Download Introduction to Electronics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Stepper motor wikipedia , lookup

Memristor wikipedia , lookup

Electrical engineering wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Power inverter wikipedia , lookup

Three-phase electric power wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Power engineering wikipedia , lookup

Electrical substation wikipedia , lookup

Islanding wikipedia , lookup

History of electric power transmission wikipedia , lookup

Resistor wikipedia , lookup

Semiconductor device wikipedia , lookup

P–n diode wikipedia , lookup

Multimeter wikipedia , lookup

Voltage regulator wikipedia , lookup

Capacitor wikipedia , lookup

Rectifier wikipedia , lookup

Electrical ballast wikipedia , lookup

Transistor wikipedia , lookup

Surface-mount technology wikipedia , lookup

Electronic engineering wikipedia , lookup

Triode wikipedia , lookup

Ohm's law wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Voltage optimisation wikipedia , lookup

Stray voltage wikipedia , lookup

Distribution management system wikipedia , lookup

Power electronics wikipedia , lookup

Buck converter wikipedia , lookup

Surge protector wikipedia , lookup

Metadyne wikipedia , lookup

Mains electricity wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Current mirror wikipedia , lookup

Current source wikipedia , lookup

Alternating current wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
1
Introduction to Electronics
Objectives : After completing this Chapter, you will be able to :
l
l
l
l
l
l
l
l
l
l
l
l
l
State the meaning of electronics.
Say how electronics has developed over the century.
State the latest trends in the field of electronics.
Name some of the electronic devices and draw their symbols.
Recognize resistors, capacitors and inductors of different types.
Read the values of resistors and capacitors from the colour code.
State the voltage-divider and current-divider concepts.
Draw the symbols of ideal voltage source, practical voltage source, ideal current source and practical
current source.
Give a graphical representation of voltage source and current source.
Explain the difference between an ideal source and a practical source.
Convert a given voltage source into an equivalent current source and vice-versa.
State the difference between an analog signal and a digital signal.
Write the SI units of various physical quantities used in electronics.
1.1 WHAT IS ELECTRONICS
To put the tiny electrons to work is Electronics. The word ‘electronics’ is derived from electron
mechanics. Electronics is the science and technology of the motion of electrons (or other such
charges) in gas, vacuum, or in any semiconductor. It deals principally with the communication
of information and/or data handling.
Compared to the more established branches of engineering—civil, mechanical and electrical, the electronics is a newcomer—hardly 100 years old. Until around 1960, it was considered
an integral part of electrical engineering. But due to the tremendous advancement over the
last few decades, electronics has now gained its rightful place. The advancement has been so
fast that many sub-branches of electronics—such as Computer Science Engineering, Communication Engineering, Control and Instrumentation Engineering, Information Technology—
are now full-fledged courses in many universities.
Everyone is familiar with electronic devices, be it the television, the computer, or the
cellular phone. However, to most people, what goes on inside, is a mystery. An Electronics
Engineer knows and understands the functioning of these devices. He acquires the capability
to further improvise these devices as per the needs of the user.
2 Electronics Engineering
1.2 HISTORY OF ELECTRONICS
Electronics took birth in 1897 when J.A. Fleming developed a vacuum diode. Useful electronics
came in 1906 when vacuum triode was invented by Lee De Forest. This device could amplify
electrical signals. Later, around 1925, tetrode and pentode tubes were developed. These tubes
dominated the field of electronics till the end of World War II.
The Transistor Era
The era of semiconductor electronics began with the invention of the junction transistor
in 1948. Bardeen, Brattain and Shockley were awarded the Nobel Prize in Physics in 1956 for
this invention. This was the first Nobel award given for an engineering device in nearly 50
years.
Soon, the transistors were replacing the bulky vacuum tubes in different electronic circuits.
The tubes had major limitations : power was consumed even when they were not in use and
filaments burnt out, requiring frequent tube replacements. By now, vacuum tubes have become
history.
Earlier, the transistors were made from germanium as it was easier to purify a sample of
germanium. In 1954, silicon transistors were developed. These afforded operations upto
200 °C, whereas germanium device could work well only upto about 75 °C. Today, almost
all semiconductor devices are fabricated using silicon.
Invention of the Integrated Circuits (IC)
In 1958, Kilby conceived the concept of building an entire electronic circuit on a single
semiconductor chip. All active and passive components and their interconnections could be
integrated on a single chip, during the manufacturing process. This drastically reduced the
size and weight, as well as the cost per active component.
The term ‘microelectronics’ refers to the design and fabrication of these high componentdensity ICs. The following approximate dates give some indication of the increasing component
