureareunknownforthisspecies,ahotterclimatecombinedwithhigher evapotranspirationmayresultinstressfulconditionsforA.osterhoutii. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.ClimatemodelsprojecthottertemperaturesforColorado(Lukasetal.2014), andthiscouldresultinincreasedfirefrequencyinsagebrushecosystems. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Speciesis restrictedtowhiteshaleoutcropsofNiobrara,Pierre,andTroublesomeFormationsinGrand County(CNHP2014).Itismostoftenfoundgrowinginhighlyseleniferoussoils. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. Climate Change Vulnerability Assessment for Colorado BLM 371 C4c)PollinatorVersatility.Neutral. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. osterhoutiihasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.osterhoutiialsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. WesternRegionalClimateCenter.2015.AverageannualprecipitationforKremmling,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1908to2015. 372 Colorado Natural Heritage Program © 2015 Astragalus piscator FisherTowersmilkvetch G2G3/S1 Family:Fabaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)A.piscatorhasexperienceda verysmallrangeinmeanannualprecipitationoverthelast50years;2)seeddispersaldistances areprobablyfairlylimited;3)potentialincreaseinuraniumandvanadiummininginA.piscator habitat4)pinyon‐juniperhabitatsoccupiedbyA.piscatormaybesubjecttoincreasedwildfires undertheclimatechangeprojectionsofhottertemperatures;5)potentiallackofavailablesoil moistureunderprojectedclimatewarming;6)potentialsymbioticrelationshipwithroot‐ nodulatingbacteria. Distribution:KnownfromoneoccurrenceinMesaCountyinColorado.AlsoknownfromUtah. Habitat:Insandy,sometimesgypsiferoussoilsofvalleybenchesandgulliedfoothills.InGateway,it isfoundonslightlygravellysoilswithmixedredandwhiteparticles.Inaddition,itwasoftenfound onthesidesofdrygullies(Spackmanetal.1997).Elevation:4500‐5580feet. EcologicalSystem:SandyAreas,DesertShrub,Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral.Thisspeciesisknownfromthe Colorado/Utahborderinruggedcanyonlands.Nomountainrangesorlargerivervalleysoccurhere. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Fewanthropogenicdisturbances arepresentintheruggedcanyonsnearGateway,Colorado.Roads,railroads,andsparsehousing Climate Change Vulnerability Assessment for Colorado BLM 373 developmentarethemaindisturbanceslocatednearA.piscatorhabitat,buttheseoccupyafairly smallfootprint. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. FutureincreasesinuraniumandvanadiumminingarepossiblewithinA.piscatorhabitat(CNHP 2014). C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin dispersal,andlikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,A.piscatorhasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldenvironments.Itoccursindry,uplandareasdominatedbypinyon‐ juniperanddesertshrubs. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,A.piscatorhasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.piscator occursinasemi‐aridclimatewithanaverageof8.7inchesofprecipitationperyear(Western RegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureareunknownforthis species,ahotterclimatecombinedwithhigherevapotranspirationmayresultinstressful conditionsforA.piscator. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.A.piscatoroccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikelyto burnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisetheunderstory, suchascheatgrass. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. 374 Colorado Natural Heritage Program © 2015 C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. piscatorhasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.piscatoralsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[Feb26,2015]. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. WesternRegionalClimateCenter.2015.AverageannualprecipitationforGateway,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1947to2015. Climate Change Vulnerability Assessment for Colorado BLM 375 Astragalus rafaelensis SanRafaelmilkvetch G2G3/S1 Family:Fabaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)A.rafaelensishasexperienceda verysmallrangeinmeanannualprecipitationoverthelast50years;2)seeddispersaldistances areprobablyfairlylimited;3)pinyon‐juniperhabitatsoccupiedbyA.rafaelensismaybesubjectto increasedwildfiresundertheclimatechangeprojectionsofhottertemperatures;5)potentiallack ofavailablesoilmoistureunderprojectedclimatewarming;6)potentialsymbioticrelationship withroot‐nodulatingbacteria. Distribution:ThisisaNavajoBasinendemic;EmeryandlesscommonlyinGrandCounty,Utah (Welshetal.1993),alsoinMontrose,MesaandLaPlatacountiesinColorado(CNHP1998). Habitat:Gulliedhills,washes,andtalusundercliffs;inseleniferousclayey,silty,orsandysoils. Sometimescolonialonroadcuts.ColoradoplantsarefoundonsoilsderivedfromtheMorrison formation,evenwhenthishaswasheddownontoEntradaorChinleformations(Spackmanetal. 1997).Elevation:4720‐6700feet. EcologicalSystem:Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate changeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthatwouldnotcontain suitablehabitatforthisspecies(USGS2004). 376 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Fewanthropogenicdisturbances arepresentintheruggedcanyonsnearParadoxandNucla,Colorado.Roads,railroads,andsparse housingdevelopmentarethemaindisturbanceslocatednearA.rafaelensishabitat,butthese occupyafairlysmallfootprint. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin dispersal,andlikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,A.rafaelensishasexperiencedaverage (57.1‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldenvironments.Itoccursindrywashesandcliffbasesinareas dominatedbypinyon‐juniper. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,A.rafaelensishasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A. rafaelensisoccursinasemi‐aridclimatewithanaverageof11.73inchesofprecipitationperyear (WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin stressfulconditionsforA.rafaelensis. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.A.rafaelensisoccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikely toburnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisethe understory,suchascheatgrass. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. Climate Change Vulnerability Assessment for Colorado BLM 377 C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. rafaelensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.rafaelensisalsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates. Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity. 378 Colorado Natural Heritage Program © 2015 Astragalus ripleyi Ripley’smilkvetch G3/S2 Family:Fabaceae Photo: Courtesy of Colorado Natural Areas Program Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:predictedprecipitationdecreases;highmountainsthat actasnaturalbarriersandhabitatalterationthatresultsfromconversiontofarmland,andlivestock grazing,whichactasanthropogenicbarrierstorangeshift;limitedseeddispersaldistance; alterationtothenaturalfiredisturbanceregime;restrictiontoasomewhatuncommongeology; andpollinatorlimitations.Suitablehabitatislikelytobereducedandreproductivesuccess diminished.Climatemodelsprojectannualnetdryingthroughoutthisspeciesrange(NatureServe 2012)withresultingtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado (Lukasetal.2014). Distribution:AstragalusripleyihasbeenreportedfromColoradoinConejosCounty(Spackman 1997+)andfromNewMexicoinTaosandRioArribaCounties(NMRPTC2014).However,within theseregions,A.ripleyidoesnotoccupyallpotentialhabitatbutratherisrestrictedtovolcanic‐ derivedsubstrates(Ladyman2003).Habitat:Astragalusripleyiexhibitsahighdegreeofhabitat specificity.Itisapparentlyrestrictedtovolcanicsubstrates,inopen‐canopyponderosapine‐ Arizonafescuesavannah,oralongtheedgesofmixedconiferouswoodland/forestwhereArizona fescueisdominant.Elevation:InColorado,8200‐9300ft.(Spackmanetal.1997). EcologicalSystem:PonderosaPineWoodlands Climate Change Vulnerability Assessment for Colorado BLM 379 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Somewhatincrease.Naturalbarriersborderthe distributionofthisspeciestotheeast,westandnorthimpairingrangeshift.Astragalusripleyi‘s rangeisborderedtothewestbythehighpeaksofthenorthwest‐southeasttrendingSanJuan Mountains,totheeastbythenorth‐southtrendingSangredeCristoMountainRangeandtothe northbytheeast‐westtrendingLaGaritaMountains.Northwardmigrationthroughthecenterof therangeisinhibitedbyunsuitablehabitatintheSanLuisvalley(USGS2014). B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Conversionof habitattofarmland(USDA2012)andhabitatalterationbylivestockgrazing(USDOIBLM2014) impairsrangeshift. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Neitherexistingnorplannedrenewableenergydevelopmentwilllikelyimpactthisspecies(NRDC 2011). C1)Dispersalandmovements.Somewhatincrease.Limitedandlocalizeddispersaldistancein combinationwithinfrequentseedlingrecruitmentincreasesthisspeciesvulnerabilitytoclimate changebydecreasingmigrationandestablishmentpotential.Seedsmaybedispersedbysmall mammals,antsandwindorwater(Ladyman2003).Windcanresultadispersaldistanceof1‐15 meters,smallmammalsandantsupto15metersandwaterdispersaldistanceishighly unpredictable(VittozandEngler2007)buttypicallynotfartherthan100m(Cainetal.2000). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationovertherangeofA.ripleyi,thisspecieshasexperienced averagetemperaturevariation(57.1‐77oF)overthepast50years(NatureServe2012). C2aii)Physiologicalthermalniche.Neutral.Thisspeciesisnotdependentoncoolorcold environments. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedaverageprecipitationvariation(21‐40inches)overthe last50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.PredictedprecipitationdecreasesfromMarchthrough Juneduringthisspecies’growthandreproductiveseasonarelikelytoreduceestablishmentand flowering(Ladyman2003)thusimpactabundance,distributionandhabitatquality. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.AstragalusripleyioftenoccupiesPonderosa(Pinusponderosa)forests(CNHP2014). Historically,short‐interval,low‐severitysurfacefiresmaintainedsparse,openstandsinmostdry 380 Colorado Natural Heritage Program © 2015 Ponderosapineforests(Schoennageletal.2004).Consequencesofdecadesoffiresuppressionwith theaccumulationoffuelsincombinationwithimpactsofrecentclimatechangehavecontributedto analteredfireregimewithunprecedentedlylarge,high‐severitywildfiresthatarebeyondtherange ofnaturalvariability(Schoennageletal.2004). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Astragalusripleyiis anedaphicendemicthatoccursexclusivelyonvolcanicderivedsoilsassociatedwiththeSanJuan volcanicfield(NatureServe2014)withacommensuratelylimitedrange. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Astragalusripleyiisnotknown tobereliantonotherspeciesforhabitatgeneration. C4c)PollinatorVersatility.Somewhatincrease.Astragalusripleyiappearstobebee‐pollinated. Beesandantshavebeenobservedonflowersandbumblebees(Bombusternaries)havebeen reportedasthemostcommonarthropodvisitor(NatureServe2014). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Littleevidencehasbeen documentedforanyparticularmethodofdispersal.However,seeddispersalhasbeenspeculatedto beeffectedbyants,mice,andotherseedstorers,tumblingofdriedplants,andwindorwater transport(Ladyman2003)andlikelynotdependentonaspecificspecies. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. rafaelensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.rafaelensisalsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown.Nostudieshavebeenundertakentodeterminethe geneticstructureofeitherrange‐wideorlocalpopulationsalthoughlocallyendemicspeciesof Astragalustendtoexhibitreducedlevelsofpolymorphismthatmayimplyareducedrobustness againstenvironmentaluncertainty(Ladyman2003). C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Cain,M.L.,B.G.Milligan,andA.E.Strand.2000.Long‐distanceSeedDispersalinPlantPopulations.AmericanJournalof Botany87(9):1217–1227. Climate Change Vulnerability Assessment for Colorado BLM 381 Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011]. Ladyman,J.A.R.2003.AstragalusripleyiBarneby(Ripley’smilkvetch):atechnicalconservationassessment.