* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download LIDAR REFERENCES Antonarakis A.L.S., Saatchi S.S., Chazdon
Landscape ecology wikipedia , lookup
Quorum sensing wikipedia , lookup
Cultural ecology wikipedia , lookup
Theoretical ecology wikipedia , lookup
Conservation movement wikipedia , lookup
Operation Wallacea wikipedia , lookup
Sustainable forest management wikipedia , lookup
Biological Dynamics of Forest Fragments Project wikipedia , lookup
LIDAR REFERENCES Antonarakis A.L.S., Saatchi S.S., Chazdon R.L., & Moorcroft P.R. (2011) Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function. Ecological Applications, 21, 1120–1137. Aragão L.E.O.C., Shimabukuro Y.E., Espírito-Santo F.D.B., & Williams M. (2005) Landscape pattern and spatial variability of leaf area index in Eastern Amazonia. Forest Ecology and Management, 211, 240–256. Asner G.P. (2013) Geography of forest disturbance. PNAS, 110, 3711–3712. Asner G.P., Kellner J.R., Kennedy-bowdoin T., Knapp D.E., Anderson C., & Martin R.E. (2013a) Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS ONE, 8, e60875. Asner G.P., Mascaro J., Anderson C., Knapp D.E., Martin R.E., Kennedy-bowdoin T., Breugel M. Van, Davies S., Hall J.S., Muller-Landau H.C., Potvin C., Sousa W., Wright J., & Bermingham E. (2013b) High-fidelity national carbon mapping for resource management and REDD +. Carbon Balance and Management, 8, 1–14. Asner G.P., Mascaro J., Hall J.S., & Breugel M. Van (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. ECOSYSTEM ECOLOGY, 168, 1147–1160. Baraloto C., Molto Q., Rabaud S., Hérault B., Valencia R., Blanc L., Fine P.V.A., & Thompson J. (2013) Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests : A Comparison of Field Inventory Methods. Biotropica, 45, 288–298. Blanchard S.D., Jakubowski M.K., & Kelly M. (2011) Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar. Remote Sensing, 3, 2420–2439. Boyd D.S., Hill R.A., Hopkinson C.H., & Baker T.R. (2013) Landscape-scale forest disturbance regimes in southern Peruvian Amazonia. Ecological Applications, 23, 1588–1602. Bradbury R.B., Hill R.A., Mason D.C., Hinsley S.A., Wilson J.D., Balzter H., Anderson G.Q.A., Whittingham M.J., Davenport I.J., & Bellamy P.E. (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data : a review with case studies from agricultural and woodland environments. Ibis, 147, 443–452. Brando P.M., Goetz S.J., Baccini A., Nepstad D.C., Beck P.S.A., & Christman M.C. (2010) Seasonal and interannual variability of climate and vegetation indices across the Amazon. PNAS, 107, 14685–14690. Brokaw N. (1985) Gap-Phase Regeneration in a Tropical Forest. Ecology, 66, 682–687. Brokaw N. (1987) Gap-phase regeneration of three pioneer tree species in a tropical forest. Journal of Ecology, 75, 9–19. Chambers J.Q., Asner G.P., Morton D.C., Anderson L.O., Saatchi S.S., Espírito-Santo F.D.B., Palace M., & Souza Jr C.M. (2007) Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends in Ecology & Evolution, 22, 414–423. Chambers J.Q., Negrón-Juárez R.I., Hurtt G.C., Marra D.M., & Higuchi N. (2009a) Lack of intermediate-scale disturbance data prevents robust extrapolation of plot-level tree mortality rates for old-growth tropical forests. Ecol. Lett., 12, 22–25. Chambers J.Q., Negrón-Juárez R.I., Marra D.M., Di Vittorio A., Tews J., Roberts D., Ribeiro G.H.P.M., Trumbore S.E., & Higuchi N. (2012) The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. PNAS, 110, 3949–3954. Chambers J.Q., Robertson A.L., Carneiro V.M.C., Lima A.J.N., Smith M.-L., & Higuchi N. (2009b) Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia, 160, 107–117. Chambers J.Q., dos Santos J., Ribeiro R.J., & Higuchi N. (2001) Tree damage , allometric relationships , and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152, 73–84. Clark D.B. & Kellner J.R. (2012) Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23, 1191–1196. Clark D.B., Olivas P.C., Oberbauer S.F., Clark D., & Ryan M.G. (2008) First direct landscape-scale measurement of tropical rain forest Leaf Area Index , a key driver of global primary productivity. Ecol. Lett., 11, 163–172. Clark M.L., Clark D.B., & Roberts D.A. (2004) Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment, 91, 68–89. Clawges R., Vierling K., Vierling L., & Rowell E. (2008) The use of