count per chip of area 3 × 5 mm2 and thickness 0.3 mm (about three times the thickness of
human hair) :
1951 — Discrete transistors
1960 — Small-Scale Integration (SSI), fewer than 100 components
1966 — Medium-Scale Integration (MSI), 100 to 1000 components
1969 — Large-Scale Integration (LSI), 1000 to 10000 components
1975 — Very-Large-Scale Integration (VLSI), more than 10000 components
The Field-Effect Transistor (FET)
In 1951, Shockley proposed the junction field-effect transistor (JFET), using the effect of
applied electric field on the conductivity of a semiconductor. A reliable JFET was produced in
1958.
The techniques to make reliable JFETs led to an even more important device called metaloxide-semiconductor field-effect transistor (MOSFET). Subsequent improvements in processing
and device design, and the growth of the computer industry have made MOS devices the most
widely used transistors.
Introduction to Electronics 3
Digital Integrated Circuits
The growth of computer industry spurred new IC development. In turn, the new IC concepts
resulted in new computer architecture.
Speed, power consumption, and component density are important considerations in digital
ICs. Transistor-transistor logic (TTL), emitter-coupled logic (ECL) and integrated-injection logic
(I2L) technologies were developed.
The use of MOSFETs is very attractive because very high component-densities are obtainable.
Originally, reliable fabrication employed PMOS devices, in which operation depended on
hole flow. Improved fabrication methods led to the use of N-channel MOS (NMOS). These
gave higher speed performance. Later, the complementary metal oxide semiconductor (CMOS)
technology employing both PMOS and NMOS in a circuit, was used.
MOSFETs find major applications in semiconductor memories. Earlier in 1970s, bipolar
junction transistors (BJTs) were used in making random access memories (RAMs), which were
capable of both storing and retrieving data (i.e., writing and reading). These could store about
100 bits of information. Using MOS technology, 16000-bit RAMs were made available in 1973,
64000-bit RAMs in 1978, and 288000-bit in 1982. By now, you have more than a billion-bit
chips available.
Read-only memories (ROMs), used for look-up tables in computers (e.g., to obtain the value
of sin x), were first introduced in 1967. Subsequent developments led to programmable ROMs
(PROMs) and erasable PROMs (EPROMs) in which data stored could be removed (erased) and
new data stored.
The first microprocessor (mP) was developed by M.E. Hoft at Intel in 1969. It led to the
“computer on a chip”.
Another important development arising from MOS technology is the charge-coupled device
(CCD). Recently, CCDs have found applications in camera manufacturing, image processing
and communication.
Analog Integrated Circuits
The first operational amplifier (OP AMP) was developed in 1964. Since then the OP AMP has
become the “workhorse” in analog signal processing. Other circuits and systems developed
subsequently are analog multipliers, digital-to-analog (D/A) and analog-to-digital (A/D) converters,
and active filters.
Technological developments are taking place today at an awesome pace. To digest, to
appreciate and to meet the challenges of these dynamic fields, it has become essential to
equip oneself with the fundamental understanding of the subject.
1.3 APPLICATIONS OF ELECTRONICS
Electronics is a big bag of tricks. It finds applications almost everywhere:
1. Communications and Entertainment
An audio amplifier is the heart of a tape recorder, a public address (PA) system, radio and
television receiver. The video section of a TV reproduces the picture signal received. Many
interesting toys use ICs. The telephone systems now employ digital ICs for switching and
memory. Communication satellites became feasible because of microelectronics.
4 Electronics Engineering
A new era of electronics, called digital signal processing (DSP), has evolved because ICs have
made the merging of communications and computation possible.
2. Controls and Instrumentation
Silicon controlled rectifiers (SCRs) are used in the speed-control of motors, power rectifiers and
inverters. Automation of industrial processes has been made possible by electronic circuits.
With microelectronics, computers have become integral components of control systems.
Very accurate and user-friendly instruments like digital voltmeter (DVM), cathode ray oscilloscope
(CRO), frequency counter, signal generator, strain gauge, pH-meter, spectrum analysers, etc.,
are now available.
3. Defence Applications
Defence services are using electronic equipments. Radar, sonar and infrared systems are used
to detect the location of enemy jet fighters, war-ships and submarines, and then to control the
aiming and firing of guns.
Guided missiles are completely controlled by electronic means. Electronic circuits provide
a means of secret communication between the head-quarter and different units. Such a
communication has become absolutely essential to win a war.
4. Industrial Applications
Use of automatic control systems in different industries is increasing day by day. Control of
thickness, quality, weight and moisture content of a material can be easily done by such
systems.
Use of computers has made the reservations in railways and airways simple and convenient.
Even the power stations, which generate thousands of megawatts of electricity, are controlled
