Download VUMC team pinpoints genes that dictate five fingers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Oncogenomics wikipedia , lookup

Microevolution wikipedia , lookup

Gene wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Polycomb Group Proteins and Cancer wikipedia , lookup

Point mutation wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Designer baby wikipedia , lookup

Genome (book) wikipedia , lookup

History of genetic engineering wikipedia , lookup

Minimal genome wikipedia , lookup

Epigenetics of human development wikipedia , lookup

Gene expression profiling wikipedia , lookup

Biology and consumer behaviour wikipedia , lookup

NEDD9 wikipedia , lookup

Sonic Adventure 2 wikipedia , lookup

Transcript
VUMC team pinpoints genes that dictate five fingers
By Leigh MacMillan
August 30, 2002
Chin Chiang and Ying Litingtung are studying the genes that regulate limb development and control
digit pattern and identity. (photo by Dana Johnson)
Photo
The skeletal structure of the forelimb (arm) in normal and genetically modified mice. The limb and
hand — with digits 1 through 5 — of a normal mouse are shown in panel a. When Sonic hedgehog is absent
(panel b), mice have stunted limbs and only one digit. When Gli3 is missing (panel c) or both Sonic
hedgehog and Gli3 are missing (panel d), mice have full limb skeletons and more than five digits. Mice with
one copy of Gli3 in the absence of Sonic hedgehog (panel e) have an intermediate number of digits.
(Courtesy of Chin Chiang and Nature)
by Leigh MacMillan
As a little girl, Ying Litingtung was fascinated by the animals at the zoo — in particular by their
fingers and toes. “I can remember being struck by the fact that even though the animals are very different
from us, many of them have five fingers or five toes, just like we do,” said Litingtung, Ph.D., a postdoctoral
fellow in the laboratory of Chin Chiang, Ph.D., associate professor of Cell & Developmental Biology.
She never imagined that she would end up studying the very genes that dictate the five-fingered
hand.
Litingtung, Chiang, and colleagues from the University of Wisconsin reported this week in the journal
Nature that two genes called Sonic hedgehog and Gli3 work together to regulate the number of digits and
their identity. Mice that are missing both of these genes end up with between six and 11 digits per limb, and
all of them are the same type of digit.
The results were a surprise, Chiang said, because previous studies had suggested that the gene
Sonic hedgehog was important for both the formation of the limb skeleton and for its patterning. When Sonic
hedgehog alone is missing, mice have stunted limbs with incomplete skeletal elements and only a single
digit.
But when the investigators deleted another gene, Gli3, along with Sonic hedgehog, instead of
having stunted limbs, the mice had complete limb skeletal elements and extra fingers and toes.
-1-
VUMC team pinpoints genes that dictate five fingers
“It was assumed that Sonic hedgehog was important for skeletal formation and digit patterning, but
its precise role was not clear,” Chiang said. “We show that it’s not important for skeletal formation; where it’s
really important is in determining digit number and identity.”
Sonic hedgehog and Gli3 work together to pattern the pentadactyl — five-fingered — limb. Gli3 is a
protein that turns other genes on or off, depending on whether it is present as an activator (the “on” form) or
a repressor (the “off” form). The investigators demonstrate that Sonic hedgehog blocks the conversion of
Gli3 activator forms to Gli3 repressor forms. When there is a lot of Sonic hedgehog protein around, Gli3 is
present mostly in its activator forms. When Sonic hedgehog is absent, almost all of the Gli3 is converted to
the repressor forms.
It is the balance of Gli3 activator and repressor forms that determines digit identity, the investigators
said. Higher levels of repressor forms result in digit one, the thumb, and lower levels of repressor forms
result in digit five, the pinkie. And Sonic hedgehog is the molecule that regulates the Gli3 forms. “So from the
thumb to the pinkie, the master molecules that are dictating this pattern are Sonic hedgehog and Gli3,”
Litingtung said.
The constraint of five digits is an evolutionary development, Chiang said. The earliest four-legged
animals in the fossil record — more than 400 million years ago — were polydactyl, that is, they had many
digits. In a sense, Chiang said, “our double knockout of Sonic hedgehog and Gli3 created what ancestral
limbs looked like, the polydactyl potential of the primitive limb.”
Previous studies have shown that Sonic hedgehog is important to cell growth in the developing limb
bud. When it is absent, there is massive cell death, Chiang said, resulting in stunted skeletal development.
The current study demonstrates that Sonic hedgehog works through Gli3 to regulate expression of fibroblast
growth factor (FGF), a molecule that is critical for cell proliferation. “Our study provides the molecular
mechanism to explain how Sonic hedgehog regulates cell proliferation in limb precursor cells,” Chiang said.
Chiang has been tracking the role of Sonic hedgehog — a gene named after the Sega game
character — for nearly eight years now. It is a molecule that plays critical roles in both cell proliferation and
patterning during development. Mutations in the human version of Sonic hedgehog are associated with
holoprosencephaly, a congenital malformation of the forebrain.
Gli3 mutations also lead to congenital defects in human beings; they are linked to Greig
cephalopolysyndactyly and Pallister-Hall, two syndromes that share the feature of more than five digits. In
fact, Chiang said, mutations affecting the function of Sonic hedgehog and Gli3 are the likely culprits in most
cases of polydactyly, one of the most common birth defects in human beings.
Inappropriate Sonic hedgehog signaling also is linked to cancer. Mutation of molecules in the Sonic
hedgehog signaling pathway are associated with basal cell carcinoma and medulloblastoma.
-2-
“These are key molecules with widespread roles in embryonic development and disease,” Litingtung
said.
Litingtung and Chiang’s co-authors on the Nature paper are Randall D. Dahn, Yina Li, and John F.
Fallon. The research was supported by the National Institutes of Health.
-VUOriginally published in the Vanderbilt Reporter, a publication of Vanderbilt Medical Center
-3-