* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download EE 529 Circuit and Systems
History of electric power transmission wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Ground (electricity) wikipedia , lookup
Buck converter wikipedia , lookup
Electronic engineering wikipedia , lookup
Current source wikipedia , lookup
Flexible electronics wikipedia , lookup
Alternating current wikipedia , lookup
Stray voltage wikipedia , lookup
Fault tolerance wikipedia , lookup
Electrical substation wikipedia , lookup
Integrated circuit wikipedia , lookup
Earthing system wikipedia , lookup
Mains electricity wikipedia , lookup
Regenerative circuit wikipedia , lookup
Opto-isolator wikipedia , lookup
Two-port network wikipedia , lookup
Electrical wiring in the United Kingdom wikipedia , lookup
Circuit breaker wikipedia , lookup
Signal-flow graph wikipedia , lookup
Topology (electrical circuits) wikipedia , lookup
EE 529 Circuit and Systems Analysis Lecture 4 EASTERN MEDITERRANEAN UNIVERSITY Matrices of Oriented Graphs THEOREM: In a graph G let the fundamental circuit and cut-set matrices with respect to a tree to be written as (r ) Bf = B and ( ) U ( ) r Af = U A r If the column orderings are identical then A = B T Matrices of Oriented Graphs Consider the following graph e3 e6 e2 e4 e5 e1 1 0 0 1 1 0 e2 A f 0 1 0 1 0 1 e4 0 0 1 0 1 1 e5 v1 e2 e3 e1 v0 e5 e4 v2 e6 e5 e3 e6 e1 e2 e4 1 1 0 1 0 0 e1 Bf 1 0 1 0 1 0 e3 0 1 1 0 0 1 e6 v3 FUNDAMENTAL POSTULATES Now, Let G be a connected graph having e edges and let xT x1 t , x2 t , and xe t y T y1 t , y2 t , ye t be two vectors where xi and yi, i=1,...,e, correspond to the across and through variables associated with the edge i respectively. FUNDAMENTAL POSTULATES 2. POSTULATE Let B be the circuit matrix of the graph G having e edges then we can write the following algebraic equation for the across variables of G Bx = 0 3. POSTULATE Let A be the cut-set matrix of the graph G having e edges then we can write the following algebraic equation for the through variables of G Ay = 0 FUNDAMENTAL POSTULATES 2. POSTULATE is called the circuit equations of electrical system. (is also referred to as Kirchoff’s Voltage Law) 3. POSTULATE is called the cut-set equations of electrical system. (is also referred to as Kirchoff’s Current Law) Fundamental Circuit & Cut-set Equations Consider a graph G and a tree T in G. Let the vectors x and y partitioned as xT xTb xTc y T y Tb y Tc where xb (yb) and xc (yc) correspond to the across (through) variables associated with the branches and chords of the tree T, respectively. Then yb xb B U x 0 c xc Bxb fundamental circuit equation and U A = 0 yc y b = -Ay c fundamental cut-set equation Series & Parallel Edges Definition: Two edges ei and ek are said to be connected in series if they have exactly one common vertex of degree two. v0 ei ek Series & Parallel Edges Definition: Two edges ei and ek are said to be connected in parallel if they are incident at the same pair of vertices vi and vk. vi ek ei vk (n+1) edges connected in series (x1,y1) (x2,y2) (x0,y0) (xn,yn) 1 x0 x 1 x 1 2 0 x3 xn 1 1 1 n x0 xi i 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 