Download Audiometry–Anatomy of the ear – 3064-1/HLSP

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Thylakoid wikipedia , lookup

Anatomical terminology wikipedia , lookup

Endomembrane system wikipedia , lookup

Cell membrane wikipedia , lookup

Anatomy wikipedia , lookup

History of anatomy wikipedia , lookup

Ear wikipedia , lookup

Transcript
LEARNER RESOURCE
Audiometry - Anatomy of the Ear
3064-1/HLSP
Version No 2
Community Services, Health,
Tourism and Hospitality
Division
Health and Life Sciences
Programs
3064-1/HLSP Audiometry - Anatomy of the Ear V1
i
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Acknowledgments
TAFE NSW - Community Services, Health, Tourism and Hospitality Division would like
to acknowledge the support and assistance of the following people in the production of this
resource package:
Writer:
Acknowledgement:
Jean Tsembis
Audiologist
TAFE NSW
Janette Brazel
Audiologist – NSW
Project Manager:
Gary Wood
Program Manager
Health and Life Sciences Programs
Enquiries
Enquiries about this and other publications can be made to:
TAFE NSW - Community Services, Health, Tourism and Hospitality Division
Locked Bag No. 6
MEADOWBANK NSW 2114
Tel: 02-9942 3200
Fax: 02-9942 3257
T:\aa Electronic Information System\Educational Delivery\Resources (Final Copy)\The Health Team\HEALTH and LIFE
SCIENCES\Audiometry (Health&Life)\3064-1_HLSP_V1\3064-1_HLSP_Audiometry - Anatomy of the Ear_V1.doc
© Community Services, Health, Tourism and Hospitality Division
TAFE NSW, 2004.
Copyright of this material is reserved to Community Services, Health, Tourism and Hospitality
Division, TAFE NSW. Reproduction or transmittal in whole or in part, other than for the purposes of
private study or research, and subject to the provisions of the Copyright Act, is prohibited without the
written authority of Community Services, Health, Tourism and Hospitality Division, TAFE NSW.
Reprinted 2008 with minor alterations and with the permission of Community Services, Health,
Tourism and Hospitality Division TAFE NSW.
ISBN 0 7348 1539 5
© 2004, TAFE NSW
ii
3064-1/HLSP Audiometry - Anatomy of the Ear V1
iii
3064-1/HLSP Audiometry - Anatomy of the Ear V1
RESOURCE EVALUATION FORM
Please come back to this page when you have finished working on this resource and complete this form. Your
feedback can assist us to continually improve this resource.
Course Name _________________________________________
Course Number _________________
Campus _____________________________________________
Date at finish of module __________
Was your learning totally external, with occasional phone contact with a designated teacher?
Yes No
Was your learning externally supported by a study group of other students studying the same module?
Yes No
How many workshops were given to support your learning? ______ (Please give a number – none, 1, 2, 3)
Did your learning involve class support material at the TAFE college?
Did you find this resource easy to use?
Yes
Yes No
No
Any comments
___________________________________________________________________________________________
___________________________________________________________________________________________
Was the content useful/clear/relevant?
Yes
No
Any comments
___________________________________________________________________________________________
___________________________________________________________________________________________
___________________________________________________________________________________________
Please comment on any ways this resource could be improved for future learners.
___________________________________________________________________________________________
___________________________________________________________________________________________
What other resources did you find that helped you with your studies?
___________________________________________________________________________________________
___________________________________________________________________________________________
Thank you for taking the time to give us your valuable feedback. Please give this to your teacher who will send it to:
TAFE NSW - Community Services, Health, Tourism and Hospitality Division
Locked Bag No. 6
MEADOWBANK NSW 2114
FAX: 02 9942 3257
iv
3064-1/HLSP Audiometry - Anatomy of the Ear V1
3064-1/HLSP Audiometry - Anatomy of the Ear V1
v
TABLE OF CONTENTS
INTRODUCTION TO THIS LEARNING RESOURCE ................................................ 1
INTRODUCTION TO ANATOMY OF THE EAR .......................................................................... 1
SUGGESTED LEARNING RESOURCES .................................................................................... 2
Relevant texts ................................................................................................................. 2
Relevant Internet sites ................................................................................................... 3
GLOSSARY OF TERMS USED IN THIS MODULE ...................................................................... 4
PRONUNCIATION GUIDE ...................................................................................................... 5
THE STRUCTURE AND FUNCTION OF THE HUMAN AUDITORY PATHWAY 6
THE OUTER EAR .................................................................................................................. 6
The pinna ....................................................................................................................... 6
The external auditory meatus ........................................................................................ 7
MIDDLE EAR ....................................................................................................................... 8
The tympanic membrane................................................................................................ 8
The ossicles .................................................................................................................. 10
The Eustachian tube .................................................................................................... 11
THE INNER EAR ................................................................................................................. 11
The semicircular cnals ................................................................................................ 11
The cochlea .................................................................................................................. 13
THE CENTRAL AUDITORY PATHWAY ................................................................................. 14
The vestibulocochlear nerve (the VIIIth nerve) ........................................................... 14
The primary auditory cortex ........................................................................................ 15
vi
3064-1/HLSP Audiometry - Anatomy of the Ear V1
3064-1/HLSP Audiometry - Anatomy of the Ear V1
1
INTRODUCTION TO THIS LEARNING RESOURCE
This Learning resource deals with anatomy of the ear. This is one of the recurring themes
in the audiometry units of competency that are aligned to the Certificate IV in Audiometry
HLT41302, which is a qualification of the Health Training Package HLT02. The units of
competency that include the theme of anatomy are:
HLTAU1A – Conduct screening hearing tests for children
HLTAU2A – Conduct screening hearing tests for adults
HLTAU3A – Conduct hearing assessments
HLTAU4A – Dispense hearing aids for adults
Anatomy of the ear is part of the required knowledge that underpins the development
of competence. This knowledge will help you to understand the results of hearing
assessments and how to communicate with clients about their results and options for
rehabilitation. It will also help you in discussing results with other clinicians such as
audiologists and doctors.
In your activities and assessments your teacher can reasonably ask you to:

