* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download File - jj-sct
Polycomb Group Proteins and Cancer wikipedia , lookup
Minimal genome wikipedia , lookup
Gene expression profiling wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Ridge (biology) wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Gene expression programming wikipedia , lookup
Designer baby wikipedia , lookup
Skewed X-inactivation wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Microevolution wikipedia , lookup
Genomic imprinting wikipedia , lookup
Y chromosome wikipedia , lookup
Genome (book) wikipedia , lookup
Neocentromere wikipedia , lookup
CAMPBELL BIOLOGY TENTH EDITION Reece • Urry • Cain • Wasserman • Minorsky • Jackson 15 The Chromosomal Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick © 2014 Pearson Education, Inc. Locating Genes Along Chromosomes  Mendel’s “hereditary factors” were purely abstract when first proposed  Today we can show that the factors—genes—are located on chromosomes  The location of a particular gene can be seen by tagging isolated chromosomes with a fluorescent dye that highlights the gene © 2014 Pearson Education, Inc. Figure 15.1 © 2014 Pearson Education, Inc. Figure 15.1a © 2014 Pearson Education, Inc.  Cytologists worked out the process of mitosis in 1875, using improved techniques of microscopy  Biologists began to see parallels between the behavior of Mendel’s proposed hereditary factors and chromosomes  Around 1902, Sutton and Boveri and others independently noted the parallels and the chromosome theory of inheritance began to form © 2014 Pearson Education, Inc. Figure 15.2 Yellow-round seeds (YYRR) P Generation Y r R R Y Green-wrinkled seeds (yyrr) y r y Meiosis Fertilization y R Y Gametes F1 Generation R All F1 plants produce yellow-round seeds (YyRr). R y r y r Y r Y LAW OF INDEPENDENT ASSORTMENT Alleles of genes on nonhomologous chromosomes assort independently. Meiosis LAW OF SEGREGATION The two alleles for each gene separate. R r Y y Metaphase I r R Y y 1 1 R r Y y r R Y y Anaphase I R r Y y 2 y Y Y R R 1 4 YR F2 Generation Metaphase II 4 © 2014 Pearson Education, Inc. y 2 Y r 1 yr 4 Yr An F1 × F1 cross-fertilization 3 Fertilization recombines the R and r alleles at random. Y r r 1 R Y y r r 9 :3 :3 :1 y y R R 1 4 yR 3 Fertilization results in the 9:3:3:1 phenotypic ratio in the F2 generation. Figure 15.2a P Generation Yellow-round seeds (YYRR) Y Y r R R y Green-wrinkled seeds (yyrr) y r Meiosis Fertilization Gametes © 2014 Pearson Education, Inc. R Y y r Figure 15.2b F1 Generation R r y Y LAW OF SEGREGATION The two alleles for each gene separate. All F1 plants produce yellow-round seeds (YyRr). R r Y y LAW OF INDEPENDENT ASSORTMENT Alleles of genes on nonhomologous chromosomes assort independently. Meiosis r R Y y r R Y Metaphase I y 1 1 R r r R Y y Anaphase I Y y r R Metaphase II r R Y y 2 2 y Y y Y Y R R 1 4 YR © 2014 Pearson Education, Inc. r 1 r 4 yr Y Y y r r 1 4 Yr y y R 1 R 4 yR Figure 15.2c LAW OF SEGREGATION F2 Generation 3 Fertilization An F1 × F1 cross-fertilization recombines the R and r alleles :3 9 :3 :1 at random. © 2014 Pearson Education, Inc. LAW OF INDEPENDENT ASSORTMENT 3 Fertilization results in the 9:3:3:1 phenotypic ratio in the F2 generation. Concept 15.1: Morgan showed that Mendelian inheritance has its physical basis in the behavior of chromosomes: Scientific inquiry  The first solid evidence associating a specific gene with a specific chromosome came in the early 20th century from the work of Thomas Hunt Morgan  These early experiments provided convincing evidence that the chromosomes are the location of Mendel’s heritable factors © 2014 Pearson Education, Inc. Morgan’s Choice of Experimental Organism  For his work, Morgan chose to study Drosophila melanogaster, a common species of fruit fly  Several characteristics make fruit flies a convenient organism for genetic studies  They produce many offspring  A generation can be bred every two weeks  They have only four pairs of chromosomes © 2014 Pearson Education, Inc.  