* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Bacterial culture Microbiological cultures can be grown in petri
Molecular evolution wikipedia , lookup
Molecular cloning wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Endogenous retrovirus wikipedia , lookup
Cell culture wikipedia , lookup
Cre-Lox recombination wikipedia , lookup
Genetic engineering wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Community fingerprinting wikipedia , lookup
List of types of proteins wikipedia , lookup
Advance Systemic Bacteriology – II 1. Briefly discuss the impact of pH on microbial growth. Bacterial growth is the division of one bacterium into two daughter cells in a process called binary fission. Providing no mutational event occurs the resulting daughter cells are genetically identical to the original cell. Hence, "local doubling" of the bacterial population occurs. Both daughter cells from the division do not necessarily survive. However, if the number surviving exceeds unity on average, the bacterial population undergoes exponential growth. The measurement of an exponential bacterial growth curve in batch culture was traditionally a part of the training of all microbiologists; the basic means requires bacterial enumeration (cell counting) by direct and individual (microscopic, flow cytometry[1]), direct and bulk (biomass), indirect and individual (colony counting), or indirect and bulk (most probable number, turbidity, nutrient uptake) methods. Models reconcile theory with the measurements.[2] [edit]Phases In autecological studies, bacterial growth in batch culture can be modeled with four different phases: lag phase (A), exponential or log phase (B),stationary phase (C), and death phase (D). IN the book "black" the bacterial growth phase classified 07 stages like-(A)lag phase (B)early log phase (C) log/exponential Phase (D)Early Stationery phase (E)stationary phase (f) Early Death phase (G)Death phase.. 1. During lag phase, bacteria adapt themselves to growth conditions. It is the period where the individual bacteria are maturing and not yet able to divide. During the lag phase of the bacterial growth cycle, synthesis of RNA, enzymes and other molecules occurs. 2. Exponential phase (sometimes called the log phase or the logarithmic phase) is a period characterized by cell doubling.[3] The number of new bacteria appearing per unit time is proportional to the present population. If growth is not limited, doubling will continue at a constant rate so both the number of cells and the rate of population increase doubles with each consecutive time period. For this type of exponential growth, plotting the natural logarithm of cell number against time produces a straight line. The slope of this line is the specific growth rate of the organism, which is a measure of the number of divisions per cell per unit time. [3] The actual rate of this growth (i.e. the slope of the line in the figure) depends upon the growth conditions, which affect the frequency of cell division events and the probability of both daughter cells surviving. Under controlled conditions, cyanobacteria can double their population four times a day.[4] Exponential growth cannot continue indefinitely, however, because the medium is soon depleted of nutrients and enriched with wastes. 3. During stationary phase, the growth rate slows as a result of nutrient depletion and accumulation of toxic products. This phase is reached as the bacteria begin to exhaust the resources that are available to them. This phase is a constant value as the rate of bacterial growth is equal to the rate of bacterial death. 4. At death phase, bacteria run out of nutrients and die. This basic batch culture growth model draws out and emphasizes aspects of bacterial growth which may differ from the growth of macrofauna. It emphasizes clonality, asexual binary division, the short development time relative to replication itself, the seemingly low death rate, the need to move from a dormant state to a reproductive state or to condition the media, and finally, the tendency of lab adapted strains to exhaust their nutrients. 2. Explain the principle and working mechanism of an electron microscope. An electron microscope is a type of microscope that uses a beam of electrons to illuminate the specimen and produce a magnified image. Electron microscopes (EM) have a greater resolving power than a light-powered optical microscope, because electrons have wavelengths about 100,000 times shorter than visible light (photons), and can achieve better than 50 pm resolution[1] and magnifications of up to about 10,000,000x, whereas ordinary, non-confocal light microscopes are limited by diffraction to about 200 nm resolution and useful magnifications below 2000x. The electron microscope uses electrostatic and electromagnetic "lenses" to control the electron beam and focus it to form an image. These lenses are analogous to, but different from the glass lenses of an optical microscope that form a magnified image by focusing light on or through the specimen. Electron microscopes are used to observe a wide range of biological and inorganic specimens including microorganisms, cells, large molecules, biopsy samples,metals, and crystals. Industrially, the electron microscope is often used for quality control and failure analysis. The electron microscope was invented and patented by Hungarian physicist Leó Szilárd who declined to construct it.