draw a diagram of the peripheral hearing mechanism with its parts labelled correctly

use a diagram of the ear to explain its structure and function

adjust your language and terminology to suit the person to whom you are giving the
explanation

draw a diagram of the inner ear with its parts labelled correctly

explain the difference between the peripheral and central hearing mechanisms.
This Learning resource is designed to complement your class or individual learning
activities. You should use this resource as a guide to identify areas of learning.
Introduction to anatomy of the ear
The human ear is a complex structure of skin, cartilage, bone, mucous membrane, fluid and
nerves. Its composition enables us to differentiate pitches of sound between 20Hz and
20,000Hz and to be able to hear a whisper to a roar. Every section of the ear contributes to
our sense of hearing, although some more than others. Sound energy travels through the
maze of our ear where its energy is transferred from acoustical energy to neural impulses
to be interpreted by the brain into meaningful sound.
To understand how the hearing mechanism operates you must know the anatomy and
physiology of the ear.
This topic provides essential knowledge for the practice of audiometry. When you have
completed this topic you should be able to draw a diagram of the peripheral hearing
mechanism with its parts labelled correctly and explain the structure and function of the
ear.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
2
3064-1/HLSP Audiometry - Anatomy of the Ear V1
At the end of the Learning guide there is a list of questions. You can use these questions to
check that you have finished the topic.
This Learning guide will help you answer the questions but you cannot rely on it alone.
You will need to read other material to fully understand the structure and function of the
ear.
Suggested learning resources
There is not a required textbook for this topic but there are many that can help you. The
following textbooks are all relevant and you may decide to refer to them as you study this
topic. There are hundreds of internet sites that describe the anatomy of the ear. The sites
that are listed below were accessed in September 2003. As internet sites and the
information in them change, you may wish to perform your own search.
Relevant texts
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
The Speech Chain – The Physics and Biology of Spoken Language
Denes, P B, and Pinson, E N
2nd edition, 1993
W.H. Freeman and Company, New York, USA
0716723441
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Bases of Hearing Science
Durrant, J D, and Lovrinic, J H
3rd edition, 1995
Lippincott, Williams & Wilkins, Baltimore, USA
0683027379
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Clinical Audiology – An Introduction
Stach, B A
1998
Singular Publishing Group Inc, San Diego, USA
156593346X
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Handbook of Clinical Audiology
Katz, J, et al.
4th Edition, 1994
Williams & Wilkins, Baltimore, Md., USA
0683006207
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Audiology: the Fundamentals.
Bess, F H, and Humes, L E
2nd Edition, 1995
Williams & Wilkins, Baltimore. Md., USA
0683006207
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Introduction to Audiology
Martin, F N, and Clark, J G
8th Edition, 2003
Allyn & Bacon, Boston, USA
0205366414
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Audiologists Desk Reference Volume I - Diagnostic Audiology
Principles, Procedures and Protocols
Hall, J W, and Mueller, G H
1997
Singular Publishing Group, UK
156593269
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Basic Principles of Audiology Assessment
Hannely, M
1991
Prentice-Hall, USA
0205135528
TITLE
AUTHOR
PUB DATE
PUBLISHER
ISBN
Audiology
Newby, Hayes
1992
Prentice-Hall, New York, USA
0130519219
3
Relevant Internet sites
http://www.earaces.com/anatomy.htm
This page has a diagram of the human ear and explains its functions in an easy to read
format.
http://www.earfoundation.com/anatomy.html
You will need to have “Shockwave” to view this website or download it from this page.
This page is another excellent resource for students of the anatomy of the ear.
http://thalamus.wustl.edu/course/audvest.html
This website will help you to understand the cochlea and the central auditory pathways.