by tiny electronic devices and circuits.
5. Medical Sciences
Doctors and scientists are finding new uses of electronic systems in the diagnosis and treatment
of different ailments. Electrocardiographs (ECG), X-rays, short-wave diathermy units,
ultrasound scanning machines, endoscopy, etc. are in common use. Even the thermometers,
blood-pressure measuring instruments, blood-sugar measuring instruments, etc. are so userfriendly because of electronic circuits, that the patient can himself handle them.
6. Automobile Industry
Manufacturing of different types of vehicles is done primarily under the supervision of electronic
control systems. After the vehicle comes on the road, its efficient running depends on electronic
controls. Electronic ignition system, multipoint fuel injection (MPFI) system, electronic battery
charger, etc. are essential in modern high-speed vehicles.
1.4 THE FUTURE
We already have big size TVs that can be hung on a wall like a calender. Through internet, you
can instantly get any information from anywhere in the world. Soon, it will be possible to
instantly contact any person anywhere in the world.
Introduction to Electronics 5
The merging of extensive communication and inexpensive computers has already begun
penetrating nearly every aspect of the society. The ability and relative ease by which information
can be stored, retrieved, manipulated and transmitted is affecting us in our homes, our places
of work. We are moving into the new era of Information Technology.
1.5 ELECTRONIC CIRCUIT COMPONENTS
Howsoever complicated an electronic circuit may look, but luckily it contains only a few types
of basic components—some active and some passive. Components such as PN-junction diodes,
transistors, SCRs, FETs, etc. are said to be active because these are capable of changing the
shape of electrical signals. Passive components, such as resistors, inductors and capacitors, do
not change the shape of the signal. An electric circuit becomes an electronic circuit when it has
one or more active component(s). However, an active component all alone cannot perform
any useful function.
Active Components
There are many active components used in electronic circuits. Earlier, active devices were of
tube-type. We had vacuum tubes (such as vacuum diode, vacuum triode, vacuum pentode,
etc.) and gas tubes (such as gas diode, thyratron, etc.). These bulky tube devices are not used
now-a-days.
Almost all electronic circuits today use semiconductor devices or ICs. Brief information
about commonly used semiconductor devices is given on the next page.
Passive Components
1. Resistors
A resistor is a device which provides a force opposing the charge-flow (or current) in a circuit.
This opposing force is called resistance (R). It is measured in ohms (symbol is W, the greek
capital letter omega).
All resistors have power ratings. It is the maximum power that can be dissipated without
raising the temperature too high. Thus, a 1-W resistor with a resistance of 100 W can pass a
6 Electronics Engineering
Introduction to Electronics 7
maximum current of 100 mA. But a ¼ W resistor with the same resistance value (100 W) could
handle a current of only 50 mA. If the current exceeds this limit for any length of time, the
resistor would overheat and might even burn out.
In electronic circuits, the common standard power ratings are ¼ W, ½ W, 1 W and 2 W.
Thus, if we require a resistor to dissipate 0.6 W, we would select a 1 W resistor since the
operation value must not exceed the rating.
The size of a resistor is bigger if its wattage rating is higher, so as to withstand higher
dissipation losses.
A resistor is said to be linear, if the current through it is proportional to the pd (potential
difference) across its terminals; otherwise it is nonlinear. Resistors made from semiconductor
materials are non-linear.
Resistors are made in many forms. But all belong to either of the two groups—fixed and
variable.
Fixed Resistors
Most resistors used in electronic circuits are fixed (or non-variable). And most of these are
moulded-carbon composition resistors. In such resistors, the resistive material is of carbon-clay
composition. The leads are made of tinned copper. Resistors of this type are readily available
in values ranging from a few ohms to about 22 MW, with tolerance range of 5 to 20%, and
wattage ratings of ¼ W, ½ W and 1 W.
Another variety of fixed resistors is made by depositing a homogeneous film of pure carbon
(or some metal) over a glass or ceramic core. Desired values are then obtained by either
trimming the layer-thickness or by cutting helical grooves of suitable pitch along its length.
Contact caps are fitted on both ends. Tinned copper lead wires are then welded to these caps.
This type of metal film resistor is sometimes called precision type, since the resistance value can
be obtained with an accuracy of ±1%.
When ratings of more than 1 W are required, we use wire wound resistors. A thin nichrome
wire is wound on a ceramic or porcelain core. These resistors are available in the range of 1 W
to 100 kW, and power ratings upto about 200 W.
Resistance Colour Coding : Carbon-moulded and metal film resistors are small in size. It
becomes almost impossible to print the ratings on their body. Therefore, a standard colour
coding is used to indicate the ratings [Table 1.1].
The resistance is given in the form of four coloured signs (or bands) painted on the body.
The coloured bands are always read from left to right from the end that has the bands closest
