* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Entanglement via the Quantum Zeno Effect, Phys. Rev. Lett. 100
Chemical bond wikipedia , lookup
Renormalization group wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Quantum state wikipedia , lookup
EPR paradox wikipedia , lookup
Canonical quantization wikipedia , lookup
Atomic theory wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Tight binding wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Casimir effect wikipedia , lookup
History of quantum field theory wikipedia , lookup
Quantum teleportation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Wheeler's delayed choice experiment wikipedia , lookup
Quantum key distribution wikipedia , lookup
Rutherford backscattering spectrometry wikipedia , lookup
RESERVOIR-INDUCED ENTANGLEMENT OF TWO TRAPPED IONS IN A CAVITY K. Härkönen1 , F. Plastina2 , K.-A. Suominen1 , and S. Maniscalco1 1 Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland Dipartimento di Fisica, Università della Calabria, & INFN - Gruppo collegato di Cosenza, 87036 Arcavacata di Rende (CS) Italy email: [email protected] 2 Theoretical calculations have shown that it is possible to produce entanglement between two atoms residing in a cavity resonator [1]. The most prominent experimental setup to utilize the idea is considered to be a combination of precisely controllable trapped ions and an optical cavity (e.g. [2]). We study the effect of the inevitable atomic spontaneous emissions and cavity photon losses to the dynamics and look for realistic alternatives to enhance the entanglement production. Figure 1: Simplified view of the problem in hand. Two ions are trapped inside a cavity resonator (grey blocks indicate the mirrors). The isolated ions interact coherently via the cavity photon mode. This induces entanglement between the atomic quantum states. [1] S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, Protecting Entanglement via the Quantum Zeno Effect, Phys. Rev. Lett. 100, 090503 (2008). [2] G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, A single ion as a nanoscopic probe of an optical field, Nature 414, 49 (2001).