http://www.audiologynet.com/anatomy-of-the-ear.html
This is a links page provided by Audiology Net to various websites with information about
the anatomy of the ear.
http://www.neurophys.wisc.edu/h&b/auditory/animation/animationmain.html
This page has fascinating animations of the ear functioning.
http://www.hearingcenteronline.com/ear2.shtml
Information about anatomy is provided in an easy to read format.
http://www.beltone.com/ear_anatomy/ear_anatomy.asp
A clear diagram with clear information.
http://deafness.about.com/od/earbasics/
Provides many links about different aspects of hearing including anatomy.
http://www.rcsullivan.com/www/ears.htm
A large website with many photos of the ear and links to other useful websites.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
4
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Glossary of terms used in this module
Words or Terms
Meaning
acute
Sharp - when an angle is acute it is less than ninety degrees
anatomy
Is about understanding the structure of the body
atresia
Closure of a normally patent body orifice (opening), such as the
external auditory canal
cochlear
The adjective of cochlea
contralateral
Opposite side
fistula
An abnormal opening allowing fluid to leak out
ipsilateral
Same side
osseocartilaginous
junction
Junction of the cartilage outer third of external auditory meatus
(ear canal) with the inner two thirds of the external auditory
meatus (that passes through the tympanic portion of the temporal
bone)
otorrhea
Any often foul-smelling discharge from the external auditory
canal, or middle ear
otoscope
An instrument used to look in the ear canal
pathology
Is something that affects the function of (a part of) the body. It is
also the name of the study of pathologies.
perforation
A hole
physiology
Is about understanding the way the body works
phenomena
Plural of phenomenon, occurrences or circumstances
retrocochlear
Beyond the cochlea, an adjective
tinnitus
Ringing, buzzing noises in the ear usually only heard by the
sufferer. Sounds heard can vary immensely, with the sound of
‘cicadas’ being the most common. May be a symptom of some
diseases. However, disease may resolve without tinnitus abating
and vice versa.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Pronunciation guide
You might have difficulty
pronouncing these words
How to pronounce them
auditory
or – dit – or - ee
cochlea
cock – lee – u (u as in up)
contralaterally
kon – tra – lat – r – lee
debris
d - bree
ipsilaterally
ip – see – lat – r - lee
meatus
mee – ate – us
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
5
6
3064-1/HLSP Audiometry - Anatomy of the Ear V1
THE STRUCTURE AND FUNCTION OF THE HUMAN
AUDITORY PATHWAY
The main focus of this topic will be the peripheral auditory mechanism. It is
comprised of the outer ear, the middle ear and the inner ear. It is essential that you
understand the structure and function of the peripheral auditory mechanism so that you
are able to draw a diagram of it and explain its structure and function. The way you
explain the working of the ear will depend on whom you are explaining it to. You
must be able to explain it using the correct terminology and also using common terms.
You need to have a general understanding of the central auditory mechanism. The
central auditory mechanism involves the neural pathway and the brain.
The outer ear
The outer ear is the part of the ear closest to the outside world. It is the part of the
peripheral hearing mechanism that gathers sounds from the environment. The sounds
are channelled deep into the head.
The pinna
The most obvious part of our hearing system is perhaps of the least importance in the
act of hearing. So why do we have this peculiar flap of skin on the outside of our head
and what function does the pinna play in the hearing process?
The pinna, which is sometimes called the auricle, is a cartilaginous structure covered in
skin, which is continuous with the face. The temporal muscles attach the pinna to the
skull. Approximately 4% of humans can get these muscles to move, initiating
‘wiggling ears’! The size and structure of the pinna is individual, (in fact it is as
unique in each of us as our fingerprints) and has a number of indentations and twists
and turns. Important landmarks on the pinna include:
 the lobule or ear lobe which is at the base of each pinna