to it, as shown in Fig. 1.1.
Fig. 1.1 Colour coding of resistors
8 Electronics Engineering
The first and second colour bands represent the first and second numbers (significant
digits) respectively, of the resistance value. The third band indicates the number of zeros that
follow the second digit. In case the third band is gold or silver, it represents a multiplying
factor of 0.1 or 0.01, respectively. The fourth band represents tolerance. It is a measure of the
precision with which the resistor was manufactured. In case the fourth band is not present, the
tolerance is assumed ±20%.
Table 1.1 Colour coding
Colour
Digit
Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Gray
White
Gold
Silver
No colour
0
1
2
3
4
5
6
7
8
9
–
–
–
Multiplier
Tolerance
0
10 = 1
101 = 10
102
103
104
105
106
107
108
109
0.1 = 10–1
0.01 = 10–2
–
±5%
±10%
±20%
Mnemonics : As an aid to memory in remembering the sequence of colour
codes given above, the student can remember any one of the following
sentences (all the capital letters stand for colours) :
(a) Bill Brown Realized Only Yesterday Good Boys Value Good Work.
(b) Bye Bye Rosie Off You Go Bristol Via Great Western.
(c) B B ROY of Great Britain had Very Good Wife.
Example 1.1 A resistor has a colour band sequence : yellow, violet, orange and gold. Find
the range in which its value must lie so as to satisfy the manufacturer’s tolerance.
Solution : With the help of the colour coding table (Table 1.1), we find :
1st band
Yellow
4
2nd band
Violet
7
3rd band
Orange
103
4th band
Gold
±5%
= 47 kW ±5%
47 × 10 3 × 5
W = 2. 35 k W
100
Therefore, the resistance should be within the range 47 kW ± 2.35 kW, or between 44.65 kW
and 49.35 kW.
Now, 5 % of 47 kW =
Example 1.2 A resistor has a colour band sequence : gray, blue, gold and silver. What is the
range in which its value must lie so as to satisfy the manufacturer’s tolerance ?
Introduction to Electronics 9
Solution : The specification of the resistor can be found by using the colour coding table as
follows :
1st band
Gray
8
2nd band
Blue
6
3rd band
Gold
10–1
4th band
Silver
±10%
= 86 × 0.1 W ±10%
= 8.6 W ±10%
10% of 8.6 W = 0.86 W
The resistance should lie somewhere between the values (8.6 – 0.86) W and (8.6 + 0.86) W,
or 7.74 W and 9.46 W.
Standard Resistor Values : In most electronic circuits, it is not necessary to use resistors of
exact values. The circuit works satisfactory even if the resistances differ from the designed
values by as much as ±20%. Therefore, we don’t have to manufacture resistors of all values.
In market, resistors of standard values as given in Table 1.2, are readily available.
Table 1.2 Standard values of commercially available resistors (having 10% tolerance)
Ohms (W)
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
Kilohms (kW)
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
Megohms (MW)
100
120
150
180
220
270
330
390
470
560
680
820
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
Variable Resistors
Big size variable resistors are usually called rheostats. In electronic circuits, we use small size
variable resistors, and they are called potentiometers (usually abbreviated to ‘pots’). Figure 1.2a
shows the basic construction of a pot. A resistance wire is wound over a dough-shaped core
of bakelite or ceramic. There is a rotating shaft at the centre of the core. The shaft moves an
arm and a contact point from end to end of the resistance element. The outer two terminals are
the end points of the resistance element and the middle leads to the rotating contact. Its
symbol is given in Fig. 1.2b. The arrow indicates the movable contact.
The variation of resistance in a potentiometer can be either linear or nonlinear. As shown in
Figure 1.3, the linear type has the core (or former) of uniform height. The core of the non-linear
type is made from a tapered strip. The pots used as volume control in sound equipments are
generally of nonlinear type (with logarithmic variation).
10 Electronics Engineering
Fig. 1.2 Variable resistor (potentiometer)
Fig. 1.3 Wire-wound potentiometer
Some Special Resistors
There are some resistors which have special characteristics. These are used in specific
applications.
Thermistor : The conventional wire-wound metallic resistors have positive temperature
coefficient of resistance. It means that their resistance increases when the temperature rises. A
thermistor is a device whose resistance decreases with increasing temperature.
When the temperature of a semiconductor [such as germanium (Ge) or silicon (Si)] rises,
more covalent bonds break. This produces larger number of free electrons and holes. It now
conducts better. In other words, the resistance decreases. Although Ge or Si could be used to
make a thermistor, but in practice we don’t use Ge or Si. The conducting property of these
materials (Ge or Si) is too sensitive to impurities. Commercial thermistors are made of sintered
mixtures of Mn2O3, NiO2 and Co2O3. Typical thermistor structures are shown in Fig. 1.4.
Fig. 1.4 Thermistor structures
There are some electronic circuits in which the variation of resistance-value with temperature
cannot be tolerated. In such circuits, thermistors are used to compensate for the change in
resistance of ordinary components.
Introduction to Electronics 11
Light Dependent Resistor (LDR)
The resistance of this resistor depends on the intensity of light falling on it. It is also called
photoresistive cell, or photoresistor.
Figure 1.5 shows the structure and the symbol of an LDR. It is made of zig-zag strips of