[Online]. USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusripley.pdf Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupportWater ResourcesManagementandAdaptation,SecondEdition.Available at:http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=191994&searchid=e3c463e8‐569c‐4359‐8ddd‐ ed50e755d3b7&dbid=0 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:November14,2014) NewMexicoRarePlantTechnicalCouncil(NMRPTC).1999.NewMexicoRarePlants.Albuquerque,NM:NewMexicoRare PlantsHomePage.http://nmrareplants.unm.edu(Latestupdate:16January2014). NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp Accessed2014. Schoennagel,T.,T.T.Veblen,andW.H.Romme.2004.TheInteractionofFire,Fuels,andClimateacrossRockyMountain Forests.BioScience,Vol.54No.7,661‐675. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado NaturalHeritageProgram,FortCollins. U.S.DepartmentofAgriculture(USDA).2012.2012CensusofAgriculture.Availableat: http://www.agcensus.usda.gov/index.php U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Availableat: http://www.geocommunicator.gov/GeoComm/.Accessed2014. U.S.GeologicalSurvey.2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Botanica Helvetica,117(2),109–124.DOI:10.1007/s00035‐007‐0797‐8 382 Colorado Natural Heritage Program © 2015 Astragalus tortipes SleepingUtemilkvetch G1/S1 Family:Fabaceae Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:1)A.tortipeshasexperiencedaverysmallrangeinmean annualprecipitationoverthelast50years;2)seeddispersaldistancesareprobablyfairlylimited; 3)barrierstomovement4)shrublandhabitatsoccupiedbyA.tortipesmaybesubjecttoincreased wildfiresundertheclimatechangeprojectionsofhottertemperatures;5)potentiallackofavailable soilmoistureunderprojectedclimatewarming;6)potentialsymbioticrelationshipwithroot‐ nodulatingbacteria. Distribution:Coloradoendemic(UteMountainUteReservation,MontezumaCounty).Estimated rangeis10squarekilometers(4squaremiles),calculatedinGISbydrawingaminimumconvex polygonaroundtheknownoccurrences.Habitat:A.tortipesoccursinamixeddesertscrub, consistingofAtriplexconfertifolia,Chrysothamnusgreenei,andGutierreziasarothrae(Andersonand Porter1994).Itisendemictogranite‐derivedgravelssouthoftheSleepingUte(ColoradoNational HeritageProgram1997).Elevationalrange5400‐5700ft(Spackmanetal.1997).Elevation:5450‐ 5700feet. EcologicalSystem:DesertShrub CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase/SomewhatIncrease.Highmountains andunsuitablehabitatssurroundmanyoftheA.tortipesoccurrences. Climate Change Vulnerability Assessment for Colorado BLM 383 B2b)Distributionrelativetoanthropogenicbarriers.Increase/SomewhatIncrease.Cropland onthewesternedgeofoccupiedhabitatmayactasabarriertomovementforA.tortipes. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Shrublandspecieswereranked‘Increase’duetothepotentialofwindandsolardevelopment. C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin dispersal,andlikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,A.tortipeshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldenvironments.Itoccursindry,uplandareasdominatedbydesert shrubs. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,A.tortipeshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.tortipes occursinasemi‐aridclimatewithanaverageof12.95inchesofprecipitationperyearinnearby Cortez,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoisture areunknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresult instressfulconditionsforA.tortipes. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.A.tortipesoccursinshrublandhabitats.Thesehabitatsmaybemorelikelyto burnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisetheunderstory, suchascheatgrass. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species ofbees(DeckerandAnderson2004). 384 Colorado Natural Heritage Program © 2015 C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A. tortipeshasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus, andA.purshii),soitispossiblethatA.tortipesalsopossessesthisability(DeckerandAnderson 2004). C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Anderson,J.L.,andJ.M.Porter.1994.Astragalustortipes(Fabaceae),anewspeciesfromDesertBadlandsinsouthwestern ColoradoanditsphylogeneticrelationshipswithinAstragalus.SystematicBotany,19(1):116‐125. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[Feb26,2015]. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. WesternRegionalClimateCenter.2015.AverageannualprecipitationforCortez,Colorado.http://www.wrcc.dri.edu/cgi‐ bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1911to2015. Climate Change Vulnerability Assessment for Colorado BLM 385 Bolophyta ligulata (Parthenium ligulatum) Coloradofeverfew G3/S2 Family:Asteraceae Photo: Bob Skowron Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:predictedtemperatureincreasesandprecipitation decreases;presenceofhighmountainrangesandescarpmentsthatpresentnaturalbarriers; habitatalterationrelatedtooilandgasdevelopmentandlivestockgrazing,whichactas anthropogenicbarriers;possiblewindpowerdevelopmentonpotentialfuturehabitat;limitedseed dispersaldistance;restrictiontoarelativelyuncommongeology;andpollinatorlimitations. Suitablehabitatislikelytobereducedandreproductivesuccessdiminishedasthisspecies’range becomeswarmeranddrier.Climatemodelsprojectannualnetdryingacrosstherangeofthis species(NatureServe2012)withresultingtrendstowardmoreseveresoil‐moisturedrought conditionsinColorado(Lukasetal.2014). Distribution:BolophytaligulatahasbeenreportedfromColoradoinRioBlancoandMoffat Counties,andfromUtahinEmeryCounty(NatureServe2014,Welshetal.1987). EcologicalSystem/Habitat:Bolophytaligulataisknownfrombarrenorsemi‐barrencalciferousor gypsiferousoutcropsoftheGreenRiver,Uinta,Ferron,Summerville,andCarmelformationsinsalt desertshrub,serviceberry,rabbitbrush,Indianrice‐grass,greasebush,galleta,blacksagebrush, pygmysagebrush,andpinyon‐junipercommunities(NatureServe2014).Elevation:1705‐2135 meters(NatureServe2014). CCVI Scoring Temperature:CalculatedusingClimateWizard:ensembleaverage,mediumemissionscenario (A1B),mid‐centurytimeframe,averageannualchange.InColorado,thisspeciesisexpectedtobe exposedtomeanannualtemperatureincreasesof4.5oFbymid‐century(NatureServe2012). 386 Colorado Natural Heritage Program © 2015 Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake place).InColoradothisspeciesispredictedtobeexposedtonetdryingof9.7to11.9percenton2 percentofitsrange,7.4to9.6percentdryingon13percentofitsrange,5.1to7.3percentdryingon 71percentofitsrangeand2.8to5.0percentdryingon14percentofitsrange. B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Somewhatincrease.Severalmountainranges andescarpments(USGS2014)actasbarrierstoclimatechange‐inducedrangeshiftforthemajority ofpopulationsofPartheniumligulatum. B2b)Distributionrelativetoanthropogenicbarriers.Increase.Habitatalterationrelatedto energyextractionandlivestockgrazingimpairallpopulationsofBolophytaligulatafrom climatechange–inducedrangeshift.Allpopulationsoccurinornearshaleplaysandbasinsandare surroundingbyactiveoilandgasdevelopment(FracFocusWells2013).Additionally,themajority ofthishabitatinspeciesrangeispubliclandmanagedbytheBLMasrangelandforlivestock(BLM 2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.ExistingandplannedwindpowerdevelopmentontheUtah‐Wyomingborder (NRDC2011)mayalterhabitatonthepotentialfuturerangeofBolophytaligulata.Because Bolophytaligulataismoderatelyvulnerabletohabitatalteration(Rocchio2007),windpower‐ relateddevelopmentmaynegativelyimpactthisspeciessurvivability. *Bolophytaligulata’slifehistorystrategiescanbesuggestedbyBolophytaalpina(Parthenium alpinum)strategies.BolophytaligulataisverycloselyrelatedtoP.alpinum,suchthattheoriginal taxonomicrankofP.ligulatumwasavarietyofP.alpinumthatwaslaterelevatedtospecieslevel (HeidelandHandley2004). C1)Dispersalandmovements.Somewhatincrease.Windisthelikelydispersalagentfor Bolophytaalpina(Partheniumalpinum),andthusforB.ligulata.AchenesofB.alpinahavefringed, wing‐likemembranousextensionsofthepappuswhichcanimprovedispersaldistanceupto15 meters(VittozandEngler2007). C2ai)Predictedsensitivitytotemperature:historicthermalniche. Neutral. Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage temperaturevariation(57.1‐77oF)inthepast50years(NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. Bolophytaligulatamayrequirecoldtemperaturestoinduceflowering.Winterandspring temperaturesarepredictedtowarmby4.6oFto4.7oF(NatureServe2012)andthusmaybe inadequatetopromotefloweringorconverselymayprovidemiscuesthatalterflowering phenology.Timingoflifehistorytraitsiscentraltolifetimefitnessandnowhereisthismore importantasinthephenologyoffloweringingoverningplantreproductivesuccess(Inouye2008). Climate Change Vulnerability Assessment for Colorado BLM 387 C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatincrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedsmall(10.1inches)precipitation variationinthepast50years(NatureServe2014). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincrease.AlthoughBolophytaligulataiswell adaptedtoenvironmentalextremes,predictedprecipitationdecreasesduringtheperiodof floweringandfruitingmaydiminishreproductivesuccess. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Unknown.InColorado,Bolophytaligulatatypicallyoccupiessparselyvegetatedsitesthatdonot carryfirewell.Although,thesesitesarealsotypicallysurroundedbycommunitiessuchassage shrublandsandpinyon‐juniperwoodlandswherefirefrequenciesareexpectedtoincreaseinthe future,followingtrendsthatalreadyshowincreasedfirefrequencies,areaburnedandfireseverity (Stephens2005,Westerlingetal.2006,Littelletal.2009.However,asyet,impactsonB.ligulata hasnotbeendocumented. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnot restrictedtoordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Bolophytaligulatais edaphicallyrestrictedtocalciferousorgypsiferousoutcropsofshalesandclaysoftheGreenRiver, Uinta,Ferron,andCarmelformations(Welshetal.1987). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Bolophytaligulatahasnotbeen showntobedependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Somewhatincrease.PollinationofthecloselyrelatedB.alpinamay requirespecializedpollinationvectors,suggestingsimilarpollinationrequirementsforB.ligulata. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. 388 Colorado Natural Heritage Program © 2015 FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ Heidel,B.andJ.Handley.2004.Partheniumalpinum(Nutt.)Torr.&Gray(alpinefeverfew):atechnicalconservation assessment.[Online].USDAForestService,RockyMountainRegion. Available:http://www.fs.fed.us/r2/projects/scp/assessments/partheniumalpinum.pdf.Accessed:2014. Inouye,D.W.2008.Effectsofclimatechangeonphenology,frostdamage,andfloralabundanceofmontanewildflowers. Ecology89:353–362.http://dx.doi.org/10.1890/06‐2128.1 Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021 Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage Program,ColoradoStateUniversity,FortCollins,CO. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado NaturalHeritageProgram,FortCollins. Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. U.S.GeologicalSurvey(USGS).2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html.Accessed2014. VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv. 117:109–124. Welsh,S.L.,N.D.Atwood,andJ.C.Higgins.1987.GreatBasinNaturalistMemoir,no.9.BrighamYoungUniversity,ISBN0‐ 8425‐2260‐3. Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463. Climate Change Vulnerability Assessment for Colorado BLM 389 Camissonia eastwoodiae Eastwoodeveningprimrose G2/S1 Family:Onagraceae Photo: Janis Huggins Climate Vulnerability Rank: Highly Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)C.eastwoodiaehasexperiencea smallrangeinprecipitationinthelast50years;2)availablesoilmoisturemaydecreaseif temperaturesincreaseaspredictedinclimatemodels;3)potentialforincreasedenergy developmentwithinsuitablehabitat;4)likelihoodofshortseeddispersaldistance;5)potentialfor increasedfirefrequencyinpinyon‐juniperandshrublandhabitatthatsupportC.eastwoodiae populations. Distribution:EndemictotheColoradoPlateau.FoundinUtah(sevencounties),Arizona(2 counties),andColorado(2counties,USDANRCS2012).Habitat:InColoradothisspeciesisfound onclaysoilsderivedfromMancosshalewithAtriplexgardneriadominantassociate.Elevation: 4,570‐6,050feet. EcologicalSystem:SaltbushFlatsandFans,Pinyon‐Juniper CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. AreasofC.eastwoodiaehabitatmayhavepotentialforincreasedoilandgas,aswellaswindand solardevelopment. 