the helix is the outer rim of the pinna

the antitragus is found directly above the lobule

the antihelix is an elevation running around the central part of the pinna

the tragus is a small protrusion, often triangular in shape, pointing across the
opening to the ear

the concha is the middle portion of the pinna
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
These particular landmarks in the anatomy of the pinna aid in accentuating high
frequency sounds as they are funnelled into the ear. These frequencies (around 20004000Hz) are particularly important in our speech reception. The sounds are funnelled
by the concha into the external auditory meatus or ear canal.
The external auditory meatus
The external auditory meatus, or ear canal, begins at the concha and forms a tunnel that
extends inward and slightly upward in adults, downwards and at a more acute angle in
children. It is lined with skin continuous with the pinna. The initial third of the
external auditory meatus passes through cartilage and houses two sets of glands.
These glands (sebaceous and ceruminous) produce substances that combine into a
substance we commonly refer to as wax or cerumen. This section of the external
auditory meatus also contains hair follicles. These hairs in conjunction with the wax
help to keep foreign bodies and dirt from reaching the inner two thirds of the external
auditory meatus. Many people think wax is dirty but as you can see it serves a very
important function.
As our ears never stop growing it is not surprising to learn that the length of this tunnel is
different in adults (2.5cm) and children (0.7 - 2.0cm).
The inner two thirds of the external auditory meatus pass through bone. There is a
narrowing of the tunnel where the cartilage meets the bone, which is called the
osseocartilaginous junction. This inner section of the external auditory meatus is filled
with blood vessels and is very sensitive. Touching this part of the external auditory
meatus can lead to excruciating pain.
The external auditory meatus serves as a tube resonator for frequencies between 2000
and 5500Hz and provides a protective mechanism for the middle ear section. Its
shape, position, cerumen producing glands and hair follicles combine together to keep
the ear clean and free of foreign objects, free from trauma and to keep the tympanic
membrane, which is situated at the end of the external auditory meatus, at a constant
temperature and humidity.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
7
8
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Middle ear
The middle ear is an air filled cavity that is about 2cm in volume. It is lined with
mucous membrane and connected to the nasopharynx, ie, the back of the nose and
throat, via the Eustachian tube. The middle ear is situated within the epitympanic
recess of the mastoid process, lying beneath the meningial lining of the brain.
The mastoid process is part of the temporal bone but we usually refer to it as the
mastoid bone. You can feel it as a bump when you rub the back of your ears. The
mastoid bone has air pockets in it when it is healthy.
The middle ear is an impedance-matching transformer. It is called this because of its
ability to transfer the sound energy from the air in the outer ear to the fluids in the
inner ear, overcoming the loss of energy that usually occurs in such a transference.
This is achieved directly by the pressure from the larger surface area of the tympanic
membrane onto the smaller oval window in the inner ear. The tympanic membrane has
a vibrating area seventeen times larger than that of the oval window. We see a
pressure increase of 23 times, from the concentration of pressure applied by the
tympanic membrane across the ossicular chain to the oval window. This approximates
a 25dB increase in sound pressure. If the middle ear did not transfer energy in this
way we could not hear as well.
The tympanic membrane
The tympanic membrane is important in the conduction of sound through to the middle
and inner ears. What can its appearance tell us about the state of the middle ear?
The tympanic membrane or ear drum is a concave structure, ie it curves in slightly,
consisting of three layers of tissue which connect the outer ear with the middle ear
system. The tympanic membrane is semitransparent and sits at a 550 angle to the
external auditory meatus.
The first layer of tissue is continuous with the skin in the external auditory meatus and is
considered to be part of the outer ear. The second layer is a tough fibrous connective
tissue, enabling the tympanic membrane to vibrate. The malleus (a part of the ossicular
chain in the middle ear) is embedded in this section of the tympanic membrane. The
malleus is attached through the centre of the upper section of the tympanic membrane and
pulls it inward, giving the tympanic membrane its concave shape. The third layer of tissue
is continuous with the mucous membrane in the middle ear cavity.
Landmarks can be seen on the tympanic membrane with the aid of an otoscope (also
known as an auriscope). The visibility (or lack of) of these landmarks can indicate
pathologies of the middle ear. It is therefore important to be able to distinguish a
