Download MOTION RELATIVE TO ROTATING AXES

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Center of mass wikipedia , lookup

Vibration wikipedia , lookup

Photon polarization wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Derivations of the Lorentz transformations wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Classical mechanics wikipedia , lookup

Force wikipedia , lookup

Specific impulse wikipedia , lookup

Coriolis force wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

Inertia wikipedia , lookup

Hunting oscillation wikipedia , lookup

Angular momentum operator wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Velocity-addition formula wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Fictitious force wikipedia , lookup

Accretion disk wikipedia , lookup

Seismometer wikipedia , lookup

Equations of motion wikipedia , lookup

Relativistic angular momentum wikipedia , lookup

G-force wikipedia , lookup

Jerk (physics) wikipedia , lookup

Rigid body dynamics wikipedia , lookup

Classical central-force problem wikipedia , lookup

Centripetal force wikipedia , lookup

Kinematics wikipedia , lookup

Transcript
PROBLEMS
The gear has the angular motion shown. Determine the angular velocity and angular
acceleration of the slotted link BC at this instant. The pin at A is fixed to the
gear.
C
A
w=2 rad/s
2m
0.5 m
0.7 m
B
O
a=4 rad/s2
PROBLEMS
Link 1, of the plane mechanism shown, rotates about the fixed point O
with a constant angular speed of 5 rad/s in the cw direction while
slider A, at the end of link 2, moves in the circular slot of link 1.
Determine the angular velocity and the angular acceleration of link 2 at
the instant represented where BO is perpendicular to OA. The radius
of the slot is 10 cm.
Take sin 37=06, cos 37=0.8
1
A
10 cm
2
20 cm
37o
C
37o
w1=5 rad/s
B
O
16 cm
BO  OA
PROBLEMS
For the instant shown, particle A has a velocity of 12.5 m/s towards point C
relative to the disk and this velocity is decreasing at the rate of 7.5 m/s each
second. The disk rotates about B with angular velocity w=9 rad/s and angular
acceleration a=60 rad/s2 in the directions shown in the figure. The angle b
remains constant during the motion. Telescopic link has a velocity of 5 m/s and an
acceleration of -2.5 m/s. Determine the absolute velocity and acceleration of
point A for the position shown.
Problem 7
Velocity Analysis
  


v A  v B  w  r  v rel

 24  7  
v B  5 i 
j
25 
 25



v B  4.8 i  1.4 j
vB
b 25
24
7
Velocity Analysis
2
yx 
9
2

2
2
2
x 
3
9

  2  2 
 
w  r  9k   i  j 
3 
3
 
 
w  r  -6 i  6 j
2
x m
3
Velocity Analysis
2
2
2
2
yx 

x 
9
3
9
dy
4
tan  
 2x 
dx x 2 / 3
3
2
vrel

3
5
4

 3  4 
v rel  12.5 i  j 
5 
5



v rel  7.5 i  10 j



v A  6.3 i  17.4 j

2
x m
3
Acceleration Analysis


    
 

a A  a B  w  w  r   a  r  2w  v rel  a rel

aB

aB
 24  7  
 -2.5 i 
j
25 
 25


 -2.4 i - 0.7 j
aB
b 25
24
7
Acceleration Analysis
2
yx 
9
2

2
2
2
x 
3
9

2
x m
3


    2  2  

 


  
w  w  r   9k  9k   i  j   9k  - 6 i  6 j  -54 i - 54 j
3 
3

  2  2 


 
a  r  -60k   i  j   40 i - 40 j
3 
3
Acceleration Analysis
 




2w  v rel  2 9k  7.5 i  10 j



2w  v rel  -180 i  135 j

Acceleration Analysis
+n
+t
(arel)n
vrel

3
dy
4
 2x 
dx x  2 / 3
3
d2y
2
dx 2

  dy 
1   
  dx 

d2y
dx 2
2 3/ 2



v 2rel 12.52
a rel n  
 67.49 m / s 2

2.315



 4  3 
a rel n  67.49 - i  j   -53.992 i  40.494 j
5 
 5
 

 3  4 
a rel t  -7.5 i  j   -4.5 i - 6 j
5 
5
(arel)t
 2.315 m



a A  -254.892 i  74.794 j
5
4
PROBLEMS
The pin A in the bell crank AOD is guided by the flanges of the collar
B, which slides with a constant velocity vB of 0.9 m/s along the fixed
shaft for an interval of motion. For the position =30o determine the
acceleration of the plunger CE, whose upper end is positioned by the
radial slot in the bell crank. .
Problem 8
Velocity Analysis
vA
vrel
vA
30o
vB=(vA)x
129.9 mm
60o
vA 

30o
vB
0.9

 1.039 m / s
cos 30 cos 30
1.039
wAOD  w 
 6.928 rad / s
0.15


vC  -v C j
(1)








 



v C  v O  w  rC / O  v rel  -6.928k  0.225 i  0.13 j  v rel cos 30 i  sin 30 j

0





v C  0.9 i - 1.56 j  0.866v rel i  0.5v rel j
(2)
vrel
(1)=(2)
vrel=-1.039 m/s
vc=2.079 m/s