light-sensitive semiconductor material. The ends of the strips are attached to the external
pins. The whole assembly is protected by a transparent plastic or glass cover. The lightsensitive material in an LDR is either cadmium sulfide (CdS) or cadmium selenide (CdSe).
Fig. 1.5 A light-dependent resistor (LDR)
Fig. 1.6 Variation of resistance with light intensity
for a typical LDR
Figure 1.6 shows a plot of resistance versus light intensity for a typical LDR. The resistance
can change over a very wide range (from 100 kW to a few hundred ohms). The high resistance
of the LDR when not illuminated is called its dark resistance.
The LDRs are used in light meters, lighting controls, automatic door openers, thief-detectors,
etc.
Voltage Dependent Resistor (VDR) : It is possible to have a device in which the resistance
between its two terminals is dependent on the voltage at its third terminal. A junction fieldeffect transistor (JFET) has three terminals—drain (D),
source (S) and gate (G). The source terminal is
normally grounded. For a given value of gate voltage
(VGS), the drain current (ID) varies linearly with the
drain voltage (VDS), till pinch-off occurs. This region
is called ohmic region or triode region. As shown in
Figure 1.7, if we change VGS, the current ID still
remains linearly dependent on VDS. But the slope of
the straight line changes. It shows that in this region,
the resistance between drain and source depends
upon the gate voltage.
2. Inductors
Fig. 1.7 Drain characteristics
of a JEFT
Inductors are made by winding a conducting wire (with very low-resistance) in the form of a
coil. It may have either air-core or iron-core. The current flowing through the core produces
12 Electronics Engineering
a magnetic field. This field reacts so as to oppose any change in current, by developing an induced
emf. The inductance (L) of an inductor is measured in henrys (H).
Sometimes, we have two or more windings on the same core. It is then called a transformer,
or a set of coupled (magnetically) coils.
An inductor can be fixed or variable. Different types of inductors are available for different
applications.
Filter chokes are the inductors used in smoothing the pulsating currents produced by a
rectifier (a circuit converting ac into dc). A typical filter choke has many turns of wire wound
on an iron core. Many power supply units use filter chokes of 5 to 20 H, capable of carrying
current up to 0.3 A.
Audio-frequency chokes (AFCs) are used to provide
high impedance to audio frequencies (say, between 60 Hz
and 5 kHz). These are comparatively smaller in size and
have lower inductance. The radio-frequency chokes (RFCs)
have still smaller inductance.
Variable inductors are used in tuning circuits for radio
Fig. 1.8 Permeability-tuned
frequencies. The permeability-tuned coil has a ferromagnetic
variable coil
shaft which can be screwed in or out of the core (Fig. 1.8).
3. Capacitors
A capacitor can store energy in its electric field, and release it whenever desired. A capacitor
opposes any change in the pd (potential difference) applied across its terminals. The capacitance
(C) of a capacitor is measured in farads (F). However, as this unit is too large, practical
capacitors are specified in microfarads(mF), or picofarads(pF).
A capacitor offers low impedance to ac, but very high impedance to dc. So, capacitors are
used when we want to couple alternating voltage from one circuit to another, while at the
same time blocking the dc voltage from reaching the next circuit. In such usage, it is called
coupling capacitor or blocking capacitor. It is also used as a bypass capacitor, where it bypasses the
ac so that the ac does not go through the circuit across which it is connected. A capacitor also
forms a tuned circuit in series or parallel with an inductor.
A capacitor consists of two conducting plates, separated by an insulating material known
as a dielectric. Capacitors, like resistors, can either be fixed or variable. Some of the most
commonly used fixed capacitors are mica, ceramic, paper, and electrolytic. Variable capacitors
are mostly air-gang capacitors.
Mica Capacitors : Mica capacitors are made from plates of aluminium foil separated by
sheets of mica, as shown in Fig. 1.9. The plates are connected to two electrodes. The mica
capacitors have excellent characteristics under stress of temperature variations and high
voltage applications (~500 V). Available capacitances range from 5 to 10 000 pF. Its leakage
current is very small (Rleakage is about 1000 MW).
Ceramic Capacitors : Ceramic capacitors are made in many shapes and sizes. A ceramic
disc is coated on two sides with a metal, such as copper or silver. These coatings act as two
plates (Fig. 1.10). After attaching tinned-wire leads, the entire unit is coated with plastic and
marked with its capacitance value—either using numerals or colour code. The colour coding
is similar to that used for resistances. Ceramic capacitors are very versatile. Their working
Introduction to Electronics 13
Fig. 1.9 The construction of mica capacitor
Fig. 1.10 Basic construction of a ceramic
capacitor
voltage ranges from 3 V (for use in transistors) up to 6000 V. The capacitance value ranges from
3 pF to about 3 mF. Ceramic capacitors have a very low leakage current (Rleakage is about 1000
MW) and can be used in both dc and ac circuits.
Paper Capacitors : This capacitor consists of two
metal foils separated by strips of paper. This paper
is impregnated with a dielectric material such as