normal tympanic membrane from an abnormal one. A healthy tympanic membrane
will be a pearly translucent colour and reflect back the light from the otoscope in a
landmark known as the ‘cone of light’. This light reflex is viewed between three and
six o’clock on the right tympanic membrane and on the left tympanic membrane
between six and nine o’clock. If the light reflex is not clear or is not there, there may
be a problem with the tympanic membrane or middle ear.
Another landmark important to see is the ‘handle of the malleus’, which is usually seen
through the centre of the tympanic membrane as described above. The position of the
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
9
3064-1/HLSP Audiometry - Anatomy of the Ear V1
malleus can vary due to the state of middle ear pressure. If it is difficult to view or appears
to be sitting along the top of the tympanic membrane (retracted), the middle ear cavity may
have abnormal pressure. Where the malleus attaches itself to the centre of the tympanic
membrane is known as the greatest point of retraction or the ‘umbo’. The umbo’s position
will vary if the malleus is retracting the tympanic membrane.
View of normal tympanic membrane (Right ear)
Pars Flaccida
(loose tissue
above malleus)
Long Process of
Incus
Handle of
Malleus
Parsa Tensa
(taut surface
area)
Cone of Light
Umbo
The ‘annulus’ is a ring of tissue that holds the tympanic membrane in place at the end
of the external auditory meatus.
You can see a photo of the TM here — with the annulus visible (barely):
http://www.ghorayeb.com/TympanicPerforation.html
If you can see the whole annulus you should be able to inspect all portions of the
tympanic membrane.
The tympanic membrane is taut across two thirds of its surface area. This is known as
the ‘pars tensa’. Above the malleus the tympanic membrane is looser and referred to
as the ‘pars flaccida’ or attic. It is important to see both these sections to rule out the
occurrence of a perforation. You should ask your client to see their doctor about any
perforation, but if a perforation occurs in the attic area of the tympanic membrane, you
should be extra careful. Attic perforations can result in squamous tumours.
The tympanic membrane is responsible for the transmission of sound waves through to
the middle ear via the malleus. When sound waves hit the tympanic membrane it
begins to vibrate causing the malleus to vibrate. The vibrations are then transmitted to
the incus and the stapes.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
10
3064-1/HLSP Audiometry - Anatomy of the Ear V1
The Ossicles
What are the parts of the ossicular chain and how do they aid in the transference of
sound through the middle ear cavity?
The peripheral hearing mechanism with an enlargement of the middle ear ossicles
The ossicular chain consists of the three smallest bones in the human body. It forms a
chain across the middle ear cavity, joining the outer ear, via the tympanic membrane,
to the inner ear through the oval window. These 3 bones collectively are referred to as
the ossicles. Individually they are the malleus (hammer), incus (anvil) and stapes
(stirrup). You know that the malleus is embedded in the tympanic membrane. Its head
is connected to the incus, which in turn sits squarely on the head of the stapes. The
base of the stapes is attached to the oval window, which is the beginning of the inner
ear. The ossicles are held in place by a series of ligaments and muscles. The tensor
tympani muscle is attached to the malleus and the stapedius muscle to the stapes.
Vibrations that are passed from the tympanic membrane are conducted along the
ossicular chain to the oval window. The vibrations set up a rocking motion of the
ossicles. The impedance matching system of the middle ear is assisted by the use of
leverage to increase the force at the staples. The ‘lever action’ of the ossicles
contribute approximately 2 dB ‘amplification’, whereas the advantageous difference in
area between the tympanic membrane and oval window accounts for approximately
25 dB ‘amplification’.
This, with the ratio of the tympanic membrane to the oval window allows the sound to
travel from air into liquid without significant loss of energy.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
The Eustachian tube
You have probably had the experience of going down a mountain and your ears pop.
This is the Eustachian tube performing its function.
While not contributing directly to the transference of sound across the middle ear, the
Eustachian tube’s function is of vital importance to the health of the middle ear cavity.
The Eustachian tube (ET) is part of the pressure equalisation system required to keep
air pressure the same on both sides of the tympanic membrane. If the air pressure is
not equal a feeling of ‘fullness’, pain and/or discomfort may occur in the ears and may
lead to a temporary drop in hearing levels.
The ET is normally closed. It opens during swallowing, yawning or when excessive
pressure is blown through the nose. In children the ET is shorter and in a more
horizontal position. This positioning and size means it is harder for the ear to ‘pop’