Morgan noted wild type, or normal, phenotypes that were common in the fly populations  Traits alternative to the wild type are called mutant phenotypes © 2014 Pearson Education, Inc. Figure 15.3 © 2014 Pearson Education, Inc. Figure 15.3a © 2014 Pearson Education, Inc. Figure 15.3b © 2014 Pearson Education, Inc. Correlating Behavior of a Gene’s Alleles with Behavior of a Chromosome Pair  In one experiment, Morgan mated male flies with white eyes (mutant) with female flies with red eyes (wild type)  The F1 generation all had red eyes  The F2 generation showed a 3:1 red to white eye ratio, but only males had white eyes  Morgan determined that the white-eyed mutant allele must be located on the X chromosome  Morgan’s finding supported the chromosome theory of inheritance © 2014 Pearson Education, Inc. Figure 15.4 Experiment Conclusion P Generation P Generation F1 Generation Results F2 Generation X X w+ w+ All offspring had red eyes. w Eggs F1 Generation Sperm w+ w+ Eggs F2 Generation w+ w w+ Sperm w+ w+ w+ w+ w w w+ © 2014 Pearson Education, Inc. w X Y w Figure 15.4a Experiment P Generation F1 Generation Results F2 Generation © 2014 Pearson Education, Inc. All offspring had red eyes. Figure 15.4b Conclusion P Generation X X w+ X Y w+ w Sperm Eggs F1 Generation w+ w+ w+ w w+ Eggs F2 Generation w+ Sperm w+ w+ w+ w w w+ © 2014 Pearson Education, Inc. w w Concept 15.2: Sex-linked genes exhibit unique patterns of inheritance  Morgan’s discovery of a trait that correlated with the sex of flies was key to the development of the chromosome theory of inheritance  In humans and some other animals, there is a chromosomal basis of sex determination © 2014 Pearson Education, Inc. The Chromosomal Basis of Sex  In humans and other mammals, there are two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome  A person with two X chromosomes develops as a female, while a male develops from a zygote with one X and one Y  Only the ends of the Y chromosome have regions that are homologous with corresponding regions of the X chromosome © 2014 Pearson Education, Inc. Figure 15.5 X Y © 2014 Pearson Education, Inc. Figure 15.6 44 + XY 44 + XX Parents 22 + X 22 + X + or 22 Y Sperm 44 + XX Egg or 44 + XY Zygotes (offspring) (a) The X-Y system 22 + XX (b) The X-0 system © 2014 Pearson Education, Inc. 22 + X 76 + ZW 76 + ZZ (c) The Z-W system 32 (Diploid) 16 (Haploid) (d) The haplo-diploid system Figure 15.6a 44 + XY 44 + XX Parents 22 + X + or 22 Y Sperm 22 + X 44 + XX Egg or 44 + XY Zygotes (offspring) (a) The X-Y system 22 + XX (b) The X-0 system © 2014 Pearson Education, Inc. 22 + X Figure 15.6b 76 + ZW 76 + ZZ (c) The Z-W system 32 (Diploid) 16 (Haploid) (d) The haplo-diploid system © 2014 Pearson Education, Inc.  Short segments at the ends of the Y chromosomes are homologous with the X, allowing the two to behave like homologues during meiosis in males  A gene on the Y chromosome called SRY (sexdetermining region on the Y) is responsible for development of the testes in an embryo © 2014 Pearson Education, Inc.  A gene that is located on either sex chromosome is called a sex-linked gene  Genes on the Y chromosome are called Y-linked genes; there are few of these  Genes on the X chromosome are called X-linked genes © 2014 Pearson Education, Inc. Inheritance of X-Linked Genes  X chromosomes have genes for many characters unrelated to sex, whereas most Y-linked genes are related to sex determination © 2014 Pearson Education, Inc.  X-linked genes follow specific patterns of inheritance  For a recessive X-linked trait to be expressed  A female needs two copies of the allele (homozygous)  A male needs only one copy of the allele (hemizygous)  X-linked recessive disorders are much more common in males than in females © 2014 Pearson Education, Inc. Figure 15.7 XNXN Xn XnY Y Eggs XN XNXn XNY XN XNXn XNY Sperm (a) XNXn XN Y Eggs XN XNXN XNY Xn (b) © 2014 Pearson Education, Inc. XNXn XNY Sperm Xn XnY Y Eggs XN XNXn XNY XNXn XnY Xn (c) XnXn XnY Sperm  Some disorders caused by recessive alleles on the X chromosome in humans  Color blindness (mostly X-linked)  Duchenne muscular dystrophy  Hemophilia © 2014 Pearson Education, Inc. X Inactivation in Female Mammals  