[2] Instead, German physicist Ernst Ruska and electrical engineer Max Knoll constructed the prototype electron microscope in 1931, capable of four-hundred-power magnification; the apparatus was a practical application of the principles of electron microscopy. [3] Two years later, in 1933, Ruska built an electron microscope that exceeded the resolution attainable with an optical (lens) microscope.[3] Moreover, Reinhold Rudenberg, the scientific director of Siemens-Schuckertwerke, obtained the patent for the electron microscope in May 1931. Family illness compelled the electrical engineer to devise an electrostatic microscope, because he wanted to make visible the poliomyelitis virus. In 1932, Ernst Lubcke of Siemens & Halske built and obtained images from a prototype electron microscope, applying concepts described in the Rudenberg patent applications. [4] Five years later (1937), the firm financed the work of Ernst Ruska and Bodo von Borries, and employed Helmut Ruska (Ernst’s brother) to develop applications for the microscope, especially with biologic specimens. [3][5] Also in 1937, Manfred von Ardenne pioneered the scanning electron microscope.[6] The first practical electron microscope was constructed in 1938, at the University of Toronto, by Eli Franklin Burton and students Cecil Hall,James Hillier, and Albert Prebus; and Siemens produced the first commercial transmission electron microscope (TEM) in 1939.[7] Although contemporary electron microscopes are capable of two million-power magnification, as scientific instruments, they remain based upon Ruska’s prototype. 3. Describe sexual reproduction in fungi. A fungus ( /ˈfʌŋɡəs/; plural: fungi[3] or funguses[4]) is a member of a large group of eukaryotic organisms that includes microorganisms such asyeasts and molds (British English: moulds), as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants, animals, and bacteria. One major difference is that fungal cells have cell walls that contain chitin, unlike the cell walls of plants, which contain cellulose. These and other differences show that the fungi form a single group of related organisms, named the Eumycota (true fungi or Eumycetes), that share a common ancestor (a monophyletic group). This fungal group is distinct from the structurally similar myxomycetes(slime molds) and oomycetes (water molds). The discipline of biology devoted to the study of fungi is known as mycology, which is often regarded as a branch of botany, even though genetic studies have shown that fungi are more closely related to animals than to plants. Abundant worldwide, most fungi are inconspicuous because of the small size of their structures, and their cryptic lifestyles in soil, on dead matter, and as symbionts of plants, animals, or other fungi. They may become noticeable when fruiting, either as mushrooms or molds. Fungi perform an essential role in the decomposition of organic matter and have fundamental roles in nutrient cycling and exchange. They have long been used as a direct source of food, such as mushrooms and truffles, as a leavening agent for bread, and in fermentation of various food products, such as wine,beer, and soy sauce. Since the 1940s, fungi have been used for the production of antibiotics, and, more recently, various enzymes produced by fungi are used industrially and in detergents. Fungi are also used as biological pesticides to control weeds, plant diseases and insect pests. Many species produce bioactive compounds called mycotoxins, such as alkaloids and polyketides, that are toxic to animals including humans. The fruiting structures of a few species contain psychotropic compounds and are consumed recreationally or in traditional spiritual ceremonies. Fungi can break down manufactured materials and buildings, and become significant pathogens of humans and other animals. Losses of crops due to fungal diseases (e.g. rice blast disease) or food spoilage can have a large impact on human food supplies and local economies. The fungus kingdom encompasses an enormous diversity of taxa with varied ecologies, life cycle strategies, and morphologies ranging from single-celled aquatic chytrids to large mushrooms. However, little is known of the true biodiversity of Kingdom Fungi, which has been estimated at around 1.5 million species, with about 5% of these having been formally classified.[citation needed] Ever since the pioneering 18th and 19th centurytaxonomical works of Carl Linnaeus, Christian Hendrik Persoon, and Elias Magnus Fries, fungi have been classified according to their morphology (e.g., characteristics such as spore color or microscopic features) or physiology. Advances in molecular genetics have opened the way for DNA analysis to be incorporated into taxonomy, which has sometimes challenged the historical groupings based on morphology and other traits.Phylogenetic studies published in the last decade have helped reshape the classification of Kingdom Fungi, which is divided into one subkingdom, seven phyla, and ten subphyla. 