airborne lidar to assess avian species diversity , density , and occurrence in a pine / aspen forest. Remote Sensing of Environment, 112, 2064–2073. Colgan M.S., Asner G.P., & Swemmer T. (2013) Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecological Applications, 23, 1170– 1184. Cook B.D., Corp L.A., Nelson R.F., Middleton E.M., Morton D.C., McCorkel J.T., Masek J.G., Ranson K.J., Ly V., & Montesano P.M. (2013) NASA Goddard’s LiDAR, Hyperspectral and Thermal (GLiHT) Airborne Imager. Remote Sensing, 5, 4045–4066. Davidson E.A., Araújo A.C. De, Artaxo P., Balch J.K., Brown I.F., Bustamante M.M.C., Coe M.T., Defries R.S., Keller M., Longo M., Munger J.W., Schroeder W., Soares-Filho B.S., Souza Jr C.M., & Wofsy S.C. (2012) The Amazon basin in transition. Nature, 481, 321–328. Denslow J.S. (1987) Tropical rainforest gaps and tree species diversity. Ann. Rev. Ecol. Syst, 18, 431– 451. Drake J.B., Dubayah R.O., Clark D.B., Knox R.G., Blair J.B., Hofton M.A., Chazdon R.L., Weishampel J.F., & Prince S.D. (2002a) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79, 305–319. Drake J.B., Dubayah R.O., Clark D.B., Knox R.G., Blair J.B., Hofton M.A., Chazdon R.L., Weishampel J.F., & Prince S.D. (2002b) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79, 305–319. Drake J.B., Dubayah R.O., Knox R.G., Clark D.B., Blair J.B., & Rica C. (2002c) Sensitivity of largefootprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment, 81, 378–392. Drake J.B., Knox R.G., Dubayah R.O., Clark D.B., Condit R., Blair J.B., & Hofton M.A. (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing : factors affecting the generality of relationships. Global Ecology and Biogeography, 12, 147–159. Espírito-Santo F.D.B., Gloor M., Keller M., Malhi Y., Saatchi S.S., Nelson B.W., Oliveira Jr R.C., Pereira C., Lloyd J., Frolking S., Palace M., Shimabukuro Y.E., Duarte V., Monteagudo A., López- Gonzalez G., Baker T.R., Feldpausch T.R., Brienen R.J., Asner G.P., Boyd D.S., & Phillips O.L. (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun., 5, 1–6. Espírito-Santo F.D.B., Keller M., Braswell B., Nelson B.W., Frolking S., & Vicente G. (2010) Storm intensity and old ‐ growth forest disturbances in the Amazon region. Geophysical Research Letters, 37, 1–6. Fisher J.I., Hurtt G.C., Thomas R.Q., & Chambers J.Q. (2008) Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett., 11, 554–563. Gillespie T.W., Foody G.M., Rocchini D., Giorgi A.P., & Saatchi S.S. (2008) Measuring and modelling biodiversity from space. Progress in Physical Geography, 32, 203–221. Gloor M., Phillips O.L., Lloyd J., Lewis S.L., Malhi Y., Baker T.R., López-Gonzalez G., Peacock J., Almeida S., et al. (2009) Does the disturbance hypothesis explain the biomass increase in basinwide Amazon forest plot data ? Global Change Biology, 15, 2418–2430. Goetz S.J. & Dubayah R.O. (2011) Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2, 231–244. Goetz S.J., Steinberg D., Betts M.G., Holmes R.T., Doran P.J., Dubayah R., & Hofton M.A. (2010a) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569–1576. Goetz S.J., Steinberg D., Betts M.G., Holmes R.T., Doran P.J., Dubayah R.O., & Hofton M.A. (2010b) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 96 , 1569–1576. Gonga-Saholiariliva N., Gunnell Y., Petit C., & Mering C. (2011) Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis. Progress in Physical Geography, 35, 739–764. Hardiman B.S., Bohrer G., Gough C.M., Vogel C.S., & Curtis P.S. (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818–1827. Hardiman B.S., Gough C.M., Halperin A., Hofmeister K.L., Nave L.E., Bohrer G., & Curtis P.S. (2013) Forest Ecology an d Managemen t Maintaining high rates of carbon storage in old forests : A mechanism linking canopy structure to forest function. Forest Ecology and Management, 298, 111–119. Hess A.N., Falkowski M.J., Webster C.R., Storer A.J., Pocewicz A., & Martinuzzi S. (2013) Employing lidar data to identify butterfly habitat characteristics of four contrasting butterfly species across a diverse landscape. Remote Sensing Letters, 4, 354–363. Hosoi F. & Omasa K. (2006) Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning Lidar. IEEE Transactions on Geoscience and Remote Sensing, 44, 3610–3618. Iida Y., Kohyama T.S., Kubo T., Kassim A.R., Poorter