and let any fluid build up drain away.
A difference in air pressure between the outside and the middle ear cavity most
commonly occurs when there is a rapid change in altitude. For example, when we
drive up or down a mountain or taking off or landing in an aeroplane. The air pressure
at ground level is higher than at 10,000 feet, where a plane might fly. When our ears
‘pop’, air from the outside travels up or down the ET and equalises the pressure in the
middle ear cavity.
The inner ear
Why do we need to understand of the complexities of the inner ear? It is made of
many parts and performs two important roles. The inner ear system is responsible for
transmitting signals to the brain about hearing and balance.
The oval window is the connecting link between the middle and inner ears. The oval
window provides the opening to the vestibule, which is filled with fluid called
perilymph. Connected to the vestibule we find the organs of balance - the semicircular
canals.
The semicircular canals
The semicircular canals provide information regarding where we are in space, whether
we are lying down or sitting up.
The semicircular canals arise from the utricle - a membranous sac within the vestibule.
While the utricle is surrounded by perilymph, it is filled with another fluid called
endolymph. The semicircular canals need to respond to movement from all directions
in space, therefore these are three arranged at right angles. They are the superior
semicircular canal, the posterior semicircular canal and the lateral semicircular canal.
Each of these canals join at the utricle through an enlarged area called ampullae.
Within these ampullae the crista (end organ for equilibrium) are placed.
With any change in angular body position, at least one semicircular canal is stimulated.
The receptors within the semicircular canals tell us about motion and turning. Two
other sense organs within the body contribute to our sense of balance. Our sense of
sight and touch complement the semicircular canals, helping to keep us upright and
steady! When there is a problem with the semicircular canal mechanisms a condition
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
11
12
3064-1/HLSP Audiometry - Anatomy of the Ear V1
known as vertigo can occur. Vertigo can be a much more violent sensation than
simple dizziness or light-headedness and can often be associated with hearing
pathology.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
13
The cochlea
The vestibule is also the beginning of the cochlea. The cochlea is a snail shaped shell
that contains the organ of hearing. The cochlea turns on itself approximately two anda-half times to form the snail shell. To discuss the cochlea and its components it is
useful to ‘unroll’ the shell and investigate its canals.
The cochlea has three fluid-filled canals. Two of which (Scala Vestibuli and Scala
Tympani) contain perilymph, while the middle canal (Scala Media) contains
endolymph. Dividing these canals are membranes. Reissner’s membrane begins at the
oval window, and separates the Scala Vestibuli from the Scala Media. The Scala
Media is separated from the Scala Tympani by the basilar membrane. Resting on the
basilar membrane is the organ of corti, which is often referred to as the ‘end organ of
hearing’. A third membrane, the Tectorial membrane, is suspended above the organ of
corti.
While the oval window is seen as the entrance to the cochlea, a second membrane
provides an outlet, or pressure release, for the cochlear energy transference. This
outlet is known as the round window. The round window is situated at the end of
Scala Tympani. Both the round and oval windows are seated at the basal end of the
cochlea. The Scalas Vestibuli and Tympani (and Media) come together at the point of
the cochlea known as the apical end or helicotrema.
On the basilar membrane, within the organ of corti, thousands of tiny hair cells sit,
arranged in three outer rows and one inner row. These hair cells, (approximately 16,000)
are arranged in a frequency specific order, responding to incoming stimulus. At the basal
end of the cochlea we will find the high frequency specific hair cells, which then scale
down to the apical end where the low frequency hair cells reside. Connected the hair cells
are nerve fibres or spiral ganglion, which join together to form the cochlear branch of the
VIIIth cranial nerve, the auditory nerve.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
14
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Organ of corti
How then do these parts of the cochlea work together to transmit sound to the brain?
Sound coming in from the middle ear has been conducted along the ossicular chain to
the oval window. The movement of the stapes pushing in the oval window, at the
basal end of the cochlea, will displace the perilymph in the scala vestibuli. This
movement will create a travelling wave in the cochlea, causing the round window to
push outwards into the middle ear cavity. The two windows are thus ‘out of phase’.
The travelling wave causes the hair cells to move. The movement of the hair cells
causes electrical potentials which are carried by the cochlear nerve, ultimately to the