4. Write a detailed account on different types of microbial culture media. A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture media under controlled laboratory conditions. Microbial cultures are used to determine the type of organism, its abundance in the sample being tested, or both. It is one of the primary diagnostic methods of microbiology and used as a tool to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. For example, a throat culture is taken by scraping the lining of tissue in the back of the throat and blotting the sample into a medium to be able to screen for harmful microorganisms, such as Streptococcus pyogenes, the causative agent of strep throat.[1] Furthermore, the term culture is more generally used informally to refer to "selectively growing" a specific kind of microorganism in the lab. Microbial cultures are foundational and basic diagnostic methods used extensively as a research tool in molecular biology. It is often essential to isolate a pure culture of microorganisms. A pure (or axenic) culture is a population of cells or multicellular organisms growing in the absence of other species or types. A pure culture may originate from a single cell or single organism, in which case the cells are genetic clones of one another. For the purpose of gelling the microbial culture, the medium of agarose gel (agar) is used. Agar is a gelatinous substance derived from seaweed. A cheap substitute for agar is guar gum, which can be used for the isolation and maintenance of thermophiles. Bacterial culture Microbiological cultures can be grown in petri dishes of differing sizes that have a thin layer of agar-based growth medium. Once the growth medium in the petri dish is inoculated with the desired bacteria, the plates are incubated at the best temperature for the growing of the selected bacteria (for example, usually at 37 degrees Celsius for cultures from humans or animals, or lower for environmental cultures). Another method of bacterial culture is liquid culture, in which the desired bacteria are suspended in liquid broth, a nutrient medium. These are ideal for preparation of an antimicrobial assay. The experimenter would inoculate liquid broth with bacteria and let it grow overnight (they may use a shaker for uniform growth). Then they would take aliquots of the sample to test for the antimicrobial activity of a specific drug or protein (antimicrobial peptides). 5. Explain the control of microorganisms using antibiotics. 6. Describe generalized transduction. Transduction is the process by which DNA is transferred from one bacterium to another by a virus.[1] It also refers to the process whereby foreign DNA is introduced into another cell via a viral vector. Transduction does not require cell-to-cell contact (which occurs in conjugation), and it is DNAase resistant (transformation is susceptible to DNAase). Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome. When bacteriophages (viruses that infect bacteria) infect a bacterial cell, their normal mode of reproduction is to harness thereplicational, transcriptional, and translation machinery of the host bacterial cell to make numerous virions, or complete viral particles, including the viral DNA or RNA and the protein coat. Transduction and specialized transduction are especially important because they explain how antibiotic drugs become ineffective due to the transfer of resistant genes between bacteria. In addition, hopes to create medical method Transduction as a method of transfer genetic material The packaging of bacteriophage DNA has low fidelity and small pieces of bacterial DNA, together with the bacteriophage genome, may become packaged into the bacteriophage genome. At the same time, some phage genes are left behind in the bacterial chromosome. There are generally three types of recombination events that can lead to this incorporation of bacterial DNA into the viral DNA, leading to two modes of recombination. [edit]Generalized Transduction Generalized transduction is the process by which any bacterial gene may be transferred to another bacterium via a bacteriophage, and typically carries only bacterial DNA and no viral DNA. In essence, this is the packaging of bacterial DNA into a viral envelope. This may occur in two main ways, recombination and headful packaging. If bacteriophages undertake the lytic cycle of infection upon entering a bacterium, the virus will take control of the cell’s machinery for use in replicating its own viral DNA. If by chance bacterial chromosomal DNA is inserted into the viral capsid which is usually used to encapsulate the viral DNA, the mistake will lead to generalized transduction. If the virus replicates using 'headful packaging', it attempts to fill the nucleocapsid with genetic material. If the viral genome results in spare capacity, viral packaging mechanisms may incorporate bacterial genetic material into the new virion. The new virus capsule now loaded with part bacterial DNA continues to infect another bacterial cell. This bacterial material may become recombined into another bacterium upon infection. When the new DNA is inserted into this recipient cell it can fall to one of three fates 1. The DNA will be absorbed by the cell and be recycled for spare parts. 7. Write an account on chemotaxonamy. 8. Describe the structure and replication of plant rhabdovirus.