390 Colorado Natural Heritage Program © 2015 C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldhabitatsthatareexpectedtobelosttoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Climatemodelsprojecthotter temperaturesforColorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsin Colorado(Lukasetal.2014).Warmertemperatureswillresultinhigherevapotranspirationrates forplants.C.eastwoodiaeoccursinasemi‐aridclimatewithanaverageof11.33inchesof precipitationperyearinnearbyGrandJunction,CO(WesternRegionalClimateCenter2015). Althoughtolerancelimitsforlackofmoistureareunknownforthisspecies,ahotterclimate combinedwithhigherevapotranspirationmayresultinstressfulconditionsforC.eastwoodiae. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Increasedfirefrequencymayoccurinshrublandsandpinyon‐juniper ecosystemsthatsupportpopulationsofC.eastwoodiae. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Climate Change Vulnerability Assessment for Colorado BLM 391 Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021 Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. USDA,NRCS.2012.ThePLANTSDatabase.NationalPlantDataTeam,Greensboro,NC27401‐4901USA. WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015. 392 Colorado Natural Heritage Program © 2015 Cleome (Peristome) multicaulis Slenderspiderflower G2G3/S2S3 Family:Capparaceae Photo: Georgia Doyle Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialforsolarandwinddevelopmentinSanLuisValley;3)likelihoodoflimitedseeddispersal; 4)specieshasexperienceverysmallprecipitationvariationinlast50years;4)restrictionto alkalineorsalinesoilsinwetlands. Distribution:Mexico,Texas,Arizona,NewMexico,Wyoming,andColorado(USDANRCS2013). WeberandWittmann(2012)reportthatthisspeciesiswidelydistributedinMexico.Habitat: Cleomemulticaulisisrestrictedtosalineoralkalinesoils,aroundalkalisinks,ponds,alkaline meadows,oroldlakebeds.Thesurroundingplantcommunityissalinebottomlandshrubland (dominatedbySarcobatusandChrysothamnus).Theplantoftengrowsinbandsjustaboverushes (Juncussp.)andmayextendintogreasewoodandsaltgrass(Graff1992,Spackmanetal.1997, ColoradoNaturalHeritageProgram2014).Elevation:7,500‐8,200feet. EcologicalSystem:Grass/ForbDominatedWetlands;Playas CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Greatlyincrease.Knownoccurrencesarelimited totheflooroftheSanLuisValley,andsurroundinghighmountainsmayactasabarriersto movement. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 393 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. AnincreaseinsolarandwinddevelopmentcouldoccurintheSanLuisValley. C1)Dispersalandmovements.Increase.Noinformationisavailableondispersal,butseedslikely fallclosetoparentplants. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies isnotlimitedtocoolorcoldhabitatsthatarelikelytobelosttoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Cleomemulticaulisisrestrictedtosalineor alkalinesoils,aroundalkalisinks,ponds,alkalinemeadows,oroldlakebeds.Thesewetlandsites occurinthearidclimateSanLuisValley,whereaverageannualprecipitationis9.39inchesinDel Norte,CO(WesternRegionalClimateCenter2015). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. 394 Colorado Natural Heritage Program © 2015 Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Graff,D.1992.StatusreportforCleomemulticaulisonBlancawetlands.BureauofLandManagement,SanLuisResource Area,Alamosa,CO. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.ForestService,andU.S.FishandWildlifeServicebytheColorado NaturalHeritageProgram,Ft.Collins,CO. USDA,NRCS.2013.ThePLANTSDatabase.NationalPlantDataTeam,Greensboro,NC27401‐4901USA. Weber,W.A.andR.C.Wittmann.2012.ColoradoFlora,EasternSlope,AFieldGuidetotheVascularPlants,FourthEdition. Boulder,Colorado.555pp. WesternRegionalClimateCenter.2015.AverageannualprecipitationforDelNorte,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1893to2015. Climate Change Vulnerability Assessment for Colorado BLM 395 Corispermum navicula Boat‐shapedbugseed G1?/S1 Family:Chenopodiaceae Photo: David G. Anderson Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)naturalbarriersthatwould preventrangeshiftsduetoclimatechange;2)likelihoodofshortseeddispersaldistances;3) potentiallackofsoilmoistureunderprojectedclimatewarming;4)lackofprecipitationvariability inlast50years;5)restrictiontouncommongeologicsubstrates. Distribution:ConsideredaColoradoendemicbasedonrecentgenetictesting,occurringinJackson County(Nealeetal.2013).GeneticevidencesuggeststhatNorthSandDunespopulationsarea separatelyevolvingmetapopulationthatiswellsupportedasadistinctspeciescomparedtoC. americanumandC.villosum.ApopulationpreviouslyconsideredtobeC.naviculaintheEastSand DunesisconsideredaC.naviculaxC.americanumhybrid(Nealeetal.2013).Estimatedrangeis17 squarekilometers(6squaremiles),calculatedinGISbydrawingaminimumconvexpolygon aroundtheknownoccurrences(calculatedbytheColoradoNaturalHeritageProgramin2008). Habitat:Sanddunes(Nealeetal.2013;CNHP2014).Elevation:8,250‐8,730feet. EcologicalSystem:Barrens,SandyAreas CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Thisspeciesislimitedtosanddunes, andsurroundingareascontainunsuitablegeologyandsoils. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. 396 Colorado Natural Heritage Program © 2015 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,C.naviculahasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.This speciesoccursinsanddunesthatmaybecomedrierasaresultofhighertemperatures. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.C. navicularoccursinasemi‐aridclimatewithanaverageof10.52inchesofprecipitationperyearin nearbyWalden,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackof moistureareunknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspiration mayresultinstressfulconditionsforC.navicula. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.C.naviculaisasand duneendemic(Nealeetal.2013;CNHP2014). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 397 C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Neale,J.,M.Islam,A.Schwabe.2013.TestingthegeneticidentityofCorispermumattheNorthandEastSandDunesof NorthernColorado.DenverBotanicGardens.ReporttoColoradoNaturalAreasProgram.SubmittedNov.29,2013.24pg. WesternRegionalClimateCenter.2015.AverageannualprecipitationforWalden,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1897to2015. 398 Colorado Natural Heritage Program © 2015 Cryptogramma stelleri Slenderrock‐brake G5/S2 BLMsensitive Family:Pteridaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable Thisstatewiderankisbasedonrestrictiontocool,shadedclifffaces,thepresenceofcliffsand canyonsthatserveasnaturalbarriersinsuitablehabitat,restrictiontocalcareousclifffacesand overhangswithdrippingwater.Climatemodelsprojectannualnetdryingacrosstherangeofthis species(NatureServe2012)withresultingtrendstowardmoreseveresoil‐moisturedrought conditionsinColorado(Lukasetal.2014).Thesehotteranddrierconditionsmayresultinalossof suitablehabitatforC.stelleri. Distribution:DistributionofC.stelleriisnearlycircumpolar(NatureServe2013).Itiswidespread throughouttheUnitedStates.InColoradoithasbeenreportedfromArchuleta,Conejos,Garfield, Grand,Gunnison,Ouray,SanJuan,SanMiguel,andSummitCounties(CNHP2013).Habitat:Occurs incracksandcrevicesoflimestonecliffsinmoistconiferousforests,generallyassociatedwith drippingwater.Elevation:4700‐10,900feet. EcologicalSystem/Habitat:GroundwaterDependentWetlands,CliffandCanyonSeeps CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Speciesgrowsoncliffwalls andinshallowrockoverhangsthatserveasnaturalbarriers. Climate Change Vulnerability Assessment for Colorado BLM 399 B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Therearenosignificant anthropogenicbarriersforthisspeciesintheassessmentarea(Radeloffetal.2005). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Occurscliffwallsandinshallowrockoverhangs.Werateallcliffandcanyonspecies‘Neutral’based ontheassumptionthatdevelopmentinthishabitatisunlikelyinmostmitigationscenarios. C1)Dispersalandmovements.Neutral.Althoughdispersalmechanismsareunknown,windand waterlikelytransportspores. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Specieshas experiencedaveragetemperaturevariation(57.1to>77°F/31.8‐43°C)inthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Speciesthat occurinseepsincliffsandcanyonswereallrated‘Increase’undertheassumptionthatthishabitat maybelostasColoradobecomeswarmer,andpresumablydrier. C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatdecrease.Thespecieshasexperiencedgreaterthan average(>40inches/1,016mm)precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Speciesoccursoncliffwallsandinshallow rockoverhangswithdrippingwater.Weratedcliffandcanyonspeciesthatpreferwettermicro sitesas‘GreatlyIncrease’basedontheassumptionthatthesehabitatsmaybelostasColorado’s climatebecomeswarmeranddrier. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thespeciesisnotknowntobedependentonaspecificdisturbanceregime,nordoesit occurinhabitatlikelytobeexposedtoaltereddisturbanceregimesinawaythatwouldaffectthe rangeorabundanceofthespecies. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Littledependenceonsnow oricecover. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Speciesisrestricted tocalcareouscliffsandcanyons(Hulten1968). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral. C4c)PollinatorVersatility.Neutral.C.stelleriisafernthatproducesspores,soitdoesnotrelyon pollinators. C4d)Dependenceonotherspeciesforpropaguledispersal.Unknown. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. 400 Colorado Natural Heritage Program © 2015 C5)Geneticfactors.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram(CNHP).2013.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Hulten,E.1968.FloraofAlaskaandNeighboringTerritories.StanfordUniversityPress,Stanford,CA. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupportWater ResourcesManagementandAdaptation,SecondEdition.Availableat: http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=191994&searchid=e3c463e8‐569c‐4359‐8ddd‐ ed50e755d3b7&dbid=0 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2013.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.0.NatureServe, Arlington,VA.U.S.A.Availablehttp://www.natureserve.org/explorer.AccessedDecember9,2013. Radeloff,V.C.,R.B.Hammer,S.IStewart,J.S.Fried,S.S.Holcomb,andJ.F.McKeefry.2005.TheWildlandUrbanInterfacein theUnitedStates.EcologicalApplications15:799‐805. Climate Change Vulnerability Assessment for Colorado BLM 401 Erigeron kachinensis Kachinadaisy G2/S1 Family:Asteraceae Photo: Lorainne Yeatts Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) restrictiontowet,salinesoilsalongcliffandcanyonwallsthatmaybecomehotteranddrier;3)lack ofvariationinprecipitationinlast50years. Distribution:EndemictotheColoradoPlateauinColoradoandUtah.Knowfromonecountyin Utah(SanJuanCounty),andseveralinColorado.Habitat:Occursinwet,salinesoilsinalcoves, seeps,andhanginggardensonsandstonecliffsandcanyonwalls(Allphin1991,Spackmanetal. 1997,Ackerfield2012,CulverandLemly2013).AssociatedspeciesincludeEpipactisgigantea, Aquilegiamicrantha,Mimuluseastwoodiae,andCalamagrostis.Surroundingplantcommunities includePinyon‐juniper,Fraxinus,andSalix(CNHP2014).Elevation:4,700‐6,700feet. EcologicalSystem:CliffandCanyon CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.E.kachinensisoccursinhanginggardens andalcovesincanyons.Cliffsandcanyonsthatserveashabitatforthespeciesalsopresentbarriers tomovement. B2b)Distributionrelativetoanthropogenicbarriers.Neutral.B3)Impactoflandusechanges resultingfromhumanresponsestoclimatechange.Neutral. 402 Colorado Natural Heritage Program © 2015 C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Cliffand canyonspecies,suchasE.kachinensis,wererated‘Increase’basedontheirrestrictiontocool,moist pocketsincanyonsthatmaybecomewarmeranddrierduetoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.E.kachinensisreliesonalocalizedmoisture regimefromseeps.ClimatemodelsprojecthottertemperaturesforColorado,withtrendstoward moreseveresoil‐moisturedroughtconditionsinColorado(Lukasetal.2014).Tolerancelevelsfor E.kachinensisareunknown,butincreasedtemperaturesmayleadtosoildryingandalossof suitablehabitatforthisrareplantspecies. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.E. kachinensisoccursonwet,salinesoilsinalcovesandhanginggardensoncanyonwalls. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Climate Change Vulnerability Assessment for Colorado BLM 403 Literature Cited Ackerfield,J.2012.TheFloraofColorado.ColoradoStateUniversityHerbarium.433pp. Allphin,L.1991.SurveyofGrandGulchPrimitiveAreaforErigeronkachinensis. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Culver,D.R.andJ.M.Lemly.2013.FieldGuidetoColorado’sWetlandPlants:Identification,EcologyandConservation. ColoradoNaturalHeritageProgram,WarnerCollegeofNaturalResources,ColoradoStateUniversity,FortCollins, Colorado. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. 404 Colorado Natural Heritage Program © 2015 Eriogonum brandegeei Brandegeewildbuckwheat G1G2/S1S2 Family:Polygonaceae Photo: Susan Spackman Panjabi Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstodispersal;2)lackof rangeofvariabilityinprecipitationinthepast50years;3)potentialdecreaseinsoilmoisture availabilitywithincreasedtemperatures;4)restrictiontospecificgeologicfeaturesandsoiltypes. Distribution:EndemictoColorado;FremontandChaffeecounties.Sixofthenineverified occurrencesarelocatedwithina5by15mileareaalongtheArkansasRiverinChaffeeCounty.The otherthreeareabout50milesawayina2by3mileareaatGardenPark,northofCanonCityin FremontCounty(Anderson2006).QuestionablereportsofE.brandegeeiinotherareasare consideredtobemislabeled(Anderson2006).Estimatedrangeis6,828squarekilometers(2,636 squaremiles),calculatedinGISbydrawingaminimumconvexpolygonaroundtheknown occurrences(calculatedbytheColoradoNaturalHeritageProgramin2008).Habitat:Occurrences ofEriogonumbrandegeeiarelimitedmostlytooutcropsoftheDryUnionFormation(inChaffee County)andlowermembersoftheMorrisonFormation(inFremontCounty),ortoQuaternary stratathatarederivedfromtheseformations(O'Kane1988;Spackmanetal.1997;Anderson 2006).Theunifyingfeatureofalltheknownoccurrencesisthepresenceofasignificantportionof bentoniteclayinthesoil(Anderson2006).Eriogonumbrandegeeiismostcommonlyfoundon active,verysteepslopes,andlessfrequentlyonflatsites(Anderson2006).Ingeneral,thisspecies isfoundonbarrenoutcropsofwhitetograyishsoilswithinopensagebrushandpinyon‐juniper communities.Elevation:5,715‐8,648feet. EcologicalSystem:Barrens,Sagebrush Climate Change Vulnerability Assessment for Colorado BLM 405 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.HighmountainsandtheArkansasRiver arelocatedbetweenpopulationsofE.brandegeei,andthesemaypresentbarrierstodispersal. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. Energydevelopmentisunlikelytooccuronthesteepslopesoccupiedbythisspecies. C1)Dispersalandmovements.SomewhatIncrease/Neutral.Eriogonumspecieshavepotentialfor effectivedispersalbywind,water,andanimals(Anderson2006). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,E.brandegeeihasexperiencedsmall(4‐10inches/100‐254mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.E. brandegeeioccursinasemi‐aridclimatewithanaverageof12.77inchesofprecipitationperyearin nearbyCanonCity,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlack ofmoistureareunknownforthisspecies,ahotterclimatecombinedwithhigher evapotranspirationmayresultinstressfulconditionsforE.brandegeei. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.E.brandegeeioccurs onoutcropsoftheDryUnionFormationandtheMorrisonFormation,aswellasQuaternarystrata derivedfromtheseformations;soilsthatsupporttheseoccurrencescontainbentoniteclay(O'Kane 1988;Spackmanetal.1997;Anderson2006). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. 406 Colorado Natural Heritage Program © 2015 C4c)PollinatorVersatility.Neutral.SpeciesofEriogonumaretypicallypollinatedbygeneralist pollinators(Revealpers.comm.inAnderson2006;Tepedino2002). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Anderson,D.G.2006.EriogonumbrandegeeiRydberg(Brandegee’sbuckwheat):atechnicalconservationassessment. [Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5206849.pdf ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. O’Kane,S.L.1988.Colorado’srareflora.GreatBasinNaturalist48:434‐484. Reveal,J.L.2002.PersonalcommunicationwithexpertonEriogonumregardingE.coloradense. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide. PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural HeritageProgram. Tepedino,V.2002.PollinationBiologyResearchinRelationshiptoRarePlants.PresentationtotheColoradoNativePlant Society’sAnnualMeetingonSeptember21,2002. WesternRegionalClimateCenter.2015.AverageannualprecipitationforCanonCity,Colorado. http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1948to2005. Climate Change Vulnerability Assessment for Colorado BLM 407 Eriogonum clavellatum CombWashbuckwheat G2/S1 Family:Polygonaceae Photo: Courtsey of the Colorado Natural Areas Program Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) potentialforwindandsolarenergydevelopmentinE.clavellatumhabitat;3)likelihoodofshort seeddispersaldistances;4)potentialdecreaseinsoilmoistureduetoprojectedhigher temperatures;5)lackofvariabilityinannualprecipitationinlast50years;6)potentialincreasein firefrequencyinE.clavellatumoccupiedhabitat. Distribution:KnownfromMontezumaCountyinColorado.EstimatedrangeinColoradois117 squarekilometers(45squaremiles),calculatedinGISbydrawingaminimumconvexpolygon aroundtheknownoccurrences(calculatedbytheColoradoNaturalHeritageProgramin2008). Habitat:Thisspeciesisfoundinfinetexturedsoils,sandysilttoclaysilt.Dominantplant communitiesareshadscaleandblackbrushassociations.OtherassociatedspeciesincludeAtriplex confertifoliaandColeogyneramosissima(Welsh1978).Elevation:4,813‐6,033feet. EcologicalSystem:DesertShrub,SaltbrushFansandFlats CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Neutral. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Irrigatedcropland maycreatebarrierstodispersal. 408 Colorado Natural Heritage Program © 2015 B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Therelativelyflat,semiaridlandsinSWColoradohavepotentialforsolarandwindenergy development. C1)Dispersalandmovements.Increase.Noinformationisavailableonseeddispersaldistances, butitislikelythatE.clavellatumseedsfallclosetoparentplants. C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies occursindry,uplandareasinSWColoradoandisnotrestrictedtocoolorcoldclimates. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Climatemodelsprojecthotter temperaturesforColorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsin Colorado(Lukasetal.2014).Warmertemperatureswillresultinhigherevapotranspirationrates forplants.E.clavellatumoccursinasemi‐aridclimatewithanaverageof12.95inchesof precipitationperyearinnearbyCortez,CO(WesternRegionalClimateCenter2015).Although tolerancelimitsforlackofmoistureareunknownforthisspecies,ahotterclimatecombinedwith higherevapotranspirationmayresultinstressfulconditionsforE.clavellatum. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. SomewhatIncrease.Shrublandsmayexperiencemorefrequentwildfiresiftemperaturesincrease asprojected. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. Climate Change Vulnerability Assessment for Colorado BLM 409 C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Welsh,S.L.1978.StatusReport:Eriogonumclavellatum.Unpublishedmanuscript. WesternRegionalClimateCenter.2015.AverageannualprecipitationforCortez,Colorado.http://www.wrcc.dri.edu/cgi‐ bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1911to2015. 410 Colorado Natural Heritage Program © 2015 Eriogonum coloradense Coloradowildbuckwheat G2/S2 Family:Polygonaceae Photo: Delia Malone Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) likelihoodofshortseeddispersaldistances;3)potentiallossofsoilmoistureduetoprojected climatewarming. Distribution:EndemictoColorado;knownfromChaffee,Gunnison,Park,Pitkin,andSaguache counties.Estimatedrangeis9,318squarekilometers(3,598squaremiles),calculatedinGISby drawingaminimumconvexpolygonaroundtheknownoccurrences(calculatedbytheColorado NaturalHeritageProgramin2008).Habitat:Eriogonumcoloradenseisunusualinthatithasan extremelybroadecologicalrange.Ithasbeendocumentedoneverysoiltexture,slope,andaspect. Ithasbeenfoundonsedimentary,granitic,andvolcanicsubstrates,withArtemisiaspecies (sagebrush)andBoutelouagracilis(bluegrama)andalsowithalpinecushionplants.Itisfoundona varietyofgeomorphiclandforms,usuallyontalus,fellfields,rockshoots,andridges,butalsoon roadsides(Anderson2004).Reveal(personalcommunication2002)describedthehabitatasrocky talusonthemarginsofmeadows,grasslandcommunities,highelevationsagebrush,sometimes withmontaneorsubalpineconifers,andonsandytogravellyflatsandslopes.Elevation:8,714‐ 14,259feet. EcologicalSystem:Foothill/MountainGrassland,ShrubTundra,MeadowTundra CCVI Scoring B1)Exposuretosealevelrise.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 411 B2a)Distributionrelativetonaturalbarriers.Increase.Knownoccurrencesarefromabroad elevationrange:8,714to14,259ft.Highmountainsandrivervalleysmayactasnaturalbarriersto dispersal. B2b)Distributionrelativetoanthropogenicbarriers.Neutral. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. C1)Dispersalandmovements.SomewhatIncrease/Neutral.Wind,rain,streams,andanimals mayallactasdispersalagentsforEriogonumseeds(Stokes1936). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.This speciesoccursinsubalpineandalpinehabitatsthatarepredictedtowarmundermostclimate changescenarios. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcells,thespecieshasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation variationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants,andthis mayhavenegativeconsequencesforE.coloradense,althoughtolerancethresholdsareunknown. Underclimatemodelingscenariosthatpredictfastersnowmeltandincreasedsummer temperatures,loweramountsofsoilmoisturewouldbeavailableforE.coloradense. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.SomewhatIncrease.Thisspecies occursinalpinehabitatsthatmaybecoveredinsnowforextendedperiodsoftime. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Occursatawide rangeofelevations,andonseveraldifferentsoilstypes(seehabitatdescriptionabove). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.SpeciesofEriogonumaretypicallypollinatedbygeneralist pollinators(Revealpers.comm.inAnderson2006;Tepedino2002). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. 412 Colorado Natural Heritage Program © 2015 C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Anderson,D.G.2004.EriogonumcoloradenseSmall(Coloradobuckwheat):atechnicalconservationassessment.[Online]. USDAForestService,RockyMountainRegion.Available:http://www.fs.fed.us/r2/ projects/scp/assessments/eriogonumcoloradense.pdf[Feb27,2015]. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport WaterResourcesManagementandAdaptation,SecondEdition.Availableat: http://wwa.colorado.edu/climate/co2014report/.Accessed:2014. Reveal,J.L.2002.PersonalcommunicationwithexpertonEriogonumregardingE.coloradense. Stokes,S.G.1936.TheGenusEriogonum‐aPreliminaryStudyBasedonGeographicDistribution.J.H.NeblettPressroom, SanFrancisco,CA. Tepedino,V.2002.PollinationBiologyResearchinRelationshiptoRarePlants.PresentationtotheColoradoNativePlant Society’sAnnualMeetingonSeptember21,2002. Climate Change Vulnerability Assessment for Colorado BLM 413 Eriogonum contortum Grandbuckwheat G3/S2 Family:Polygonaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:predictedincreaseintemperaturesanddecreasing precipitationduringflowering;naturalbarriersintheformofhighelevationmountainsand escarpmentsthatpresentunsuitableenvironments,andanthropogenicbarriersfromoilandgas development;possiblewindpowerdevelopmentonpotentialfuturerange;limitedseeddispersal distance;alterationtothenaturalfiredisturbanceregime;andlimitationtoasomewhatuncommon geologicfeature.Climatemodelsprojectannualnetdryingacrosstherangeofthisspeciesin Colorado(NatureServe2012)whichmayresultinmoreseveresoil‐moisturedroughtinColorado (Lukasetal.2014). Distribution:EriogonumcontortumhasbeenreportedfromColoradoinGarfieldandMesa Counties,andinUtahfromGrandandEmeryCounties(Kartesz2014).Plantdistributionis localizedonMancosShaleinwesternMesaCounty,ColoradoandintheGrandValleyofeastern GrandCounty,UtahwithdisjunctpopulationsoccurringjustoutsideGrandValleyinGarfield County,Colorado,andinEmeryCounty,Utah(FNA2013).Habitat:Eriogonumcontortumoccupies cold‐desertshrublandecosystemscommonlyoccurringwithplantcommunitiessuchasbigsage shrublands,semi‐desertgrasslands,andshadscaleandothersaltbrushcommunities(Welshetal. 