wax, plastic or oil. Since paper can be rolled between
two metal foils, it is possible to concentrate a large
plate area in a small volume. (Fig. 1.11).
Paper capacitors have capacitances ranging from
0.0005 mF to several mF, and are rated from about 100
V to several thousand volts. They can be used for
both dc and ac circuits. Its leakage resistance is of
the order of 100 MW.
Fig. 1.11 Basic construction of a paper
capacitor
Electrolytic Capacitors : An electrolytic capacitor consists of an aluminium-foil electrode
which has an aluminium-oxide film covering on one side. The aluminium plate serves as the
positive plate and the oxide as the dielectric. The oxide is in contact with a paper or gauze
saturated with an electrolyte. The electrolyte forms the second plate (negative) of the capacitor.
Another layer of aluminium without the oxide coating is also provided for making electrical
contact between one of the terminals and the electrolyte. In most cases, the negative plate is
directly connected to the metallic container of the capacitor. The container then serves as the
negative terminal for external connections.
The aluminium oxide layer is very thin. Therefore, the capacitor has a large capacitance in
a small volume. It has high capacitance-to-size ratio. It is primarily designed for use in circuits
where only dc voltages are applied across the capacitor. The terminals are marked +ve and –
ve. Ordinary electrolytic capacitors cannot be used with alternating currents. However, there
are capacitors available that can be used in ac circuits (for starting motors) and in cases where
the polarity of the dc voltage reverses for short periods of time.
The capacitance value may range from 1 mF to several thousand microfarads. The voltage
ratings may range from 1 V to 500 V, or more.
14 Electronics Engineering
Variable Capacitors : The most common variable capacitor is the air-gang capacitor, shown
in Fig. 1.12. The dielectric for this capacitor is air. By rotating the shaft at one end, we can
change the common area between the movable and fixed set of plates. The greater the
common area, the larger the capacitance.
In some applications, the need for variation in the capacitance is not frequent. One setting
is sufficient for all normal operations. In such situations, we use a variable capacitor called a
trimmer (sometimes called padder). Both mica and ceramic are used as the dielectric for
trimmer capacitors (Fig. 1.13).
Fig. 1.12 Air-gang capacitor (variable)
Fig. 1.13
Basic construction of a mica trimmer
1.6 VOLTAGE AND CURRENT DIVIDERS
The concepts of voltage divider and current divider are very useful in analysing networks.
Voltage Divider
In the simple circuit of Fig. 1.14, the voltages across the series resistors are given as
V1 = R1I = R 1
V
R1 + R 2
or
V1 = V
R1
R1 + R 2
...(1.1)
and
V2 = V
R2
R1 + R 2
...(1.2)
Fig. 1.14 Voltage divider
Current Divider
In the simple circuit of Fig. 1.15, the currents in the parallel resistors are given as
and
I1 = I
R2
R1 + R 2
...(1.3)
I2 = I
R1
R1 + R 2
...(1.4)
Note that in Eq. 1.1 for V1, we have R1 in the
numerator; but in Eq. 1.3 for I1 we have R2.
Fig. 1.15 Current divider
Introduction to Electronics 15
1.7 SOURCES OF ELECTRICAL POWER
A source supplies power to the load. A dc source supplies dc (direct current) and an ac source
supplies ac (alternating current). Some example of dc sources are battery, dc generator and
rectification-type dc supply. Examples of ac sources are alternators, oscillators and signal
generators.
A source has an emf (electromotive force). It represents the driving influence that causes a
current to flow. Actually, emf is not a force, but it represents the energy expended during the
passing of a unit charge through the source.
The emf and pd (potential difference) are similar quantities. Both are measured in volts (V).
However, an emf is always active in the sense that it tends to produce an electric current in a
circuit. The pd may be either passive or active. A pd is passive when it has no tendency to
create current in a circuit.
Note from Fig. 1.16 that the current flow leaves the source at positive terminal and therefore
is in the same direction as the emf (indicated by arrow). The current enters the load at positive
terminal. In a load (passive element) the current and pd are in opposite direction.
To describe the characteristics of a source of electrical energy, the concepts of ideal voltage
source and ideal current source are very helpful.
Fig. 1.16 Transfer of energy from
source to load
Fig. 1.17 Symbols for ideal voltage sources
Ideal Voltage Source
The ideal voltage source maintains its prescribed voltage independent of its output current. It means that
even if the current drawn from such a source varies from zero value (open-circuit condition)
to infinity (short-circuit condition), its terminal voltage remains unchanged. It implies that an
ideal voltage source is capable of supplying unlimited amount of power.
Practical Voltage Source
In practice, no source can be represented as an ideal voltage source. When some current is
drawn from the source, its terminal voltage is found to drop by some amount. The larger the
current drawn, the larger is the voltage drop.
To account for this lowering of the terminal voltage, a practical voltage source is represented as
‘an ideal voltage source in series with a resistance (or impedance, in case of an ac source)’. This
resistance is called the internal resistance of the source. In Fig. 1.18 RSV represents the internal