y0 y 1 0 y2 0 0 y3 1 yn y0 y1 y2 yn (n+1) edges connected in parallel (x0,y0) 1 (x1,y1) y0 y 1 y 1 2 0 y3 yn 1 1 1 n y0 yi i 1 (xn,yn) (x2,y2) 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 x0 x1 x2 0 x0 x 1 0 x2 0 0 x3 1 xn xn Mathematical Model of a Resistor A a v(t) i(t) B b v(t ) Ri (t ) Mathematical Model of an Independent Voltage Source v(t) A a v(t) Vs Vs i(t) i(t) B b Mathematical Model of an Independent Voltage Source v(t) a A v(t) Is i(t) Is i(t) B b Circuit Analysis A-Branch Voltages Method: Consider the following circuit. 2 k 15 V 30 V 4 k 3 k 1 k 20 V 10 mA Circuit Analysis A-Branch Voltages Method: 1. Draw the circuit graph 2 k 15 V 30 V 4 k 10 mA 3 k 1 k 20 V 2 a 3 b There are: •5 nodes (n) 4 c 1 6 5 d 7 •3 voltage sources (nv) e 8 •8 edges (e) •1 current source (ni) Circuit Analysis A-Branch Voltages Method: 1. Select a proper tree: (n-1=4 branches) Place voltage sources in tree Place current sources in co-tree Complete the tree from the resistors 2 a 3 b 4 c 1 6 5 d 7 e 8 Circuit Analysis A-Branch Voltages Method: 2. Write the fundamental cut-set equations for the tree branches which do not correspond to voltage sources. i2 i 3 1 1 1 1 1 i5 0 i6 i7 2 a 3 b 4 c 1 6 5 d 7 e 8 Circuit Analysis A-Branch Voltages Method: 2. Write the currents in terms of voltages using terminal equations. i2 i3 i5 i6 i7 v2 2k v3 4k v5 1k v6 3k 10mA 2 a 3 b 4 c 1 6 5 d 7 e 8 Circuit Analysis A-Branch Voltages Method: 2. Substitute the currents into fundamental cut-set equation. v3 v5 v6 v2 10m 2k 4k 1k 3k 2 a 3 b 4 c 1 6 5 d 7 e 8 3. v3, v5, and v6 must be expressed in terms of branch voltages using fundamental circuit equations. Circuit Analysis A-Branch Voltages Method: v3 v2 v1 v2 30 v5 v4 v2 1 15 v2 30 v2 15 v6 v2 v1 v8 v2 30 20 v2 50 v v v v 12k 2 3 5 6 10m 2k 4k 1k 3k 6v2 3v3 12v5 4v6 120 6v2 3(v2 30) 12(v2 15) 4(v2 50) 120 6 3 12 4 v2 90 180 200 120 25v2 350 v2 2 a 3 b 4 c 1 6 5 d 7 e 8 350 14 V 25 Find how much power the 10 mA current source delivers to the circuit Circuit Analysis A-Branch Voltages Method: Find how much power the 10 mA current source delivers to the circuit v7 v8 v1 v2 20 30 14 36V P10mA v7i7 36 10m 360 mW 2 a 3 b 4 c 1 6 5 d 7 e 8 Circuit Analysis Example: Consider the following circuit. Find ix in the circuit. 20 V 2 i1 4 4 ix 15 V 5 i2 i3 3 10 V Circuit Analysis Circuit graph and a proper tree 20 V 2 1 2 3 i1 6 4 4 4 ix 15 V 5 7 8 5 i3 i2 3 ix i5 10 V Circuit Analysis Fundamental cut-set equations 1 2 3 i2 i6 i8 i7 i3 i6 i8 6 4 5 7 8 v2 i2 2 v6 i6 4 v8 i8 3 v3 i3 4 v7 i7 5 Circuit Analysis Fundamental cut-set equations 1 2 3 6 4 5 7 8 v6 v8 v7 v2 2 4 3 5 v3 v6 v8 4 4 3 Circuit Analysis Fundamental circuit equations 1 2 3 6 4 5 7 8 v6 v3 v1 v2 v3 v2 20 v8 v4 v3 v1 v2 v5 15 v3 20 v2 10 v3 v2 15 v7 v1 v2 v5 20 v2 10 v2 30 Circuit Analysis v3 v2 20 v3 v2 15 v2 30 v2 60 4 3 5 2 v3 v3 v2 20 v3 v2 15 12 4 4 3 30v2 15v3 15v2 300 20v3 20v2 300 12v2 360 35v3 77v2 960...................(1) 3v3 3v3 3v2 60 4v3 4v2 60 10v3 7v2 120......................(2) v3= 9.5639V v2=-8.1203 V Circuit Analysis v7 v8 v2 30 v3 v2 15 i5 i7 i8 5 3 5 3 i5 3.48A ix 3.48 A