1993,SEINet2014).Elevation:4500‐5100feet. EcologicalSystem:DesertShrublands CCVI Scoring B1)Exposuretosealevelrise.Neutral. 414 Colorado Natural Heritage Program © 2015 B2a)Distributionrelativetonaturalbarriers.Greatlyincrease.Highescarpmentsoftheeast‐ westtrendingRoanPlateauandBookcliffs,whichroutinelyreach7,000to9,000feetinelevation (USGS2014)presentenvironmentalconditionsandvegetationcommunitiesthatarebeyondthe naturalrangeofvariationofthislowelevationplantspeciesandarethusbarrierstorangeshift. B2b)Distributionrelativetoanthropogenicbarriers.Increase.Rangeshiftisimpairedby habitatalterationrelatedtooilandgasdevelopmentwhichoccurs25to50milesnorthof Eriogonumcontortum’scurrentdistributionwhichisalsounderlainbyshaleplaysandbasins (FracFocusWells2013). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. SomewhatIncrease.Potentialforwindenergydevelopmentishighonthesouthernborderof Wyoming(NRDC2011)andmaypossiblyoccurwithinthefuturerangeofEriogonumcontortum. Associatedinfrastructuredevelopmentandhabitatalterationareincompatiblewithnaturalhistory requirementsofE.contortum.Impactstoflorafromwindpowerdevelopment‐relatedhabitatand ecosystemmodificationincludebutarenotlimitedtodisplacementfromanarea,habitat destructionandreducedreproduction(IPCC2011). C1)Dispersalandmovements.Somewhatincrease.Seeddispersalstrategieslikelydependon wind,animalsorwater(TaligaandGlenne2011)andthuslimitEriogonumcontortumabilityto shiftrangewithclimatechange.Seeddispersalbywindistypicallylimitedtolessthan15m, dispersalbysmallmammalsistypicallylessthan30m,byinsectslessthan15m,anddispersalby watersuchaswouldoccurwithheavyrain,ishighlyunpredictableandundocumented(Vittozand Engler2007). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Somewhatdecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaveragetemperaturevariation(>77oF)withinthelast50years (NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. Eriogonumcontortumisnotrestrictedtocoldorcoolenvironments.However,allEriogonum speciesstudiedthusfarhaveseedsthatrequireacoldperiodtobreakdormancy(vernalization) (NatureServe2014).Temperaturesduringwinterarepredictedtoincreaseanaverageof4.5oF acrossthisspeciesrangewhichmayimpactvernalizationandthusreproductivesuccess (NatureServe2012). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross therangeofthisspecies,E.contortumhasexperiencedsmallprecipitationvariation(4.8inches) overthelast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.Precipitationispredictedtodecreaseduringthe majorityoftheperiodofflowering(May‐August(Spackmanetal.1997)(NatureServe2012). Floweringmaybeconsideredoneofthemostvulnerabletimestoenvironmentalstressorsand Climate Change Vulnerability Assessment for Colorado BLM 415 declinesinprecipitationduringthisperiodmayreduceseedlingrecruitmentandpopulation abundance. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Firefrequenciesinecosystemsoccupiedbythisspeciesareexpectedtoincreaseinthe future,followingtrendsthatalreadyshowincreasedfirefrequencies,areaburnedandfireseverity (Stephens2005,Westerlingetal.2006,Littelletal.2009,USFSnodate).Climatechangemodels alsopredictincreasesinfireareaandseveritythroughouttheregionoccupiedbythisspecies (Krawchuketal.2009,Westerlingetal.2011).Further,invasionofcheatgrass(Bromustectorum) intothesesystemspromotesfirespreadthatcontributestoalteredfiredisturbanceregimes (Chambersetal.2013). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoncoolorcoldhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Current distributionofEriogonumcontortumislimitedtoMancosshale(CNHP2014).Withclimatechange, suitableclimateforthisspeciesmayshiftawayfromthisgeologicfeatureresultinginlossof habitat.DuetothelimitedrangeoftheMancosshaleformation(Tweto1979),successfulmigration inresponsetoclimatechangetohabitatwithsuitablegeologyisuncertain. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Eriogonumcontortumisnot dependentonotherspeciesforhabitatgeneration. C4c)PollinatorVersatility.Neutral.Eriogonumcontortum’spollinationstrategymaybesimilarto therelatedspecies,E.pelinophilumwhichisvisitedbymorethan50speciespollinatorsinaseason (TaligaandGlenne2011).However,Tepedino(2011)notedthatofallEriogonumspeciesstudied todate,nonehasasmanypollinatorsasE.pelinophilum. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Eriogonumcontortum seeds,similartotheseedsofE.pelinophilum,arelikelydispersedbyseveralmechanismsincluding wind,water,animalsandgravity(TaligaandGlenne2011)andthusnotdependentonotherspecies fordispersal. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Chambers,J.C.,B.A.Bradley,C.S.Brown,C.D’Antonio,M.J.Germino,J.B.Grace,S.P.Hardegree,R.F.MillerandD.A.Pyke. 2013.ResiliencetoStressandDisturbance,andResistancetoBromustectorumInvasioninColdDesertShrublandsof 416 Colorado Natural Heritage Program © 2015 WesternNorthAmerica.Ecosystems,DOI:10.1007/s10021‐013‐9725‐5.Availableat: http://www.sagestep.org/pubs/pubs/092Chambers.pdf ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. FloraofNorthAmericaEditorialCommittee,ed.(FNA).1993+.FloraofNorthAmericaNorthofMexico.OxfordUniv. Press,NewYork,Oxford. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ IPCC,2011:IPCCSpecialReportonRenewableEnergySourcesandClimateChangeMitigation.PreparedbyWorking GroupIIIoftheIntergovernmentalPanelonClimateChange[O.Edenhofer,R.Pichs‐Madruga,Y.Sokona,K.Seyboth,P. Matschoss,S.Kadner,T.Zwickel,P.Eickemeier,G.Hansen,S.Schlömer,C.vonStechow(eds)].CambridgeUniversity Press,Cambridge,UnitedKingdomandNewYork,NY,USA,1075pp. Kartesz,J.T.,TheBiotaofNorthAmericaProgram(BONAP).2014.TaxonomicDataCenter.(http://www.bonap.net/tdc). ChapelHill,N.C.[mapsgeneratedfromKartesz,J.T.2014.FloristicSynthesisofNorthAmerica,Version1.0.BiotaofNorth AmericaProgram(BONAP). KrawchukM.A.,M.A.Moritz,M‐A.Parisien,J.VanDorn,andK.Hayhoe.2009.GlobalPyrogeography:theCurrentand FutureDistributionofWildfire.PLoSONE4(4):e5102.doi:10.1371/journal.pone.0005102.Availableat: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002 Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications,19:1003‐1021. Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupportWater ResourcesManagementandAdaptation,SecondEdition.Available at:http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=191994&searchid=e3c463e8‐569c‐4359‐8ddd‐ ed50e755d3b7&dbid=0 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). SouthwestEnvironmentalInformationNetwork(SEINet).2014.Cryptanthacaespitosa.Availableat: http://swbiodiversity.org/.Accessed2014. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado NaturalHeritageProgram,FortCollins. Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. Taliga,C.E.,andG.Glenne.2011.PlantGuideforclay‐lovingwildbuckwheat(Eriogonumpelinophilum).USDA‐Natural ResourcesConservationService,ColoradoStateOffice.Denver,CO80225‐0426.Availableat: http://plants.usda.gov/plantguide/pdf/pg_erpe10.pdf.Accessed2014. Climate Change Vulnerability Assessment for Colorado BLM 417 Tepedino,V.J.,W.R.Bowlin,andT.L.Griswold.2011.DiversityandPollinationValueofInsectsVisitingtheFlowersofa RareBuckwheat(Eriogonumpelinophilum:Polygonaceae)inDisturbedand“Natural”Areas.JournalofPollination Ecology,4(8),2011,pp57‐67. Tweto,O.1979.GeologicMapofColorado.U.S.GeologicalSurvey,DenverColorado. U.S.D.A.ForestService(USFS).NoDate.Pinyon‐JuniperNaturalRangeofVariation.Availableat: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5434337.pdf.Accessed2014. U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).Nodate.UnderstandingtheProblemofClimate ChangeandWesternEcosystems:ConsiderationsandToolsforEcoregionalAssessment.Availableat: http://www.blm.gov/pgdata/etc/medialib/blm/wy/programs/science.Par.23352.File.dat/ClimateChange‐ EcoregionalAssessment.pdf U.S.FishandWildlifeService(USFWS).2009.Clay‐lovingWild‐buckwheat5‐yearReview.U.S.FishandWildlifeService, Denver,Colorado. U.S.GeologicalSurvey(USGS).2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html.Accessed2014. VittozP.andR.Engler.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv. 117:109–124. Welsh,S.L.,N.D.Atwood,L.C.HigginsandS.Goodrich.1987.UtahFlora,GreatBasinNaturalistMemoirs,No.9.Brigham YoungUniversity,Provo,Utah. Welsh,S.L.,N.D.Atwood,S.Goodrich,andL.C.Higgins.1993.AUtahflora,Secondedition,revised.JonesEndowment Fund,MonteL.BeanLifeScienceMuseum,BrighamYoungUniversity,Provo,UT Welsh,S.L.,N.D.Atwood,S.Goodrich,andL.C.Higgins.1993.AUtahflora,Secondedition,revised.JonesEndowment Fund,MonteL.BeanLifeScienceMuseum,BrighamYoungUniversity,Provo,UT Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463. 418 Colorado Natural Heritage Program © 2015 Eriogonum ephedroides Ephedrabuckwheat G3/S1 Family:Polygonaceae Photo: Janis Huggins Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:predictedincreasedtemperaturesanddecreased precipitation;naturalbarriersintheformofhighelevationmountainsthatpresentunsuitable environments,andanthropogenicbarriersresultingfromoilandgasdevelopmentandlivestock grazing;possiblewindpowerdevelopmentonpotentialfuturerange;limitedseeddispersal distances;alterationofthenaturalfiredisturbanceregime;andlimitationtotherelatively uncommongeologyoftheMahoganyzoneoftheGreenRivershaleformation.Climatemodels projectannualnetdryingacrosstheentirespecies’range(NatureServe2012)whichmayresultin soildrought. Distribution:EriogonumephedroideshasbeenreportedfromColoradoinRioBlancoandMoffat counties(CNHP2014)andfromadjacentUintahCountyinUtah(NRCS2012)wherepopulations occupythesouthandwestslopesoftheUintabasin(USGS2014).Habitat:Eriogonumephedroides isfoundinopencanopypinyon‐juniperwoodlandsandcolddesertshrublandsthatinclude sagebrushandmixeddesertshrublands.ItoccursonwhiteshaleoftheGreenRiverShale Formation(CNHP2014,Welshetal.1987).Elevation:5300‐6100feet. EcologicalSystem:Pinyon‐JuniperWoodlands,SagebrushShrublands,Barrens CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Naturalbarriersmaylimittheabilityof Eriogonumephedroidestoshiftrangeinresponsetoclimatechange.DistributionofE.ephedroides Climate Change Vulnerability Assessment for Colorado BLM 419 inColoradoisboundedbytheColoradoRockyMountainstotheeastandtheWasatchMountainsto thewest(USGS2014). B2b)Distributionrelativetoanthropogenicbarriers.Increase.Anthropogenicdevelopment‐ relatedhabitatalterationfromenergyextraction(FracFocusWells2013)andlivestockgrazing (BLM2014)hascreatedbarrierswhichinhibitE.ephedroidespopulationsfromshiftingrangein responsetoclimatechange. B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.ExistingandplannedwindpowerdevelopmentontheUtah‐Wyomingborder (NRDC2011)mayimpactthepotentialfuturerangeofEriogonumephedroides.Eriogonum ephedroidesishighlyvulnerabletohabitatalterationasindicatedbya“C”(coefficientof conservatism)valueof“8”(Rocchio2007).Impactstoflorafromwindpowerdevelopment‐related habitatandecosystemmodificationincludebutarenotlimitedtodisplacement,habitatdestruction andreducedreproduction(IPCC2011,Risser2007). C1)Dispersalandmovements.Somewhatincrease.Seeddispersalstrategieslikelydependon wind,animalsorwater(TaligaandGlenne2011)andthuslimitEriogonumephedroidesabilityto shiftrangewithclimatechange.Seeddispersalbywindistypicallylimitedtolessthan15m, dispersalbysmallmammalsistypicallylessthan30m,byinsectslessthan15m,anddispersalby watersuchaswouldoccurwithheavyrain,ishighlyunpredictableandundocumented(Vittozand Engler2007). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanannualtemperaturevariationofoccupiedcellsEriogonumephedroideshasexperienced averagetemperaturevariation(57.1‐77oF)inthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche:Somewhatincrease. Eriogonumephedroidesisnotrestrictedtocoolorcoldclimatesandshowsapreferencefor environmentsatthewarmerendofthespectrum.However,allEriogonumspeciesstudiedthusfar haveseedsthatrequireacoldperiodtobreakdormancy(vernalization)(NatureServe2014). Temperaturesduringwinterarepredictedtoincreaseanaverageof4.5oFacrossthisspeciesrange whichmayimpactvernalizationandthusreproductivesuccess(NatureServe2012). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcells,Eriogonumephedroideshasexperiencedsmallprecipitationvariation(9.8inches)in thepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincrease.Predictedprecipitationdecreasesoverthe entiretyofthisspeciesrangethroughoutthegrowthandfloweringseason(NatureServe2012)may resultindecreasedfloweringandseedlingrecruitment(USFWS2009)therebynegatively impactingreproductivesuccessandlong‐termpopulationviability. 420 Colorado Natural Heritage Program © 2015 C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Currenttrendsandmodeledfuturechangesinfireprobabilityshowincreasedprobability offirethroughouttheregionoccupiedbythisspecies(CleetusandMulik2014,Krawchuketal. 2009,Westerlingetal.2006,Chambersetal.2013).Multiplestudieshavefoundthat,inresponseto predictedclimatechangescenarios,sagebrushandpinyon‐juniperecosystems,suchasthose occupiedbythisspecies,willdeclineandbecomemorefragmentedoverthenextcentury,following currenttrendsthatalreadyshowincreasedfirefrequencies,areaburnedandfireseverity (Stephens2005,Westerlingetal.2006,Littelletal.2009,USFSnodate).Further,invasionof cheatgrass(Bromustectorum)intothesesystemspromotesfirespreadthatcontributestoaltered firedisturbanceregimes(Chambersetal.2013). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Eriogonum ephedroidesisanedaphicendemicthatislimitedtoshaleoftheGreenRiverformationand specificallytotheshalelayersjustabovetheoilrichshalelayersoftheMahoganyZone (NatureServe2014,SchultzandMutz1979).Arealextentofthemahoganyzoneislimited(Tweto 1979)whichlimitspotentialforrangeshift. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Eriogonumephedroidesisnot knowntobedependentonotherspeciesforhabitatgeneration. C4c)PollinatorVersatility.Unknown.Eriogonumephedroides’pollinationstrategymaybesimilar totherelatedspecies,E.pelinophilumwhichisvisitedbymorethan50speciesofpollinatorsina season(TaligaandGlenne2011).However,Tepedino(2011)notedthatofallEriogonumspecies studiedtodate,nonehasasmanypollinatorsasE.pelinophilum. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Eriogonumephedroides seeds,similartotheseedsofE.pelinophilum,arelikelydispersedbyseveralmechanismsincluding wind,water,animalsandgravity(TaligaandGlenne2011). C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Chambers,J.C.,B.A.Bradley,C.S.Brown,C.D’Antonio,M.J.Germino,J.B.Grace,S.P.Hardegree,R.F.MillerandD.A.Pyke. 2013.ResiliencetoStressandDisturbance,andResistancetoBromustectorumInvasioninColdDesertShrublandsof WesternNorthAmerica.Ecosystems,DOI:10.1007/s10021‐013‐9725‐5.Availableat: http://www.sagestep.org/pubs/pubs/092Chambers.pdf Climate Change Vulnerability Assessment for Colorado BLM 421 Cleetus,RandK.Mulik.2014.PlayingWithFire,HowClimateChangeandDevelopmentPatternsAreContributingtothe SoaringCostsofWesternWildfiresUnionofConcernedScientists.Availableat: http://www.ucsusa.org/sites/default/files/legacy/assets/documents/global_warming/playing‐with‐fire‐report.pdf. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ IPCC,2011:IPCCSpecialReportonRenewableEnergySourcesandClimateChangeMitigation.PreparedbyWorking GroupIIIoftheIntergovernmentalPanelonClimateChange[O.Edenhofer,R.Pichs‐Madruga,Y.Sokona,K.Seyboth,P. Matschoss,S.Kadner,T.Zwickel,P.Eickemeier,G.Hansen,S.Schlömer,C.vonStechow(eds)].CambridgeUniversity Press,Cambridge,UnitedKingdomandNewYork,NY,USA,1075pp. KrawchukM.A,M.A.Moritz,M‐A.Parisien,J.VanDorn,K.Hayhoe.2009.GlobalPyrogeography:theCurrentandFuture DistributionofWildfire.PLoSONE4(4):e5102doi:10.1371/journal.pone.0005102.Availableat: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002 Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Risser,R.(Chair).2007.EnvironmentalImpactsofWind‐EnergyProjects.CommitteeonEnvironmentalImpactsofWind‐ EnergyProjects.NationalResearchCounciloftheNationalAcademies.TheNationalAcademiesPress,Washington,D.C. Availableat.www.nap.edu Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage Program,ColoradoStateUniversity,FortCollins,CO. Schultz,L.M.andK.M.Mutz.1979.ThreatenedandEndangeredPlantsoftheWillowCreekDrainage,UintaBasin,Utah,Vol I.Submittedto:BureauofLandManagement,VernalUtah,ContractNo.:YA‐512‐CT9‐105.ByMeiijiResource Consultants. Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado NaturalHeritageProgram,FortCollins. Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. Taliga,C.E.,andG.Glenne.2011.PlantGuideforclay‐lovingwildbuckwheat(Eriogonumpelinophilum).USDA‐Natural ResourcesConservationService,ColoradoStateOffice.Denver,CO80225‐0426.Availableat: http://plants.usda.gov/plantguide/pdf/pg_erpe10.pdf.Accessed2014. 422 Colorado Natural Heritage Program © 2015 Tepedino,V.J.,W.R.Bowlin,andT.L.Griswold.2011.DiversityandPollinationValueofInsectsVisitingtheFlowersofa RareBuckwheat(Eriogonumpelinophilum:Polygonaceae)inDisturbedand“Natural”Areas.JournalofPollination Ecology,4(8),2011,pp57‐67. Tweto,O.1979.GeologicMapofColorado.U.S.GeologicSurvey,Denver,CO. U.S.DepartmentofAgriculture,U.S.ForestService(USFS).NoDate.Pinyon‐JuniperNaturalRangeofVariation.Available at:http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5434337.pdf.Accessed2014. U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Geocommunicator.Availableat: http://www.geocommunicator.gov/GeoComm/.Accessed:2014. U.S.FishandWildlifeService(USFWS).2009.Clay‐lovingWild‐buckwheat5‐yearReview.U.S.FishandWildlifeService, Denver,Colorado. U.S.GeologicalSurvey(USGS).2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html.Accessed2014. VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv. 117:109–124. Welsh,S.L.,andK.H.Thorne.1979.IllustratedmanualofproposedendangeredandthreatenedplantsofUtah.Brigham YoungUniv.,Provo,UT.318pp. Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463. Climate Change Vulnerability Assessment for Colorado BLM 423 Eriogonum pelinophilum Clay‐lovingwildbuckwheat G2/S2 ListedEndangered Family:Polygonaceae Photo: Lori Brummer Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)naturalandanthropogenic barrierstomovement;2)likelihoodofshortseeddispersaldistances;3)lackofvariationinannual precipitationinoccupiedhabitatoverlast50years;4)potentialincreaseinclimateinfluenced disturbanceswithinitshabitat,5)potentialforwindandsolarenergydevelopmentwithinits range,and;5)preferenceforMancosshalebadlands. Distribution:EndemictoColorado,knownfromDeltaandMontrosecounties,Colorado.Estimated rangeis420squarekilometers,calculatedinGISbydrawingaminimumconvexpolygonaround theknownoccurrences.Habitat:EriogonumpelinophilumoccursonMancosShalebadlands (Spinks1991),insaltdesertshrubcommunitywithAtriplexconfertifoliaandAtriplexcorrugata (Reveal1973).Elevation:5220‐6378feet. EcologicalSystem:Desertshrublands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Manyareassurroundingoccupied EriogonumpelinophilumhabitatdonotcontainMancosshalebadlandsthatarenecessaryto supportthisspecies. 424 Colorado Natural Heritage Program © 2015 B2b)Distributionrelativetoanthropogenicbarriers.Increase.Agricultural,residentialand commercialdevelopmentintheMontroseareamayactasbarrierstoE.pelinophilumrangeshift (CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. BarrenandshrublandhabitatsareratedIncreaseduetothepotentialforwind,solar,and bioenergydevelopment(Grunauetal.2011). C1)Dispersalandmovements.Increase.Seedsmostlikelyfallclosetotheparentplant(Grunauet al.2011). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Somewhatdecrease. Consideringthemeanannualtemperaturevariationofoccupiedcells,Eriogonumpelinophilumhas experiencedgreaterthanaveragetemperaturevariation(>77oF)inthepast50years(NatureServe 2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Eriogonum pelinophilumdistributionisnotlikelytobesignificantlyaffectedbyclimatechangeinduced temperaturechangesintheassessmentarea. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross occupiedcellsinColorado,E.pelinophilumhasexperiencedsmall(4‐10inches)precipitation variationinthepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Warmertemperaturesduetoclimate changemayincreaseevapotranspirationratesanddecreaseavailablesoilmoistureforE. pelinophilum. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Somewhatincrease.Speciesthatinhabitshrublandsandpinyon‐juniperaremorelikelytoburn underclimatechangescenariosduetoincreasedtemperaturesandincreaseinweedyunderstory (especiallycheatgrass)(Grunauetal.2011). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Prefers MancosShalederivedsoilswhicharecommoninthespeciesrange(CNHP2014). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Neutral.Eriogonumpelinophilumhasahighdiversityofpollinators andageneralizedflowermorphology(Tepedinoetal.2011),andisreportedtobevisitedbymore than50speciesofpollinatorsinaseason(TaligaandGlenne2011). Climate Change Vulnerability Assessment for Colorado BLM 425 C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Eriogonumpelinophilumis notdependentonotherspeciesforpropaguledispersal. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Grunau,L.,JillHandwerk,andSusanSpackman‐Panjabi,eds.2011.ColoradoWildlifeActionPlan:proposedrareplant addendum.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. Reveal,JamesL.1973.AnewsubfruticoseEriogonum(Polygonaceae)fromwesternColorado.GreatBasinNaturalist. 33:120‐2. Spinks,J.1991.Claylovingwildbuckwheatrecoveryplan.UnpublishedreportpreparedfortheUSFishandWildlife Service. Taliga,C.E.,andG.Glenne.2011.PlantGuideforclay‐lovingwildbuckwheat(Eriogonumpelinophilum).USDA‐Natural ResourcesConservationService,ColoradoStateOffice.Denver,CO80225‐0426.Availableat: http://plants.usda.gov/plantguide/pdf/pg_erpe10.pdf.Accessed2014. Tepedino,V.J.,W.R.BowlinandT.L.Griswold.2011.Diversityandpollinationvalueofinsectsvisitingtheflowersofarare buckwheat(Eriogonumpelinophilum:Polygonaceae)indisturbedand“natural”areas.JournalofPollinationEcology,4(8), 2011,pp57‐67. 426 Colorado Natural Heritage Program © 2015 Eutrema penlandii Penlandalpinefenmustard G1G2/S1S2 ListedThreatened Family:Brassicaceae Photo: Jill Handwerk Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonEutremapenlandii’spreferenceforwetsoilswithyear roundmoisture,dependenceonmoisturefromiceandsnowmelt,itspredictedsensitivityto changesinprecipitation,thepresenceofnaturalbarrierstorangeshift,andlimiteddispersal ability. Distribution:ColoradoendemicknownfromLake,ParkandSummitcounties.Limitedtoa25mile stretchoftheContinentalDivide,above12,000feet.Habitat:Alpinetundra,downslopefrom snowfields,whichprovidemeltwaterallsummer.Theplantsareusuallyfoundonsouth‐andeast‐ facingflattogentlyslopingbencheswithsteepwallsthatprovidesomeprotectionfromsnow‐ meltingwinds.Onthesewetbenches,theplantsarefoundinmoss‐coveredpeatfens,bogs,or marshesthatarewetyear‐roundwithaconstantsourceofflowingwater.Mostofthepopulations areonlimestonesubstrates,whichhavecreatedunusuallybasicwetlandsoils,butitisnotcertain thatthespeciesisrestrictedtocalcareoussubstrates.Elevation:11,975‐13,350feet. EcologicalSystem:Wetland CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.Allspeciesfoundonwetlandshabitat arerankedincrease,astheedgeofthesesubstrateswillfunctionasbarriertoplantmovement (Grunauetal.2011). Climate Change Vulnerability Assessment for Colorado BLM 427 B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Withtheexceptionofoldmining operations,therearefewanthropogenicbarrierstoEutremapenlandiirangeshift(CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral. NowindorsolarenergydevelopmentislikelyinEutremapenlandiihabitat. C1)Dispersalandmovements.Increase.Seedsarethoughttofallclosetotheparentplant (Grunauetal.2011). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanannualtemperaturevariationofoccupiedcells,Eutremapenlandiihasexperiencedaverage temperaturevariation(57.1to77oF)inthepast50years(NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Habitatfor speciesoccurringinalpineenvironmentsarelikelytobecomewarmeranddrier(Grunauetal. 2011). C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross occupiedcellsinColorado,Eutremapenlandiihasexperiencedaverage(21‐40inches)precipitation variationinthepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.GreatlyIncrease.Thisspeciesoccursinmoss‐coveredpeatfens, bogs,ormarshesthatarewetyear‐roundwithaconstantsourceofflowingwater.Thesemicro‐ habitatsmaybevulnerabletoclimatechange. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral.Thespeciesisnotknowntobedependentonaspecificdisturbanceregime,nordoesit occurinhabitatlikelytobeexposedtoaltereddisturbanceregimesinawaythatwouldaffectthe rangeorabundanceofthespecies. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Somewhatincrease.Eutrema penlandiiissomewhatdependentoniceorsnowmeltwatertomaintainthewethabitatinwhichit grows. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Mostofthe populationsofEutremapenlandiiareonlimestonesubstrates,whichhavecreatedunusuallybasic wetlandsoils,butitisnotcertainthatthespeciesisrestrictedtocalcareoussubstrates. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Eutremapenlandiiisnot dependentonotherspeciesforpropaguledispersal. 428 Colorado Natural Heritage Program © 2015 C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Grunau,L.,JillHandwerk,andSusanSpackman‐Panjabi,eds.2011.ColoradoWildlifeActionPlan:proposedrareplant addendum.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. Climate Change Vulnerability Assessment for Colorado BLM 429 Gentianella tortuosa CathedralBluffdwarfgentian G3?/S1 Family:Gentianaceae Photo: Rusty Roberts Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedon:restrictiontosomewhatcoolerenvironments;predicted temperatureincreasesandprecipitationdecreases;thepresenceofunsuitablehabitatinlow elevationecosystemswhichactasnaturalbarriers;habitatalterationfromoilandgasdevelopment andlivestockgrazing,thatactasanthropogenicbarrierstorangeshift;limitedseeddispersal distance;possiblewindpowerdevelopmentwhichmayimpactpotentialfuturerange;alterationto thenaturalfiredisturbanceregime;restrictiontogeologythatisfairlyuncommonandlimitedin distribution;andlimitationtoaspecificsuiteofpollinators.Suitablehabitatislikelytobereduced asthisspecies’rangebecomeswarmeranddrierandreproductivesuccessdiminished.Climate modelsprojectannualnetdryingof12to14percent(NatureServe2012)overtheentiretyofthis speciesrange. Distribution:GentianellatortuosahasbeenreportedfromColoradoinRioBlancoCountyaswellas centralandsouthwestUtahandsouthernNevada(NatureServe2014).Habitat:Gentianella tortuosaoccursinsagebrushshrublandsthroughspruce‐firforestsonshaleoutcropsoftheGreen RiverFormation(NatureServe2014,ESCO2009).Elevation:8500to10,800feet. EcologicalSystem:Barrens,SagebrushShrublands CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.ColoradopopulationsofGentianella tortuosaoccurathigherelevationsontheRoanPlateau,wheretheyareimpairedfromrangeshift 430 Colorado Natural Heritage Program © 2015 bytheinterveningWhiteRiverbasin(USGS2014).LowerelevationhabitatsintheWhiteRiver basinrangefrom5,000to5,700feetandarecharacterizedbysaltbushshrublands,shalebadlands, semi‐desertgrasslandsandsagebrushshrublands(CNHP2014)whichpresentsunsuitablehabitat andthusimpairsrangeshiftforthisspecies. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Coloradopopulations areinhibitedfromrangeshiftbyhabitatalterationthathasresultedfromoilandgasdevelopment ontheRoanPlateauandintheRangelyoilfield(FracFocusWells2013)aswellasbylivestock grazingonlandssurroundingtheoccurrencesandnorthoftheoilfields(BLM2014).Gentianella tortuosaishighlyvulnerabletohabitatalterationasindicatedbya“C”(coefficientofconservatism) valueof“8”(Rocchio2007). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.ExistingandplannedwindpowerdevelopmentontheUtah‐Wyomingborder (NRDC2011)mayimpactthepotentialfuturerangeofGentianellatortuosa.Impactstoflorafrom windpowerdevelopment‐relatedhabitatandecosystemmodificationincludebutarenotlimitedto displacementfromanarea,habitatdestructionandreducedreproduction(IPCC2011,Risser 2007). C1)Dispersalandmovements.Somewhatincrease.Likelydispersalstrategiesincludewindand possiblywater,bothwhichprovideonlylimiteddispersalcapacity(GRN2011).Assuggestedby dispersalmechanismsofrelatedspecies,seedsareoftenaidedbyspecialstructuresormorphology thatenhancesdispersalbywind(GRN2011).Seeddispersalbywindistypicallylimitedtolessthan 15m,anddispersalbywater,suchasmightoccurwithheavyrain,ishighlyunpredictableand undocumented(VittozandEngler2007). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanannualtemperaturevariationofoccupiedcellsinColorado,Gentianellatortuosahas experiencedaveragetemperaturevariation(57.1‐77oF)inthepast50years(NatureServe2012). C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease. Gentianellatortuosaissomewhatrestrictedtorelativelycoolenvironmentsthatmaybelosttothis speciesasaresultofclimatechange.Predictedannualtemperatureincreasesof5.0to5.5oF (NatureServe2012)maybebeyondtherangeofnaturalvariability.Hightemperaturesmayhavea generalnegativeeffectonplantgrowthanddevelopmentbyimpactingphysiology,biochemistry andgeneregulationpathways(BitaandGerats2013). C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Greatlyincrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcellsinColorado,Gentianellatortuosahasexperiencedverysmall precipitationvariation(1.7inches)inthepast50years(NatureServe2012). C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Somewhatincrease.Predictedprecipitationdeclinesduring floweringof1‐3percent(NatureServe2012)maynegativelyimpactreproductivesuccessand Climate Change Vulnerability Assessment for Colorado BLM 431 consequentlythisspeciesabundanceanddistribution.Droughtatfloweringiscriticalasitcan increasepollensterilityandduringgrowthperiodimpairsnormalgrowth,disturbswaterrelations, andreduceswateruseefficiencyinplants(Farooqetal.2012). C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.Multiplestudieshavefoundthat,inresponsetopredictedclimatechangescenarios, sagebrushandpinyon‐juniperecosystems,willdeclineandbecomemorefragmentedoverthenext century,followingcurrenttrendswhichalreadydocumentincreasedfirefrequencies,burnedarea andalsoincreasingfireseverity(CleetusandMulik2014,Stephens2005,Westerlingetal.2006, Littelletal.2009,USFSnodate).Further,modeledfuturechangesinfireprobabilityandof vegetationpatternsshowincreasedprobabilityoffirethroughouttheregionoccupiedbythis speciesandthatbothpinyon‐juniperwoodlandsandsagebrushshrublandsmaybereducedinthe futureduetoincreasedfirefrequencies(Krawchuketal.2009,USFSnodate,Westerlingetal. 2006). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease. GentianellatortuosaisendemictoGreenRivershale(CNHP2014)whichisnothighlyuncommon butneitheristhisformationoneofthedominanttypesintheregion(Tweto1979). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Somewhatincrease.Flowermorphologysuggestsconformationtoa specificpollinatorsyndromeandpollinationstrategiesofcloselyrelatedgenera(GRN2011), suggestrelianceonpollinationbybumblebees(genusBombus). C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Assuggestedbyrelated species,Gentianellatortuosaislikelydependentonwindorwaterfordispersal. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Literature Cited Bita,C.E.andT.Gerats.2013.Planttolerancetohightemperatureinachangingenvironment:scientificfundamentalsand productionofheatstress‐tolerantcrops.FrontiersinPlantScience,vol.4:273.U.S.NationalLibraryofMedicine,National 432 Colorado Natural Heritage Program © 2015 InstitutesofHealth.doi:10.3389/fpls.2013.00273.Availableat: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/ Cleetus,RandK.Mulik.2014.PlayingWithFire,HowClimateChangeandDevelopmentPatternsAreContributingtothe SoaringCostsofWesternWildfiresUnionofConcernedScientists.Availableat: http://www.ucsusa.org/sites/default/files/legacy/assets/documents/global_warming/playing‐with‐fire‐report.pdf. ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. ESCOAssociation.2009.BaselineVegetationReport,PeabodySageCreekMine,RouttCounty,Colorado.37pp.Available at:http://drmsweblink.state.co.us/drmsweblink/DocView.aspx?id=911275&page=35&dbid=0.Accessed:2014. FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat: http://www.fractracker.org/map/national/ GentianResearchNetwork.(GRN).2011.MorphologyofGentians.GentianResearchNetworkwebsite,accessed2014. Availableat:http://www.rci.rutgers.edu/~gentian/morph.htm. IPCC,2011:IPCCSpecialReportonRenewableEnergySourcesandClimateChangeMitigation.PreparedbyWorking GroupIIIoftheIntergovernmentalPanelonClimateChange[O.Edenhofer,R.Pichs‐Madruga,Y.Sokona,K.Seyboth,P. Matschoss,S.Kadner,T.Zwickel,P.Eickemeier,G.Hansen,S.Schlömer,C.vonStechow(eds)].CambridgeUniversity Press,Cambridge,UnitedKingdomandNewYork,NY,USA,1075pp. KrawchukM.A,M.A.Moritz,M‐A.Parisien,J.VanDorn,K.Hayhoe.2009.GlobalPyrogeography:theCurrentandFuture DistributionofWildfire.PLoSONE4(4):e5102doi:10.1371/journal.pone.0005102.Availableat: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002 Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021 NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014. NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Risser,R.(Chair).2007.EnvironmentalImpactsofWind‐EnergyProjects.CommitteeonEnvironmentalImpactsofWind‐ EnergyProjects.NationalResearchCounciloftheNationalAcademies.TheNationalAcademiesPress,Washington,D.C. Availableat.www.nap.edu Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage Program,ColoradoStateUniversity,FortCollins,CO. Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. Tweto,O.1979.GeologicMapofColorado.U.S.GeologicSurvey,Denver,CO. Climate Change Vulnerability Assessment for Colorado BLM 433 U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Geocommunicator.Availableat: http://www.geocommunicator.gov/GeoComm/.Accessed:2014. U.S.GeologicalSurvey(USGS).2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html.Accessed2014. VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv. 117:109–124. Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463. 434 Colorado Natural Heritage Program © 2015 Gilia (Aliciella) stenothyrsa Narrow‐stemGilia G3/S1 Family:Polemoniaceae Photo: Delia Malone Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostaterankisbasedon:predicteddecreasedprecipitation;shortdispersaldistances; thepresenceofmountainsthatserveasnaturalbarriersandthepresenceofoilandgas developmentthatserveasanthropogenicbarrierstorangeshift;alteredfiredisturbanceregimes; pollinatorlimitation;andadecreaseinmodeledfuturerangewithlittleoverlapwithcurrentrange orinclusioninprotectedareas.Climatemodelsprojectannualnetdryingacrossthisspeciesrange (NatureServe2014)whichmayimpactrecruitmentandpopulationsurvivability. Distribution:GiliastenothyrsahasbeenreportedfromUtahandColoradointheUnitedStates (NatureServe2014).InColorado,thespeciesisknownfromRioBlancoandMesacountiesandin UtahfromCarbon,Emery,Duchesne,andUintacounties(NatureServe2014).Habitat:Grasslands, sagebrushandmountain‐mahoganyshrublands,orpinyon‐juniperwoodlandsonsiltytogravelly loamsoilsderivedfromtheGreenRiverorUintaFormations(Spackmanetal.1997).Elevation: 5300to6230feet. EcologicalSystem:SagebrushShrublands,Pinyon‐JuniperWoodlands CCVI Scoring B1)Exposuretosealevelrise.Neutral. Climate Change Vulnerability Assessment for Colorado BLM 435 B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Withchangingclimate,Gilia stenothyrsaispredictedtomovenorthward,trackingclimatemoresuitabletoitsevolved environmentaltolerancesandecologicalniche(UVUH2014).Potentialforsuccessfulrangeshiftis inhibitedbyeast‐westtrendingUintaMountains,DouglasMountainandtheBlueMountain escarpmentwhichpresentselevational,environmentalandhabitatbarrierstorangeshift(CNHP 2014). B2b)Distributionrelativetoanthropogenicbarriers.Greatlyincrease.Oilandgasdevelopment occursinawideeast‐westtrendingbeltacrossthisregionofColoradoextendingintoUtah (FracFocusWells2013),andpresentsabarriertorangeshiftforallpopulationsofA.stenothyrsa. Additionally,allpopulationsoccupyeithershaleplaysthatarelikelytocontainsignificantoiland gasreservesorshalebasins,broaddepositionalareasthatmaycontainoneormoreshaleplays (FracFocusWells2013). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange. Somewhatincrease.Potentialforwindenergydevelopmentishighonthesouthernborderof Wyoming(NRDC2011).Associatedinfrastructuredevelopmentandhabitatalterationthatmay occurwithinitsfuturerangeareincompatiblewithnaturalhistoryrequirementsofGilia stenothyrsa. C1)Dispersalandmovements.SomewhatIncrease.AlthoughthedispersalmechanismforGilia stenothyrsaisunknown,dispersallikelyoccursbywindandwater,assuggestedbydispersal strategyofseveralotherspeciesinthisgenus,includingA.penstemonoidesandA.tenuis(Beatty 2004,Grant1959).Maximumwinddispersaldistancesforthetypeofseedsthatthisspecieshasis lessthan15metersandwaterdispersalishighlyunpredictableandundocumented(Vittozand Engler2007). C2ai)Predictedsensitivitytotemperature:historicthermalniche. Neutral. Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage temperaturevariation(57.1‐77oF)inthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease. Giliastenothyrsashowsapreferencetowardsenvironmentsthatareatthewarmerendofthe environmentaltemperaturespectrum. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.Somewhatincrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthataverage precipitationvariation(11‐20inches)inthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.Increase.AlthoughA.stenothyrsaevolvedinanarid environment,futureclimate‐changeinduceddroughtregimes(durationandfrequency)are projectedtoproducemoreseveredroughtsinthesouthwest(USGCRP2014)andmaybeoutsideof therangeofevolvedenvironmentaltolerancesofthisspecies.Variablerainfallisknowntodrive fluctuationsinplantpopulations.Verylowrecruitmentofacloselyrelatedspecies,Giliacaespitosa, 436 Colorado Natural Heritage Program © 2015 wasnotedbyCarolDawson(1998)andherobservationssuggestthatfluctuationsinrecruitment areprimarilyrelatedtoprecipitationpatternsandavailabilityofsafegerminationsites. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Increase.ThisspeciescommonlyoccupiesPinyon‐Juniperwoodlandsandsageshrublandswhere firefrequenciesareexpectedtoincreaseinthefuture,followingtrendsthatalreadyshowincreased firefrequencies,areaburnedandfireseverity(Stephens2005,Westerlingetal.2006,Littelletal. 2009).Climatechangemodelsalsopredictincreasesinfireareaandseveritythroughouttheregion occupiedbythisspecies(Krawchuketal.2009,Westerlingetal.2011). C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot restrictedtouncommongeologicalfeaturesbutdoesspecificallyoccupysiltytogravellyloamsoils derivedfromtheGreenRiverorUintaFormations(Spackmanetal.1997)whichdooccurovera relativelylargearea(CNHP2014). C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thisspeciesdoesnotrequire otherspeciestocreateitshabitat. C4c)PollinatorVersatility.Somewhatincrease.Crosspollinationbyinsects(e.g.,bumblebees, beeflies)isanimportantreproductivestrategyformanyGiliaspecies(Beattyetal.2004)and typicallyincludeshummingbirdpollination(PorterandHeil1994).Althoughnopollinator informationisavailableforA.stenothyrsa,floralcharacteristics(Rosas‐Guerreroetal.2014)and pollinatorsofseveralcloselyrelatedspeciescanprovidecluesastolikelypollinatorsforthis speciessuggestingthatthisspecieslikelyreliesonasmallsuiteofpollinators. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Althoughlittleisknownof themeansofseeddispersal,assuggestedbyseedsize(SEINet2014)andmethodsofdispersalby othercloselyrelatedspecies,thisspecieslikelydispersesonitsownandlikelythroughtheactionof windandrain(Beattyetal.2004). C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. SectionD.DocumentedorModeledResponsetoClimateChange(optional) 1)DocumentedResponsetoRecentClimateChange(e.g.,rangecontractionorphenology mismatchwithcriticalresources).Unknown. Climate Change Vulnerability Assessment for Colorado BLM 437 2)ModeledFuture(2050)ChangeinRangeorPopulationSize.Increase.Coloradopopulations arelocatedatsimilarlatitudesandoccupysimilarhabitatsasUtahpopulations,whichare predictedtoexperience50‐99percentrangecontraction(UVUH2014).Coloradopopulationscan beexpectedtoexperiencesimilarclimatechangeimpactsandcanbeexpectedtoexperiencesimilar rangechange. 3)OverlapofModeledFuture(2050)RangewithCurrentRange.Increase.Colorado populationsarelocatedatsimilarlatitudes,andoccupysimilarhabitatsasUtahpopulationswhere predictedfuturerangeoverlapsthecurrentrangeby30%orless(UVUH2014).Colorado populationscanbeexpectedtoexperiencesimilarrangechange. 4)OccurrenceofProtectedAreasinModeledFuture(2050)Distribution.SomewhatIncrease. 5‐30%ofthemodeledfuturedistributionwithintheassessmentareaisencompassedbyoneor moreprotectedareas.Disturbanceeventsorextractiveormultipleusesarepermittedinthe majorityofcurrentandpredictedrange(USGS2014). Literature Cited Beatty,B.L.,W.F.Jennings,andR.C.Rawlinson(2004,February9).GiliapenstemonoidesM.E.Jones(BlackCanyongilia):a technicalconservationassessment.[Online].USDAForestService,RockyMountainRegion.Available: http://www.fs.fed.us/r2/projects/scp/assessments/giliapenstemonoides.pdf.Accessed2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Dawson,C.1998.Giliacaespitosa.Monitoringprojectupdate.DenverBotanicGardensResearchDepartment.12pp. O’Kane,S.L.1988.Colorado’srareflora.GreatBasinNaturalist48:434‐484. Grant,V.1959.NaturalhistoryofthePhloxfamily.MartinusNijhoff,publisher.TheHague,Netherlands. KrawchukM.A,M.A.Moritz,M‐A.Parisien,J.VanDorn,K.Hayhoe.2009.GlobalPyrogeography:theCurrentandFuture DistributionofWildfire.PLoSONE4(4):e5102doi:10.1371/journal.pone.0005102.Availableat: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002 Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S. ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021. NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat https://connect.natureserve.org/science/climate‐change/ccvi. NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe, Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:November14,2014) NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp (accessed2014). Porter,J.M.andK.D.Heil.1994.ThestatusofGiliatenuis.ReporttotheBureauofLandManagementonthestatusofGilia tenuis,SanJuanCollege,Farmington,N.M. 438 Colorado Natural Heritage Program © 2015 Rosas‐Guerrero,V.R.Aguilar,S.Marten‐Rodrıguez,L.Ashworth,M.Lopezaraiza‐Mikel,J.M.BastidaandM.Quesada. 2014.Aquantitativereviewofpollinationsyndromes:dofloraltraitspredicteffectivepollinators?EcologyLetters. doi:10.1111/ele.1222 SEINet.Accessed2014.Availableat:http://swbiodiversity.org/portal/index.php Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide. PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado NaturalHeritageProgram,FortCollins. Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland Fire14:213‐222. U.S.GeologicalSurvey(USGS).2014.NationalGapAnalysisProgram,ProtectedAreasDataViewer.Availableat: http://gapanalysis.usgs.gov/padus/viewer/ U.S.GlobalChangeResearchProgram(USGCRP).2014.Availableat:http://nca2014.globalchange.gov/report UtahValleyUniversityHerbarium(UVUH).2014.Availableat:http://herbarium.uvu.edu/herbInfo.shtml Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand growthscenariosforCaliforniawildfire.ClimaticChange109:445‐46. Climate Change Vulnerability Assessment for Colorado BLM 439 Gutierrezia elegans LoneMesasnakeweed G1/S1 Family:Asteraceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) likelihoodofshortseeddispersaldistances;3)potentialforenergydevelopmentinoccupiedG. eleganshabitat;4)potentialincreaseinfirefrequencyintervalsinsagebrushhabitats;5)lackof variationinannualprecipitationratesinthelast50years;6)restrictiontoMancosshalesubstrates. Distribution:ThisspeciesisknownonlyfromDoloresCounty,Colorado.Habitat:Thisspeciesis foundonoutcropsofgrayish,argillaceous,bareMancosshaleoutcropswiththinsoilovertheshale. GutierreziaelegansisscatteredtoabundantinthebarrensandalsooccurswithArtemisianovaand otherspeciesinsiteswithdeepersoilovertheshale.AssociatedspeciesincludeHelianthella microcephala,Tetraneurisacaulis,Eriogonumlonchophyllum,Petradoriapumila,Astragalus missouriensisvar.amphibolus,andHeterothecavillosa.Pinusponderosaandpinyon‐juniper characterizethesurroundingslopes(Schneideretal.2008,CNHP2012).Elevation:7,526‐7,808 feet. EcologicalSystem:Barrens,Sagebrush CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.ManyareassurroundingoccupiedG. eleganshabitatdonotcontainMancosshaleoutcropsarenecessarytosupportthisspecies. B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Water 440 Colorado Natural Heritage Program © 2015 developmentandroadshavefragmentedsuitablehabitatandmaycreatebarrierstomovement (CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. BarrenhabitatsareratedIncreaseduetothepotentialforwind,solar,andbioenergydevelopment. C1)Dispersalandmovements.Increase.Seedsarewind‐dispersed,butmostfallclosetoparent plant(Tirmenstein1999). C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐ 77°F/31.8‐43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationvariationinthepast50years. C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: physiologicalhydrologicalniche.SomewhatIncrease.Projectedincreasesintemperaturesmay resultinlesssoilmoistureavailableforG.elegans. C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange. Neutral. C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted toordependentoniceorsnowcoverhabitats. C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.G.elegansisfound onoutcropsofgrayish,argillaceous,bareMancosshaleoutcropswiththinsoilovertheshale. C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis speciesisdependentonotherspeciestogeneratehabitat. C4c)PollinatorVersatility.Unknown. C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral. C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown. C5a)Measuredgeneticvariation.Unknown. C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown. C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics. Unknown. Climate Change Vulnerability Assessment for Colorado BLM 441 Literature Cited ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30, 2014. ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado NaturalHeritageProgram,ColoradoStateUniversity,FortCollins. Schneider,A.,P.Lyon,andG.Nesom.2008.Gutierreziaeleganssp.nov.(Asteraceae:Astereae),ashalebarrenendemicof southwesternColorado.J.Bot.Res.Inst.Texas2(2):771‐774. Tirmenstein,D.1999.Artemisiatridentataspp.tridentata.In:FireEffectsInformationSystem,[Online].U.S.Department ofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/ 442 Colorado Natural Heritage Program © 2015 Ipomopsis polyantha Pagosaskyrocket G1/S1 ListedEndangered Family:Polemoniaceae Photo: Peggy Lyon Climate Vulnerability Rank: Extremely Vulnerable ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2) likelihoodofshortseeddispersaldistances;3)potentialdecreaseinsoilmoistureavailabilitydue toincreasingtemperatures;4)restrictiontoMancosShale‐derivedsoils;5)lackofvariationin precipitationinoccupiedhabitatoverlast50years;6)potentialforenergydevelopmentin occupiedhabitat. Distribution:KnownfromArchuletaCountyinsouthernColorado.Estimatedrangeis48square kilometers,calculatedinGISbydrawingaminimumconvexpolygonaroundtheknown occurrences.Habitat:InColorado,onrockyclaysoilsoftheMancosShaleinthesouthernSanJuan Mountains,typicallyonroadshoulderswherethesoilhasbeendisturbed.Highestdensitiesare underPinusponderosaforestswithmontanegrasslandunderstory(Anderson1988,Anderson 2004).IpomopsispolyanthaoccursonCretaceousMancosShaleFormationwhereitcanbeeithera pioneeronrawshaleoraclimaxspeciesunderponderosapineforestsorPinusedulis/Juniperus osteosperma/Quercusgambeliicommunities.Mostoccurrencesarealongweedyroadsideswithin fencedhighwayrightofways.Elevation:6,765‐7,362feet. EcologicalSystem:Barrens,PonderosaPine Climate Change Vulnerability Assessment for Colorado BLM 443 CCVI Scoring B1)Exposuretosealevelrise.Neutral. B2a)Distributionrelativetonaturalbarriers.Increase.OccurrencesarelimitedtoMancosShale substrates,andmuchoftheareasurroundingoccupiedhabitatdoesnotcontainthenecessarysoils tosupportI.polyantha. B2b)Distributionrelativetoanthropogenicbarriers.Increase.Housingdevelopments, commercialdevelopments,roads,andutilitycorridorsallpresentbarrierstomovementforI. polyantha(CNHP2014). B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase. Barrenhabitatswererated‘Increase’basedonthepotentialforwind,solar,andbioenergy development. C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant. C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease. Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years. C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Not restrictedtocoolorcoldenvironmentsthatmaybelosttoclimatechange. C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime: historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm) precipitationv