Acceleration Analysis
aA
vrel
VB=constant
(aA)n
o
30
aA
So aA must be vertical.
60o
(aA)t
30o
129.9 mm
a A n  w2 OA  6.9282  0.15  7.195 m / s 2
a A n
2
aA 
 8.308 m / s
cos 30
a A t  a A sin 30  4.154 m / s 2
a A t  a AOD AO

a AOD  a  27.695 rad / s 2


aC  aC j
(3)


    
 

a C  a O  w  w  r   a  r  2w  v rel  a rel

0








a C  -6.928k  - 6.928k  0.225 i  0.13 j  27.695k  0.225 i  0.13 j





 2 - 6.928k  - 1.039 cos 30 i - 1.039 sin 30 j  arel cos 30 i  sin 30 j





a C  -21.58 i  12.464 j  0.866a rel i  0.5a rel j
(4)










(3)=(4)
arel=24.92 m/s2
aC=27.92 m/s2
PROBLEMS
1. The uniform 30-kg bar OB is secured to the accelerating frame in the
30o position from the horizontal by the hinge at O and roller at A. If the
horizontal acceleration of the frame is a=20 m/s2, compute the force FA on
the roller and the x- and y-components of the force supported by the pin
at O.
PROBLEMS
2. The block A and attached rod have a combined mass of 60 kg and are
confined to move along the 60o guide under the action of the 800 N applied
force. The uniform horizontal rod has a mass of 20 kg and is welded to the
block at B. Friction in the guide is negligible. Compute the bending moment M
exerted by the weld on the rod at B.
SOLUTION
FBD
Kinetic Diagram
mTax=60ax
x
x

N
60o
W=60(9.81) N
 Fx ext. forces  max 
800 - 60(9.81) sin 60  60a x
a x  4.84 m / s 2
By
FBD of rod
KD of rod
m1ax=20ax
Bx
M
W1=20(9.81) N
M
B
 ma x d 
M  196 m / s 2
M - 20 (9.81)0.7  (20 )( 4.94 )( 0.7 sin 60 )
PROBLEMS
3. The parallelogram linkage shown moves in the vertical plane with the
uniform 8 kg bar EF attached to the plate at E by a pin which is welded both to
the plate and to the bar. A torque (not shown) is applied to link AB through its
lower pin to drive the links in a clockwise direction. When  reaches 60o, the
links have an angular acceleration an angular velocity of 6 rad/s2 and 3 rad/s,
respectively. For this instant calculate the magnitudes of the force F and
torque M supported by the pin at E.
PROBLEMS
4. The uniform 100 kg log is supported by the two cables and used as a
battering ram. If the log is released from rest in the position shown, calculate
the initial tension induced in each cable immediately after release and the
corresponding angular acceleration a of the cables.
SOLUTION
+n
FBD
KD
+n
TA
TB
ma n

+t
mat
+t
W=100(9.81) N
When it starts to move, v=0, w=0 but a≠0
 Fn ext. forces  0

 Ft ext. forces  mat
at  ar 

a
an  w 2 r  0
TA  TB - mg cos 30  0
mg sin 30  mat

TA  TB  849.57

at  4.905 m / s
2

3TA  TB
4.905
 2.45 rad / s 2
2
Length of the cables
The motion of the log is curvilinear translation.
 M 
G d .k .
0 
TA  212 .39 N
TA sin 60 (1.5) - TB sin 60 (0.5)  0
TB  637 .17 N
*
*
PROBLEMS
5. An 18 kg triangular plate is supported by cables AB and CD. When the plate
is in the position shown, the angular velocity of the cables is 4 rad/s ccw. At
this instant, calculate the acceleration of the mass center of the plate and the
tension in each of the cables.
C
A
60°
24 cm
B
10 cm
60°
D
G
Answer:
20 cm
20 cm
a  6.23 m / s 2
TAB  143 .11 N
TCD  78 .93 N
PROBLEMS
6. The uniform 8 kg slender bar is hinged about a horizontal axis through O
and released from rest in the horizontal position. Determine the distance b
from the mass center to O which will result in an initial angular acceleration of
16 rad/s2, and find the force R on the bar at O just after release.
PROBLEMS
7. The spring is uncompressed when the uniform slender bar is in the vertical
position shown. Determine the initial angular acceleration a of the bar when it
is released from rest in a position where the bar has been rotated 30o
clockwise from the position shown. Neglect any sag of the spring, whose mass
is negligible.
SOLUTION
Unstrecthed length of the spring:
When =30o , length of the spring:
When
=30o
lo  (2l / 4) 2  l 2 
l spring 
5
l
2
3
l
2
 5
 5
3 
3 


, spring force: Fspring  k
ll  kl
 2

 2
2
2 



(in compression)
 M O  Ia  mat
30o
W
+t
l
l 1
l

- mg cos 60  Fspring   ml 2 a  m at
 4
4
2  12

l
.
60o
Ot +n
O
lspring
G
60o
30o
l
On
a
Fspring

+t
mat
+n
G
Ia
man  mw 2
a  0.864
l
0
4
k
g
- 0.857
m
l
4