* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Depolymerization of Heparin/HS | NEB
Survey
Document related concepts
Transcript
Home › Applications › Glycobiology › Depolymerization of Heparin/HS Depolymerization of Heparin/HS Product Listing Application Overview Heparin and heparan sulfate (HS) glycosaminoglycans are linear sulfated polysaccharides located on cell-surface membranes and in extracellular matrices in virtually all animal tissues. Heparin and HS have been implicated in cell-biological processes, cell adhesion and regulation of enzymatic catalysis (1). HS chains have been shown to interact with a variety of growth factors, chemokines, extracellular matrix proteins, and enzymes, including antithrombin, fibroblast growth factors, and vascular endothelial growth factor (2) as shown by choosing the tab below. Heparin has been widely used as an anticoagulant drug (3,4), and it has been shown to regulate cellular process by binding, stabilizing and activating various growth factors (5). References 1. Fritz, T., et al (1994) J Biol Chem 269(46), 28809-28814. PMID: 7961837 2. Linhardt, R. J., et al. (1990) Biochemistry 29(10), 2611-2617. PMID: 2334685 3. Linhardt, R. J. and Gunay, N. S. (1999) Semin. Thromb. Hemost. 25 Suppl. 3, 5-16. PMID: 10549711 4. Casu, B., et al. (2002) Biochemistry 41(33), 10519-10528. PMID: 12173939 5. Knudsen, C. B., Knudsen, W. (2001) Semin. Cell. Dev. Biol. 12, 69-78. PMID: 11292372 6. Ilan N, Elkin M, Vlodavsky I. (2006) Int. J. Biochem. Cell. Biol. 38(12), 2018-39. PMID: 16901744 7. Rosen SD, Lemjabbar-Alaoui H. (2010) Expert Opin. Ther. Targets. 14(9), 935-49. PMID: 20629619 Learn More Featured Products Heparinase Mechanism Bacteroides Heparinase I Bacteroides Heparinase II Bacteroides Heparinase III See entire list » Specific Applications HS chain interactions Legal Information Depolymerization of Heparin/HS includes these areas of focus: MS Analysis of GAGs Legal and Disclaimers This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB). While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications. For more information about commercial rights, please contact NEB's Global Business Development team at [email protected]. This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals. HS chain interactions Membrane bound proteoglycan (syndecan) showing heparan sulfate chains binding to vascular endothelial growth factor (VEGF). Highly sulfated domains bind free VEGF, creating a morphogen gradient, and thus facilitating binding to its receptor in the plasma membrane. Heparin-bound VEGF is released upon desulfation by sulfatases. Alternatively, active heparin fragments are shed by heparinases. These mechanisms are critical during blood vessel morphogenesis, particularly in tumor proliferation (6,7). Related Applications Protein Analysis & Tools