resistance of the practical voltage source.
The linear relationship between the load voltage VL and load current IL is
VL = VS – RSVIL
...(1.5)
16 Electronics Engineering
Fig. 1.18 A practical voltage source
The open-circuit voltage (VLOC) and short-circuit current (ILSC) are
VLOC = V S
ILSC =
...(1.6)
VS
RSV
...(1.7)
Ideal Current Source
An ideal current source produces its prescribed current,
independent of its output voltage. Thus, the output current
of such a source remains unchanged from zero load
(open-circuit condition) to an infinite load (short-circuit
condition). This could be possible only if the source was
capable of supplying unlimited amount of power.
Practical Current Source
Fig. 1.19 Symbols for ideal current
sources
Like an ideal voltage source, an ideal current source is also non-existent in the real world.
Certain transistor circuits can deliver a constant current to a limited range of load. A practical
current source is modelled as an ideal current source in parallel with an internal resistance RSI, as
shown in Fig. 1.20.]
Fig. 1.20 A practical current source
The load current is given as
IL = I S -
VL
R SI
...(1.8)
Introduction to Electronics 17
The open-circuit voltage (VLOS) and the short-circuit current (ILSC) are
VLOC = IS RSI
...(1.9)
ILSC = I S
...(1.10)
Equivalence between Voltage Source and Current Source
An ideal voltage source and an ideal current source are non-existent in practice. A practical source
may be treated either as a voltage source or as a current source, depending upon which type
suits better for the analysis of the network. Thus, the transformation of one type of source into
another type is frequently needed while analysing a network.
The two sources would be equivalent if they produce identical values of IL and VL, when
they are connected to the same load RL, whatever be its value. The two equivalent sources
should also provide the same open-circuit voltage and short-circuit current. The conditions of
equivalence can now be established. Equating the open-circuit voltage (VLOC) in the two cases
(from Eqs. 1.6 and 1.9), we get
VS = ISRSI
...(1.11)
Equating the short-circuit currents in the two cases (from Eqs. (1.7) and (1.10)), we get
VS
= IS
RSV
...(1.12)
From the above two equations, it follows that
RSV = RSI = RS (say)
and
VS = RS IS
...(1.13)
where RS would represent the internal resistance of either of the sources.
As shown in Fig. 1.21, such two practical sources will be equivalent with respect to what
happens at the load terminals. However, they are not equivalent internally.
Fig. 1.21
A source connected to a load
18 Electronics Engineering
Example 1.3 Find the equivalent current source representation
of the dc voltage source given in Fig. 1.22. Take a load resistance
of 1 W and show that the two equivalent source representations
give same load current and load voltage.
Solution : From Eq. 1.13, the current IS of the equivalent current
source is
IS =
VS 2 V
=
=2A
RS 1 W
Fig. 1.22
A voltage source
The internal resistance remains the same but it is now connected in parallel with the current
source IS, as shown in Fig. 1.23a.
Fig. 1.23 Equivalent representations
Now, we connect a load resistance RL = 1 W across the terminals of the two representations,
and find IL and VL. From Fig. 1.23a, using the current-divider concept, we get
IL = I S
\
RS
= 2× 1 = 1 A
1+1
RS + RL
VL = IL RL = 1 × 1 = 1 V
From Fig. 1.23b, using the voltage-divider concept, we get
VL = VS
RL
= 2× 1 = 1 V
RS + RL
1+1
VL 1
= =1A
RL 1
Thus, we find that the two representations give the same values of IL and VL.
\
IL =
Example 1.4 Consider a practical ac voltage source having an open-circuit voltage of 10 V
and an internal resistance of 100 W. Find the percentage variation in load current and load
voltage, if the load connected across its terminals varies (a) from 1 W to 10 W, (b) from 1 kW to
10 kW.
Introduction to Electronics 19
Solution :
(a) RL varies from 1 W to 10 W (Fig. 1.24a)
The currents for the two extreme values of RL are
I L1 =
VS
10 = 0.0990 A
=
RL1 + R S 1 + 100
I L2 =
VS
10
= 0.0909 A
=
RL2 + RS 10 + 100
0.0990 - 0.0909
× 100 = 8.1%
0. 0990
Now, the load voltages for the two extreme values of RL are
\ Percentage variation in current =
VL1 = IL RL = 0.0990 × 1 = 0.099 V
1
1
VL2 = IL RL = 0.0909 × 10 = 0.909 V
2
2
0.909 - 0.099
× 100 = 89.1%
0. 909
We find that the percentage variation in load current is much less than that in load voltage.
Thus, the behaviour of the source is nearer to the ideal current source, under this
condition.
\ Percentage variation in voltage =
Fig. 1.24
(b) RL varies from 1 kW to 10 kW (Fig. 1.24b)
The currents for the two extreme values of RL are
IL1 =
VS
10
= 0.00909 A = 9.09 mA
=
RL1 + RS 1000 + 100
IL =
VS
10
= 0.000999 A = 0.999 mA
=
RL2 + RS 10000 + 100
2
\ Percentage variation in current =
9. 09 - 0. 999
× 100 = 89%
9. 09
20 Electronics Engineering
Now, the load voltage for the two extreme values of RL are
VL1 = I L1 RL1 = 9.09 × 10–3 × 1 × 103 = 9.09 V
VL2 = I L2 RL2 = 0.999 × 10–3 × 10 × 103 = 9.99 V
\ Percentage variation in voltage =
9. 99 - 9. 09
× 100 = 9%
9. 99
We find that the percentage variation in load voltage is much less than that in load current.
Thus, the behaviour of the source is nearer to the ideal voltage source, under this condition.
We, therefore, conclude that a source should better be treated as a constant current source,
if its internal resistance RS is much larger than the load resistance RL (i.e., if RS >> RL). On the