In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development  The inactive X condenses into a Barr body  If a female is heterozygous for a particular gene located on the X chromosome, she will be a mosaic for that character © 2014 Pearson Education, Inc. Figure 15.8 X chromosomes Allele for orange fur Early embryo: Two cell populations in adult cat: Active X Allele for black fur Cell division and X chromosome inactivation Black fur © 2014 Pearson Education, Inc. Active X Inactive X Orange fur Figure 15.8a © 2014 Pearson Education, Inc. Concept 15.3: Linked genes tend to be inherited together because they are located near each other on the same chromosome  Each chromosome has hundreds or thousands of genes (except the Y chromosome)  Genes located on the same chromosome that tend to be inherited together are called linked genes © 2014 Pearson Education, Inc. How Linkage Affects Inheritance  Morgan did other experiments with fruit flies to see how linkage affects inheritance of two characters  Morgan crossed flies that differed in traits of body color and wing size © 2014 Pearson Education, Inc. Figure 15.9 Experiment P Generation (homozygous) Wild type (gray body, normal wings) Double mutant (black body, vestigial wings) b+ b+ vg+ vg+ b b vg vg F1 dihybrid testcross Wild-type F1 dihybrid (gray body, normal wings) Homozygous recessive (black body, vestigial wings) b+ b vg+ vg b b vg vg Testcross offspring Eggs b+ vg+ b vg Wild type Black(gray-normal) vestigial b+ vg b vg+ Grayvestigial Blacknormal b vg Sperm b+ b vg+ vg PREDICTED RATIOS Genes on different chromosomes: Genes on the same chromosome: Results © 2014 Pearson Education, Inc. b b vg vg b+ b vg vg b b vg+ vg 1 : 1 : 1 : 1 1 : 1 : 0 : 0 965 : 944 : 206 : 185 Figure 15.9a Experiment P Generation (homozygous) Wild type (gray body, normal wings) b+ b+ vg+ vg+ Double mutant (black body, vestigial wings) b b vg vg F1 dihybrid testcross Wild-type F1 dihybrid (gray body, normal wings) Homozygous recessive (black body, vestigial wings) b+ b vg+ vg b b vg vg © 2014 Pearson Education, Inc. Figure 15.9b Experiment Testcross offspring Eggs b+ vg+ b vg BlackWild type (gray-normal) vestigial b+ vg b vg+ Grayvestigial Blacknormal b vg Sperm b+ b vg+ vg PREDICTED RATIOS Genes on different chromosomes: Genes on the same chromosome: Results © 2014 Pearson Education, Inc. b b vg vg b+ b vg vg b b vg+ vg 1 : 1 : 1 : 1 1 : 1 : 0 : 0 965 : 944 : 206 : 185  Morgan found that body color and wing size are usually inherited together in specific combinations (parental phenotypes)  He noted that these genes do not assort independently, and reasoned that they were on the same chromosome © 2014 Pearson Education, Inc. Figure 15.UN01 F1 dihybrid female and homozygous recessive male in testcross b+ vg+ b vg b vg b vg b+ vg+ b vg Most offspring or b vg © 2014 Pearson Education, Inc. b vg  However, nonparental phenotypes were also produced  Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent © 2014 Pearson Education, Inc. Genetic Recombination and Linkage  The genetic findings of Mendel and Morgan relate to the chromosomal basis of recombination © 2014 Pearson Education, Inc. Recombination of Unlinked Genes: Independent Assortment of Chromosomes  Offspring with a phenotype matching one of the parental phenotypes are called parental types  Offspring with nonparental phenotypes (new combinations of traits) are called recombinant types, or recombinants  A 50% frequency of recombination is observed for any two genes on different chromosomes © 2014 Pearson Education, Inc. Figure 15.UN02 Gametes from yellow-round dihybrid parent (YyRr) Gametes from testcross homozygous recessive parent (yyrr) YR yr Yr yR YyRr yyrr Yyrr yyRr yr Parentaltype offspring © 2014 Pearson Education, Inc. Recombinant offspring Recombination of Linked Genes: Crossing Over  Morgan discovered that genes can be linked, but the linkage was incomplete, because some recombinant phenotypes were observed  He proposed that some process must occasionally break the physical connection between genes on the same chromosome  That mechanism was the crossing over of