brain.
In the inner ear there is a small passage called the vestibular aqueduct. It is filled with
endolymph fluid and consists of the endolymphatic duct and endolymphatic sac. Its
function is to keep the cochlea and semicircular canals healthy by removing toxins and
other debris.
Abnormalities of the vestibular aqueduct can result in hearing less. For information
about the tonotopic response of the inner ear a good overview is given at:
www.brainconnection.com/topics/?main=anat/auditory-phys
The central auditory pathway
The vestibulocochlear nerve (the VIIIth nerve)
We have discussed the peripheral hearing system and its mechanisms. Sound has
been transferred, it now must be perceived. What is its path now?
The nerve that takes information from the ear to the brain is called the eighth nerve. It
has different fibres that come from the semicircular canals and from the cochlea that
join together in a bundle through the internal auditory meatus (IAM). The fibres from
the cochlea form the auditory nerve and the fibres from the semicircular canals form
the vestibular nerve. We use roman numerals when discussing the cranial nerves so
the eighth nerve is written as the VIIIth nerve.
The VIIIth nerve is a sensory nerve, ie it carries the impulses of the sensation of
hearing to the brain. It is one of the 12 cranial nerves that arise directly from the brain.
The auditory nerve must join with the vestibular portion of the VIIIth nerve and begin
its journey through the internal auditory canal up into the brain. It is often referred to
as the vestibulocochlear nerve.
Taking the ride with the VIIIth nerve will be the facial, or VIIth (seventh), nerve and
the internal auditory artery. They will travel the 10mm of the internal auditory canal
together.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
15
Leaving the internal auditory canal and travelling a further 18mm, the VIIIth nerve will
attach itself to the brain stem at the cerebellopontine angle, which is the junction of the
cerebellum, medulla and pons. The midbrain, pons and medulla are collectively called the
brain stem.
Separation of the auditory and vestibular nerves occur at this point. The auditory nerve
itself will now divide, with one section descending to the dorsal cochlear nucleus, the
other ascending to the ventral cochlear nucleus.
From the brain stem we move to the midbrain. Sound can be transferred here either
ipsilaterally or contralaterally. The ipsilateral and contralateral superior olivary
complexes are reached by the fibres of the ventral cochlear nucleus. Their ascending
pathways reach along the lateral lemniscus on both sides of the brain. The contalateral
inferior colliculus is reached by the fibres of the dorsal cochlear nucleus. The superior
olivary complex, while being a relay station to the brain, also controls the reflex
activity of the muscles in the middle ear. These muscles (the stapedial and tensor
tympani) react to loud stimulus, giving both contralateral and ipsilateral responses.
Their level of response and pattern of behaviour can be a useful diagnostic tool, in
determining conductive, cochlear and retrocochlear pathology.
Auditory impulses then move onto their last subcortical relay station - the medial
geniculate body, which is found within the thalamus. Most fibres arrive at this station
from the ipsilateral inferior colliculus, some from the lateral lemniscus.
Fibres will now spread out and climb to the auditory cortex.
The primary auditory cortex
A large part of the cortex is involved in the interpretation of sound. The temporal,
parietal and frontal areas of the cortex all interpret different aspects of sound. Latest
thinking suggests the limbic system also plays a part in the emotional significance of
sound. The main part of the brain involved with hearing is in the temporal part of the
cerebrum and is referred to as the primary auditory cortex.
No matter how well the peripheral hearing mechanism functions, there is no perception
until sound is interpreted in the brain. In some circumstances, the peripheral auditory
mechanism functions as it should but the person still reacts like a hearing impaired
person. This might be because the central auditory mechanism is not functioning well.
Much is involved in hearing. From the movement of the tympanic membrane to the
cortex’s interpretation of that sound, about one third of a second of time has elapsed.
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
16
3064-1/HLSP Audiometry - Anatomy of the Ear V1
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW
3064-1/HLSP Audiometry - Anatomy of the Ear V1
17
TOPIC QUESTIONS
If you can answer all of these questions with confidence (and without looking at your
notes) then you should be ready for assessment events that will ask you to apply your
knowledge about the anatomy of the ear to the practice of audiometry. Knowledge of
anatomy will impact on your understanding of hearing assessments and how to
communicate with clients about their results and options for rehabilitation. It will also help
you in discussing results with other clinicians such as audiologists and doctors.