L., Sterck F.J., & Potts M.D. (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Functional Ecology, 25, 1260–1268. Iida Y., Poorter L., Sterck F.J., Kassim A.R., Kubo T., Potts M.D., & Kohyama T.S. (2012) Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Functional Ecology, 26, 274–282. Jacquemoud S., Verhoef W., Baret F., Bacour C., Zarco-tejada P.J., Asner G.P., François C., & Ustin S.L. (2009) Remote Sensing of Environment PROSPECT + SAIL models : A review of use for vegetation characterization. Remote Sensing of Environment, 113, 556–566. Jansen P.A., Van der Meer P.J., & Bongers F. (2008) SPATIAL CONTAGIOUSNESS OF CANOPY DISTURBANCE IN TROPICAL RAIN FOREST : AN INDIVIDUAL-TREE-BASED TEST. Ecology, 89, 3490–3502. Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., & Baret F. (2004) Review of methods for in situ leaf area index determination Part I . Theories , sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19–35. Kellner J.R. & Asner G.P. (2009) Convergent structural responses of tropical forests to diverse disturbance regimes. Ecol. Lett., 12, 887–897. Kellner J.R. & Asner G.P. (2014) Winners and losers in the competition for space in tropical forest canopies. Ecol. Lett., . Kellner J.R., Asner G.P., Vitousek P.M., Tweiten M.A., Hotchkiss S., & Chadwick O.A. (2011) Dependence of Forest Structure and Dynamics on Substrate Age and Ecosystem Development. Ecosystems, 14, 1156–1167. Kellner J.R., Clark D.B., & Hubbell S.P. (2009) Pervasive canopy dynamics produce short-term stability in a tropical rain forest landscape. Ecol. Lett., 12, 155–164. Kobayashi H. & Iwabuchi H. (2008) A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance , light environment , and photosynthesis simulation in a heterogeneous landscape. Remote Sensing of Environment, 112, 173–185. Kotchenova S.Y., Song X., Shabanov N. V, Potter C.S., Knyazikhin Y., & Myneni R.B. (2004) Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sensing of Environment, 92, 158–172. Lefsky M.A. (2010) A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophysical Research Letters, 37, 1–5. Lefsky M.A., Cohen W.B., Harding D.J., Parker G.G., Acker S.A., & Gower S.T. (2002a) Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 11, 393– 399. Lefsky M.A., Cohen W.B., Parker G.G., & Harding D.J. (2002b) Lidar Remote Sensing for Ecosystem Studies. BioScience, 52, 19–30. Lefsky M.A., Harding D.J., Keller M., Cohen W.B., Carabajal C.C., Espírito-Santo F.D.B., Hunter M.O., & Oliveira Jr R.C. (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32, 22–25. Lefsky M.A., Keller M., Pang Y., de Camargo P.B., & Hunter M.O. (2007) Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. Journal of Applied Remote Sensing, 1, 1–18. Lim K., Treitz P., Wulder M., St-Onge B., & Flood M. (2003) LiDAR remote sensing of forest structure. Progress in Physical Geography, 27, 88–106. Lloyd J., Gloor E.U., & Lewis S.L. (2009) Are the dynamics of tropical forests dominated by large and rare disturbance events ? Ecol. Lett., 12, 19–21. Loarie S.R., Tambling C.J., & Asner G.P. (2013) Lion hunting behaviour and vegetation structure in an African savanna. Animal Behaviour, 85, 899–906. Lone K., Loe L.E., Gobakken T., Linnell J.D.C., Odden J., & Remmen J. (2014) Living and dying in a multi-predator landscape of fear : roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos, . Lovell J.L., Jupp D.L.B., Culvenor D.S., & Coops N. (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote Sensing, 29, 607–622. Malhi Y. & All. E. (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107–1138. Meador W.E. & Weaver W.R. (1980) Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. Journal of the Atmospheric Sciences, 37, 630–643. Montgomery R.A. & Chazdon R.L. (2007) Forest Structure , Canopy Architecture , and Light Transmittance in Tropical Wet Forests. Ecology, 82, 2707–2718. Moorcroft P.R. (2006) How close are we to a predictive science of the biosphere ? Trends in Ecology and Evolution, 21, 400–407. Muller J. & Brandl R. (2009) Assessing biodiversity by remote sensing in mountai- nous terrain : the potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46, 897– 905. Negrón-Juárez R.I., Chambers J.Q., Guimaraes G., Zeng H., Raupp C.F.M., Marra D.M., Ribeiro G.H.P.M., Saatchi S.S., Nelson B.W., & Higuchi