homologous chromosomes © 2014 Pearson Education, Inc. Figure 15.10 F1 dihybrid testcross Double mutant (black body, vestigial wings) Wild type (gray body, normal wings) P generation (homozygous) b+ vg+ b vg b+ vg+ b vg Wild-type F1 dihybrid (gray body, normal wings) Replication of chromosomes Homozygous recessive (black body, vestigial wings) b+ vg+ b vg b vg b vg Replication of chromosomes b+ vg+ b vg b+ vg+ b vg b vg b vg b vg b vg Meiosis I b+ vg+ Meiosis I and II b+ vg b vg+ b vg Meiosis II b vg b+ vg 944 965 BlackWild type (gray-normal) vestigial 206 Grayvestigial Eggs Testcross offspring b+ vg+ Recombinant chromosomes b vg+ 185 Blacknormal b+ vg+ b vg b+ vg b vg+ b vg b vg b vg b vg b vg Sperm Recombinant Parental-type offspring offspring 391 recombinants Recombination = × 100 = 17% frequency 2,300 total offspring © 2014 Pearson Education, Inc. Figure 15.10a P generation (homozygous) Wild type (gray body, normal wings) b+ vg+ b vg b+ vg+ b vg Wild-type F1 dihybrid (gray body, normal wings) b+ vg+ b vg © 2014 Pearson Education, Inc. Double mutant (black body, vestigial wings) Figure 15.10b F1 dihybrid testcross + b vg+ Wild-type F1 dihybrid b vg (gray body, normal wings) Meiosis I b vg Homozygous recessive b vg (black body, vestigial wings) b+ vg+ b vg b+ vg+ b vg b vg b vg b vg b vg b+ vg+ b+ vg b vg+ Meiosis I and II b vg Recombinant Meiosis II Eggs b+vg+ chromosomes b vg b+ vg b vg+ b vg Sperm © 2014 Pearson Education, Inc. Figure 15.10c Recombinant chromosomes Meiosis II b vg b+ vg b vg+ 965 944 Wild type Black(gray-normal) vestigial 206 Grayvestigial 185 Blacknormal Eggs Testcross offspring b+vg+ b+ vg+ b vg b+ vg b vg+ b vg b vg b vg b vg b vg Sperm Recombinant Parental-type offspring offspring 391 recombinants Recombination = × 100 = 17% frequency 2,300 total offspring © 2014 Pearson Education, Inc. Animation: Crossing Over © 2014 Pearson Education, Inc. New Combinations of Alleles: Variation for Natural Selection  Recombinant chromosomes bring alleles together in new combinations in gametes  Random fertilization increases even further the number of variant combinations that can be produced  This abundance of genetic variation is the raw material upon which natural selection works © 2014 Pearson Education, Inc. Mapping the Distance Between Genes Using Recombination Data: Scientific Inquiry  Alfred Sturtevant, one of Morgan’s students, constructed a genetic map, an ordered list of the genetic loci along a particular chromosome  Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency © 2014 Pearson Education, Inc.  A linkage map is a genetic map of a chromosome based on recombination frequencies  Distances between genes can be expressed as map units; one map unit, or centimorgan, represents a 1% recombination frequency  Map units indicate relative distance and order, not precise locations of genes © 2014 Pearson Education, Inc. Figure 15.11 Results Recombination frequencies 9% Chromosome 17% b © 2014 Pearson Education, Inc. 9.5% cn vg  Genes that are far apart on the same chromosome can have a recombination frequency near 50%  Such genes are physically linked, but genetically unlinked, and behave as if found on different chromosomes © 2014 Pearson Education, Inc.  Sturtevant used recombination frequencies to make linkage maps of fruit fly genes  He and his colleagues found that the genes clustered into four groups of linked genes (linkage groups)  The linkage maps, combined with the fact that there are four chromosomes in Drosophila, provided additional evidence that genes are located on chromosomes © 2014 Pearson Education, Inc. Figure 15.12 Mutant phenotypes Short aristae 0 Maroon eyes 48.5 16.5 Long Red aristae eyes (appendages on head) © 2014 Pearson Education, Inc. Black Cinnabar Vestigial Down- Brown wings curved eyes eyes body wings Gray body 57.5 Red eyes 67.0 75.5 104.5 Normal Normal Red wings wings eyes Wild-type phenotypes Concept 15.4: Alterations of chromosome number or structure cause some genetic disorders  Large-scale chromosomal alterations in humans and other mammals often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders  Plants tolerate such genetic changes better than animals do © 2014 Pearson Education, Inc. Abnormal Chromosome Number  In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis  As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy © 2014 Pearson Education, Inc. Figure 15.13-1 Meiosis I Nondisjunction © 2014 Pearson Education, Inc. Figure 15.13-2 Meiosis I Nondisjunction Meiosis II Nondisjunction © 2014 Pearson Education, Inc. Figure 15.13-3 Meiosis I Nondisjunction Meiosis II Nondisjunction Gametes n+1 n+1 n−1 n−1 n+1 n−1 n n Number of chromosomes (a) Nondisjunction of homologous chromosomes in meiosis I © 2014 Pearson Education, Inc. (b) Nondisjunction of sister chromatids in meiosis II Video: Nondisjunction in Mitosis © 2014 Pearson Education, Inc.  Aneuploidy results from the fertilization of gametes in which nondisjunction occurred  Offspring with this condition have an abnormal number of a particular chromosome © 2014 Pearson Education, Inc.  A monosomic zygote has only one copy of a particular chromosome  A trisomic zygote has three copies of a particular chromosome © 2014 Pearson Education, Inc.  Polyploidy is a condition in which an organism has more than two complete sets of chromosomes  Triploidy (3n) is three sets of chromosomes  Tetraploidy (4n) is four sets of chromosomes  Polyploidy is common in plants, but not animals  Polyploids are more normal in appearance than aneuploids © 2014 Pearson Education, Inc. Alterations of Chromosome Structure  Breakage of a chromosome can lead to four types of changes in chromosome structure  Deletion removes a chromosomal segment  Duplication repeats a segment  Inversion reverses orientation of a segment within a chromosome  Translocation moves a segment from one chromosome to another © 2014 Pearson Education, Inc. Figure 15.14 (c) Inversion (a) Deletion A B C D E F G A H B C D A deletion removes a chromosomal segment. A B C E F G H F A G H B C B E F G H C D E F G E F G H M N O P Q R A translocation moves a segment from one chromosome to a nonhomologous chromosome. H M N © 2014 Pearson Education, Inc. C B B C D A duplication repeats a segment. A H (d) Translocation (b) Duplication B C D E F G An inversion reverses a segment within a chromosome. A D A E O C D E F G H A B P Q R Figure 15.14a (a) Deletion A B C D E F G H A deletion removes a chromosomal segment. A B C E F G H (b) Duplication A B C D E F G H A duplication repeats a segment. A B © 2014 Pearson Education, Inc. C B C D E F G H Figure 15.14b (c) Inversion A B C D E F G H An inversion reverses a segment within a chromosome. A D C B E F G H (d) Translocation A B C D E F G H M N O P Q R A translocation moves a segment from one chromosome to a nonhomologous chromosome. M N O C © 2014 Pearson Education, Inc. D E F G H A B P Q R Human Disorders Due to Chromosomal Alterations  Alterations of chromosome number and structure are associated with some serious disorders  Some types of aneuploidy appear to upset the genetic balance less than others, resulting in individuals surviving to birth and beyond  These surviving individuals have a set of symptoms, or syndrome, characteristic of the type of aneuploidy © 2014 Pearson Education, Inc. Down Syndrome (Trisomy 21)  Down syndrome is an aneuploid condition that results from three copies of chromosome 21  It affects about one out of every 700 children born in the United States  The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained © 2014 Pearson Education, Inc. Figure 15.15 © 2014 Pearson Education, Inc. Figure 15.15a © 2014 Pearson Education, Inc. Figure 15.15b © 2014 Pearson Education, Inc. Aneuploidy of Sex Chromosomes  Nondisjunction of sex chromosomes produces a variety of aneuploid conditions  XXX females are healthy, with no unusual physical features  Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals  Monosomy X, called Turner syndrome, produces X0 females, who are sterile; it is the only known viable monosomy in humans © 2014 Pearson Education, Inc. Disorders Caused by Structurally Altered Chromosomes  The syndrome cri du chat (“cry of the cat”), results from a specific deletion