What is anatomy?

What is physiology?

What are the peripheral and the central hearing mechanisms?

What do the following abbreviations stand for - TM, EAM, IAM, ME?

Can you draw a diagram of the peripheral hearing mechanism and label its parts?

Can you explain the structure and function of the peripheral hearing mechanism to
a hearing professional?

Can you explain the structure and function of the peripheral hearing mechanism to
a client?

Can you draw a diagram of the tympanic membrane with the following landmarks
labelled: cone of light, handle of malleus, umbo, annulus, pars tensa, pars flaccida?

Can you describe the outer ear and its functions?

What important role does the external auditory meatus play in maintaining the health of
our ears?

How does the external auditory meatus help in maintaining a healthy tympanic
membrane?

What is cerumen and where do you find it?

Can you describe the middle ear and its functions?

What is the function of the Eustachian tube?

What are the ossicles?

How is sound transferred from air borne to mechanical energy in the middle ear?

Can you describe the structure and function of the inner ear?

Can you draw the Organ of Corti and describe its function?

What is the tonotopic response of the inner ear?

What is the importance of the semicircular canals?

Can you describe the passage of sound from the oval window to the IAM?

What is the vestibular aqueduct and what is its function?

What is the central auditory pathway?
Developed by Community Services, Health, Tourism and Hospitality Division
© 2004, TAFE NSW