other hand, if RS << RL, it is better to treat the source as a constant voltage source.
1.8
SIGNALS
Electronic systems are used to process and to transmit information. For example, the information that is keyed into a calculator goes to the microprocessor inside, and then finally to the
display. Or, a system might collect information about the pressure of gas in a pipe and
transmit it to a control room. Or, a system might transmit a television picture from one side
of the world to the other.
When we transmit information, we require it to be translated into some equivalent electrical
value (say, a voltage or a current). For example, when we vary a voltage to represent, say, sound,
then the varying voltage is called signal. Equally, if we were to vary a current for the same
purpose, we would call the varying current, the signal.
Signals fall under two categories—analog and digital. Analog signals first came into
prominence with telephone. Digital signals first appeared when telegraph system using
Morse code was introduced.
An analog signal has continuous variation (Fig. 1.25a). It can have any value from an infinite
number of values. Such variation is associated with production of sound (as in the telephone
or radio).
Digital signals have one of a limited number of discrete values (Fig. 1.25b). In most applications,
there are only two discrete values. These values are described in crude terms—on and off,
closed and open, 1 and 0, or high and low.
Fig. 1.25 Electrical signals
Introduction to Electronics 21
1.9 SI UNITS
This system of units is coherent, rational and comprehensive. It is now followed everywhere
in the world—at least in engineering. It has seven base units and many derived units.
Some Derived Units
Physical quantity
Name of SI unit
Frequency
Force
Work, energy, quantity of heat
Power
Electric charge
Electric potential
Electric capacitance
Electric resistance
Electric conductance
Magnetic flux
Magnetic flux density
Inductance
Customary temperature
Pressure
hertz
newton
joule
watt
coulomb
volt
farad
ohm
siemens*
weber
tesla
henry
degree celsius
pascal
Symbol
Hz = cycles/s = 1/s
N= kg m/s2
J=Nm
W = J/s
C = A/s
V = W/A
F = A/s/V
W = V/A
S = A/V
Wb = V/s
T = Wb/m2
H = Vs/A
°C
Pa = N/m2
*The unit siemens is same as mho (Á) which was used earlier.
SI Prefixes
Factor
Prefix
Symbol
Factor
101
102
103
106
109
1012
1015
1018
deca
hecto
kilo
mega
giga*
tera
peta
exa
da
h
k
M
G
T
P
E
10–1
10–2
10–3
10–6
10–9
10–12
10–15
10–18
Prefix
deci
centi
milli
micro
nano
pico
femto
atto
Symbol
d
c
m
m
n
p
f
a
*Pronounced as jeega.
Note : (i) The prefixes for factors greater than unity have Greek origin; those for factors less
than unity have Latin origin (except femto and atto, recently added, which have
Danish origin).
(ii) Almost all abbreviations of prefixes for magnitudes <1, are English lowercase letters.
An exception is micro (Greek letter m).
(iii) Abbreviations of prefixes for magnitudes >1 are English upper-case letters. Exceptions
are kilo, hecto, and deca.
(iv) The prefixes hecto, deca, deci and centi should not be used unless there is a stronglyfelt need.
1. Multiples of the fundamental unit should be chosen in powers of ±3n where n is an
integer. Centimetre, owing to its established usage and its convenient size, cannot be
given up lightly.
22 Electronics Engineering
2. Double or compound prefixes should be avoided, e.g., instead of micromicrofarad (mmF)
or millinanofarad (mnF), use picofarad (pF).
3. To simplify calculations, attach the prefix to the numerator and not to the denominator.
Example : use MN/m2 instead of N/mm2, even though mathematically both forms are
equivalent.
4. The rules for binding-in indices are not those of ordinary algebra, e.g., cm2 means (cm)2 =
(0.01)2 m2 = 0.0001 m2, and not c × (m)2 = 0.01 m2.
Another Unit of Energy : The Electron Volt
Although joule (J) is the standard unit of energy in SI system, another unit—the electron volt
(eV)—proves more useful in electronics. One electron volt is defined as the amount of energy
gained by an electron when it moves through a potential rise of one volt.
1 eV = charge on an electron × 1 volt
= 1.602 × 10–19 J
REVIEW QUESTIONS
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
What is electronics ? How has it affected our daily life ?
What are the modern trends in electronics ?
Name any three electronic components.
What are the different types of resistors ?
What are the various types of capacitors used in electronics industry ?
What is meant by active and passive components ?
What is used as a dielectric in an electrolytic capacitor ? Why is an electrolytic capacitor
polarized ?
Name three primary uses of capacitors in electronics.
While tuning your radio receiver to a desired station, which component inside the set are
you varying ?
When you adjust the volume control knob of your radio receiver, which component is
varied inside the set ?
What is an inductor? What is the unit of inductance ?
Explain the condition under which a practical voltage source is considered to be a good
voltage source.
A practical source can be represented either as a voltage source or as a current source.
How can you convert one representation into the other ?
What is the difference between an analog signal and a digital signal ?
Is the output of a microphone analog or digital ?
What is the SI unit of electric conductance ?
Define electron volt, the unit of energy.
How is the use of eV as the unit of energy more convenient in the field of electronics ?