in chromosome 5  A child born with this syndrome is severely intellectually disabled and has a catlike cry; individuals usually die in infancy or early childhood  Certain cancers, including chronic myelogenous leukemia (CML), are caused by translocations of chromosomes © 2014 Pearson Education, Inc. Figure 15.16 Normal chromosome 9 Normal chromosome 22 Reciprocal translocation Translocated chromosome 9 Translocated chromosome 22 (Philadelphia chromosome) © 2014 Pearson Education, Inc. Concept 15.5: Some inheritance patterns are exceptions to standard Mendelian inheritance  There are two normal exceptions to Mendelian genetics  One exception involves genes located in the nucleus, and the other exception involves genes located outside the nucleus  In both cases, the sex of the parent contributing an allele is a factor in the pattern of inheritance © 2014 Pearson Education, Inc. Genomic Imprinting  For a few mammalian traits, the phenotype depends on which parent passed along the alleles for those traits  Such variation in phenotype is called genomic imprinting  Genomic imprinting involves the silencing of certain genes depending on which parent passes them on © 2014 Pearson Education, Inc. Figure 15.17 Paternal chromosome Maternal chromosome Normal Igf2 allele is expressed. Normal Igf2 allele is not expressed. Normal-sized mouse (wild type) (a) Homozygote Mutant Igf2 allele inherited from mother Normal-sized mouse (wild type) Normal Igf2 allele is expressed. Mutant Igf2 allele is not expressed. (b) Heterozygotes © 2014 Pearson Education, Inc. Mutant Igf2 allele inherited from father Dwarf mouse (mutant) Mutant Igf2 allele is expressed. Normal Igf2 allele is not expressed.  It appears that imprinting is the result of the methylation (addition of —CH3) of cysteine nucleotides  Genomic imprinting is thought to affect only a small fraction of mammalian genes  Most imprinted genes are critical for embryonic development © 2014 Pearson Education, Inc. Inheritance of Organelle Genes  Extranuclear genes (or cytoplasmic genes) are found in organelles in the cytoplasm  Mitochondria, chloroplasts, and other plant plastids carry small circular DNA molecules  Extranuclear genes are inherited maternally because the zygote’s cytoplasm comes from the egg  The first evidence of extranuclear genes came from studies on the inheritance of yellow or white patches on leaves of an otherwise green plant © 2014 Pearson Education, Inc. Figure 15.18 © 2014 Pearson Education, Inc.  Some defects in mitochondrial genes prevent cells from making enough ATP and result in diseases that affect the muscular and nervous systems  For example, mitochondrial myopathy and Leber’s hereditary optic neuropathy © 2014 Pearson Education, Inc. Figure 15.UN03a Offspring from testcross of AaBb (F1) × aabb Purple stem/short petals (A–B–) Green stem/short petals (aaB–) Purple stem/long petals (A–bb) Green stem/long petals (aabb) Expected ratio if the genes are unlinked 1 1 1 1 220 210 231 239 Expected number of offspring (of 900) Observed number of offspring (of 900) © 2014 Pearson Education, Inc. Figure 15.UN03b Testcross Offspring Expected (e) Observed (o) (A−B−) 220 (aaB−) 210 (A−bb) 231 (aabb) 239 Deviation (o − e) (o − e)2 (o − e)2/e 2 = Sum © 2014 Pearson Education, Inc. Figure 15.UN03c Cosmos plants © 2014 Pearson Education, Inc. Figure 15.UN04 Sperm P generation gametes D C B A c b a d E The alleles of unlinked genes are either on separate chromosomes (such as d and e) or so far apart on the same chromosome (c and f ) that they assort independently. This F1 cell has 2n = 6 chromosomes and is heterozygous for all six genes shown (AaBbCcDdEeFf ). Red = maternal; blue = paternal. D e C B A F © 2014 Pearson Education, Inc. e f F Each chromosome has hundreds or thousands of genes. Four (A, B, C, F ) are shown on this one. Egg d E cb a f Genes on the same chromosome whose alleles are so close together that they do not assort independently (such as a, b, and c) are said to be genetically linked. Figure 15.UN05 © 2014 Pearson Education, Inc.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            