N. (2010) Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophysical Research Letters, 37, 1–6. Nelson B.W., Kapos V., Adams J.B., Oliveira W.J., & Braun O.P.G. (2014) Forest Disturbance by Large Blowdowns in the Brazilian Amazon. Ecology, 75, 853–858. Omasa K., Hosoi F., & Konishi A. (2007) 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany, 58, 881–898. Onoda Y., Saluñga J.B., Akutsu K., Aiba S., Yahara T., & Anten N.P.R. (2014) Trade-off between light interception ef fi ciency and light use ef fi ciency : implications for species coexistence in onesided light competition. Journal of Ecology, 102, 167–175. Parker G.G., Davis M.M., & Chapotin S.M. (2002) Canopy light transmittance in Douglas-fir – western hemlock stands. Tree Physiology, 22, 147–157. Parker G.G., Harding D.J., & Berger M.L. (2004a) A portable LIDAR system for rapid determination of forest canopy structure. Journal of Applied Ecology, 41, 755–767. Parker G.G., Harmon M.E., Lefsky M.A., Chen J., van Pelt R., Weiss S.B., Thomas S.C., Winner W.E., Shaw D.C., & Franklin J.F. (2004b) Three-dimensional Structure of an Canopy and its Implications for Radiation Balance , Microclimate , and Gas Exchange. Ecosystems, 7, 440–453. Parker G.G., Lefsky M.A., & Harding D.J. (2001) Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements. Remote Sensing of Environment, 76, 298–309. Pinty B., Gobron N., Widlowski J., Lavergne T., & Verstraete M.M. (2004) Synergy between 1-D and 3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data. Journal of Geophysical Research: Atmospheres, 109, 1–16. Pinty B., Lavergne T., Dickinson R., Widlowski J.-L., Gobron N., & Verstraete M.M. (2006) Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models. Journal of Geophysical Research: Atmospheres, 111, 1–20. Pury D.G.G.D.E. & Farquhar G.D. (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment, 20, 537–557. Saatchi S.S., Harris N.L., Brown S., Lefsky M.A., Mitchard E.T.A., & Salas W. (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS, 108, 9899–9904. Seavy N.E.S., Viers J.H. V, & Wood J. (2009) Riparian bird response to vegetation structure : a multiscale analysis using LiDAR measurements of canopy height. Ecological Applicationsv, 19, 1848–1857. Silva C.E., Kellner J.R., Clark D.B., & Clark D. (2013) Response of an old-growth tropical rainforest to transient high temperature and drought. Global Change Biology, 19, 3423–3434. Silveira J.., Louzada J., Barlow J., Andrade R.B., Mestre L., Solar R., Lacau S., & Cochrane M.. (2015) A Multi-Taxa Assessment of Biodiversity Change After Single and Recurrent Wildfires in a Brazilian Amazon Forest. Biotropica, . Stark S.C., Leitold V., Shimabukuro T., Lefsky M.A., & Keller M. (2012) Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett., . Ter Steege H., Pitman N.C.A., Phillips O.L., Chave J., Sabatier D., Duque A., Molino J.-F., Prévost M.F., Spichiger R., Castellanos H., von Hildebrand P., & Vásquez R. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444–447. Tempel D.J. & Kelly M. (2011) LiDAR as a Tool to Characterize Wildlife Habitat : California Spotted Owl Nesting Habitat as an Example. Jounal of Forestry, . Vierling K., Bassler C., Brandl R., Weib I., & Muller J. (2011) Spinning a laser web : predicting spider distributions using LiDAR. Ecological Applications, 21, 577–588. Wagner F., Rutishauser E., Blanc L., & Herault B. (2010) Effects of Plot Size and Census Interval on Descriptors of Forest Structure and Dynamics. Biotropica, 42, 664–671. Wang Y.P. (2003) A comparison of three different canopy radiation models commonly used in plant modelling. Functional Plant Biology, 30, 143–152. Weiss M., Baret F., Smith G.J., Jonckheere I., & Coppin P. (2004) Review of methods for in situ leaf area index (LAI) determination. Part II . Estimation of LAI , errors and sampling. Agricultural and Forest Meteorology, 121, 37–53. Yang R. & Friedl M.A. (2001) Parameterization of shortwave radiation fluxes for nonuniform vegetation canopies in land surface models. Journal of Geophysical Research: Atmospheres, 106, 14275–14286. Zhao F., Sweitzer R.A., Guo Q., & Kelly M. (2012) Characterizing habitats associated with fisher den structures in the Southern Sierra Nevada , California using discrete return lidar. Forest Ecology and Management, 280, 112–119.